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Abstract In this paper, we study the uniqueness of meromorphic functions whose certain
nonlinear differential polynomials share a small function with finite weight. Our result gen-
eralizes and improves the recent results due to A. Banerjee and the present first author
Sarajevo (Sarajevo J. Math. 8(20), 69–89, (2012)).
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1 Introduction, Definitions, and Results

In this paper, by meromorphic functions, we will always mean meromorphic functions in
the complex plane. We adopt the standard notations in the Nevanlinna theory of meromor-
phic functions as explained in [7, 16, 17]. Let E denote any set of positive real numbers
of finite linear measure not necessarily the same at each occurrence. For a nonconstant
meromorphic function f , we denote by T (r, f ) the Nevanlinna characteristic of f and by
S(r, f ) any quantity satisfying S(r, f ) = o{T (r, f )}(r → ∞, r �∈ E). We denote by T (r)

the maximum of T (r, f ) and T (r, g) and by S(r) any quantity satisfying S(r) = o{T (r)}
(r → ∞, r �∈ E). A meromorphic function a(z)(�≡ ∞) is called a small function with
respect to f provided that T (r, a) = S(r, f ).
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Let f and g be two nonconstant meromorphic functions. We say that f and g share the
value a CM (counting multiplicities) if f − a and g − a have the same zeros with the same
multiplicities. Similarly, we say that f and g share the value a IM provided that f − a

and g − a have the same zeros ignoring multiplicities. Throughout this paper, we need the
following definition

�(a, f ) = 1 − lim sup
r−→∞

N(r, a; f )

T (r, f )
,

where a is a value in the extended complex plane.
In 1999, Lahiri [8] studied the uniqueness problems of meromorphic functions when two

linear differential polynomials share the same 1-points. In the same paper, regarding the
nonlinear differential polynomials, Lahiri asked the following question: What can be said
if two nonlinear differential polynomials generated by two meromorphic functions share 1
CM?

Afterwards research works concerning the above question have been done by manymath-
ematicians and continuous efforts are being put in to relax the hypothesis of the results (see
[1, 3, 6, 8, 12, 13, 15]).

In 1997, Yang and Hua [15] proved the following result.

Theorem A Let f and g be two nonconstant meromorphic functions, n ≥ 11 an integer,
and a ∈ C − {0}. If f nf ′ and gng′ share the value a CM, then either f = tg for some
(n + 1)th root of unity 1 or f (z) = c1e

cz, g(z) = c2e
−cz, where c, c1, c2 are constants

satisfying (c1c2)
n+1c2 = −a2.

In 2004, Lin and Yi [13] proved the following results.

Theorem B Let f and g be two nonconstant meromorphic functions satisfying �(∞, f )

> 2/(n + 1), n ≥ 12 an integer. If f n(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM,
then f ≡ g.

Theorem C Let f and g be two nonconstant meromorphic functions, n ≥ 13 an integer. If
f n(f − 1)2f ′ and gn(g − 1)2g′ share the value 1 CM, then f ≡ g.

A new trend in this direction is to consider the uniqueness of a meromorphic function
concerning the value sharing of the kth derivatives of a linear expression of a meromorphic
function. In 2010, Dyavanal [4] considers the uniqueness problem of meromorphic function
related to the value sharing of two nonlinear differential polynomials. The author proved two
theorems for the value sharing of differential functions in which the multiplicities of zeros
and poles of f and g are taken into account. The ideas resorted by the author in [4] are no
doubt novel, but there are some mistakes in the paper. For example, on page 7, in the proof
of Theorem 1.2 [4], there is a serious lacuna when a counting function is being elaborated
and then restricted in terms of Nevanlinna’s characteristic function (for details, please see
page 3 of [2]). In 2011, the author has rectified the paper and proved the following theorems.

Theorem D [5] Let f and g be two nonconstant meromorphic functions, whose zeros and
poles are of multiplicities at least s, where s is a positive integer. Let n be an integer sat-
isfying (n − 2)s ≥ 10. If f n(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then

g = (n+2)(1−hn+1)

(n+1)(1−hn+2)
, f = (n+2)h(1−hn+1)

(n+1)(1−hn+2)
, where h is a nonconstant meromorphic function.
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Theorem E [5] Let f and g be two nonconstant meromorphic functions, whose zeros and
poles are of multiplicities at least s, where s is a positive integer. Let n be an integer sat-
isfying (n − 3)s ≥ 10. If f n(f − 1)2f ′ and gn(g − 1)2g′ share the value 1 CM, then
f ≡ g.

A recent increment to uniqueness theory is to consider weighted sharing instead of shar-
ing IM or CM; this implies a gradual change from sharing IM to sharing CM. This notion of
weighted sharing, which measures how close a shared value is to being shared CM or being
shared IM, has been introduced by Lahiri around 2000.

Definition 1.1 [9] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}, denote by
Ek(a; f ) the set of all a-points of f where an a-point of multiplicity m is counted m times
if m ≤ k and k + 1 times if m > k. If Ek(a; f ) = Ek(a; g), say that f , g share the value a

with weight k.
The definition implies that if f , g share a value a with weight k, then z0 is an a-point

of f with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k)

and z0 is an a-point of f with multiplicity m(> k) if and only if it is an a-point of g with
multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly,
if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also, we
note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)

respectively.

If α is a small function of f and g, then f , g share α with weight k means that f − α,
g − α share the value 0 with weight k.

In 2012, using the notion of weighted value sharing, Banerjee and Sahoo [2] proved the
following theorems which improve Theorems D and E.

Theorem F Let f and g be two transcendental meromorphic functions, whose zeros
and poles are of multiplicities at least s, where s is a positive integer and �(∞, f ) +
�(∞, g) > 4/n. Let [f n(a1f + a2)](k) and [gn(a1g + a2)](k) share (b, l) where k(≥ 1),
l(≥ 0) are integers, a1, a2, b are nonzero constants and one of the following conditions
holds:

(a) l ≥ 2 and n > max{(3k + 8)/s + 1, 3 + 2/s}
(b) l = 1 and n > max{(4k + 9)/s + 3/2, 3 + 2/s}
(c) l = 0 and n > max{(9k + 14)/s + 4, 3 + 2/s}
Then, either [f n(a1f + a2)](k)[gn(a1g + a2)](k) ≡ b2 or f ≡ g.

The possibility [f n(a1f + a2)](k)[gn(a1g + a2)](k) ≡ b2 does not arise for k = 1.

Theorem G Let f and g be two transcendental meromorphic functions, whose zeros
and poles are of multiplicities at least s, where s is a positive integer. Let [f n(a1f

2 +
a2f + a3)](k) and [gn(a1g

2 + a2g + a3)](k) share (b, l) where k(≥ 1), l(≥ 0)
are integers, a1, a2, a3, b are nonzero constants and one of the following conditions
holds:

(a) l ≥ 2 and n > max{(3k + 8)/s + 2, 4 + 4/s}
(b) l = 1 and n > max{(4k + 9)/s + 3, 4 + 4/s}
(c) l = 0 and n > max{(9k + 14)/s + 8, 4 + 4/s}
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Then, either [f n(a1f
2 + a2f + a3)](k)[gn(a1g

2 + a2g + a3)](k) ≡ b2 or f ≡ g or f , g

satisfies the algebraic equation R(f, g) = 0, where

R(x, y) = xn(a1x
2 + a2x + a3) − yn(a1y

2 + a2y + a3).

The possibility [f n(a1f
2 + a2f + a3)](k)[gn(a1g

2 + a2g + a3)](k) ≡ b2 does not arise
when k = 1.

This paper is motivated by the following questions.

Question 1.1 Can one deduce a generalized result in which Theorems F and G will be
included?

Question 1.2 What can be said if the sharing value b in Theorems F and G is replaced by a
small function of f and g?

We will concentrate our attention to the above questions and provide an affirmative
answer in this direction. We now state our main result.

Theorem 1.1 Let n be a positive integer. Let f and g be two transcendental meromorphic
functions, whose zeros and poles are of multiplicities at least s, where s is a positive integer
and �(∞, f )+�(∞, g) > 4/n. Let P(z) = amzm +· · ·+ a1z+ a0, where m is a positive
integer and a0(�= 0), a1, . . . , am(�= 0) are complex constants. Suppose that [f nP (f )](k)

and [gnP (g)](k) share (α, l) where k(≥ 1), l(≥ 0) are integers and α(�≡ 0, ∞) is a small
function of f and g and one of the following conditions holds:

(a) l ≥ 2 and n > max{(3k + 8)/s + m, m + 2 + 2m/s}
(b) l = 1 and n > max{(4k + 9)/s + 3m/2,m + 2 + 2m/s}
(c) l = 0 and n > max{(9k + 14)/s + 4m, m + 2 + 2m/s}
Then, either [f nP (f )](k)[gnP (g)](k) ≡ α2 or f = tg for a constant t such that td = 1,
where d = gcd{n + m, . . . , n + m − i, . . . , n + 1, n}, am−i �= 0 for some i = 0, 1, . . . , m
or f and g satisfy the algebraic equation R(f, g) = 0, where

R(f, g) = f nP (f ) − gnP (g).

The possibility [f nP (f )](k)[gnP (g)](k) ≡ α2 does not occur for k = 1.

Remark 1.1 Taking m = 1 and m = 2 in Theorem 1.1, it reduces to Theorems F and G,
respectively. Since Theorems F and G are the special cases of Theorem 1.1, it improves and
generalizes Theorems F and G.

Though the standard definitions and notations of the value distribution theory are
available in [7], we give the following definitions and notations used in this paper.

Definition 1.2 [10] Let a ∈ C ∪ {∞}. Denote by N(r, a; f |= 1) the counting function
of simple a points of f . For a positive integer p, denote by N(r, a; f |≤ p) the counting
function of those a-points of f (counted with proper multiplicities) whose multiplicities are
not greater than p. Denote byN(r, a; f |≤ p) the corresponding reduced counting function.

Analogously, we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).
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Definition 1.3 [9] Let k be a positive integer or infinity. We denote by Nk(r, a; f ) the
counting function of a-points of f , where an a-point of multiplicity m is counted m times
if m ≤ k and k times if m > k. Then,

Nk(r, a; f ) = N(r, a; f ) + N(r, a; f |≥ 2) + · · · + N(r, a; f |≥ k).

Clearly, N1(r, a; f ) = N(r, a; f ).

2 Lemmas

Let F and G be two nonconstant meromorphic functions defined in the open complex plane
C. Let

H =
(

F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
.

Lemma 2.1 [14] Let f be a transcendental meromorphic function, and let Pn(f ) be a
polynomial in f of the form

Pn(f ) = anf
n(z) + an−1f

n−1(z) + · · · + a1f (z) + a0,

where an(�= 0), an−1, . . . , a1, a0 are complex numbers. Then,

T (r, Pn(f )) = nT (r, f ) + O(1).

Lemma 2.2 [18] Let f be a nonconstant meromorphic function, and p, k be positive
integers. Then,

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f ) + Np+k(r, 0; f ) + S(r, f ), (2.1)

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f ) + Np+k(r, 0; f ) + S(r, f ). (2.2)

Lemma 2.3 (see[17, p. 38]) Suppose that f is a nonconstant meromorphic function in the
complex plane and k is a positive integer. Then,

T (r, f ) ≤ N(r,∞; f ) + N(r, 0; f ) + N(r, 1; f (k)) − N(r, 0; f (k+1)) + S(r, f ).

Lemma 2.4 [9] Let f and g be two nonconstant meromorphic functions sharing (1, 2).
Then, one of the following cases holds:

(i) T (r) ≤ N2(r, 0; f ) + N2(r, 0; g) + N2(r,∞; f ) + N2(r,∞; g) + S(r)

(ii) f = g

(iii) fg = 1

Lemma 2.5 [1] Let F and G be two nonconstant meromorphic functions sharing (1, 1) and
H �≡ 0. Then,

T (r, F ) ≤ N2(r, 0; F) + N2(r, 0; G) + N2(r,∞;F) + N2(r,∞; G)

+1

2
N(r, 0; F) + 1

2
N(r,∞; F) + S(r, F ) + S(r,G).
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Lemma 2.6 [1] Let F and G be two nonconstant meromorphic functions sharing (1, 0) and
H �≡ 0. Then,

T (r, F ) ≤ N2(r, 0; F) + N2(r, 0; G) + N2(r,∞;F) + N2(r,∞;G) + 2N(r, 0; F)

+N(r, 0;G) + 2N(r,∞; F) + N(r,∞; G) + S(r, F ) + S(r,G).

Lemma 2.7 Let f and g be two nonconstant meromorphic functions whose zeros and poles
are of multiplicities at least s, where s is a positive integer. Let P(z) be defined as in
Theorem 1.1 and n, m be two positive integers. If (n + m − 2)p > 2m(1 + 1/s) then

[f nP (f )]′[gnP (g)]′ �≡ α,

where α is a small function with f and g and p is the number of distinct roots of P(z) = 0.

Proof Suppose on the contrary that

[f nP (f )]′[gnP (g)]′ = α.

Then,

f n−1Q(f )f ′gn−1Q(g)g′ = α, (2.3)

where Q(z) = bmzm +bm−1z
m−1+· · ·+b1z+b0, where bj = (n+j)aj , j = 0, 1, . . . , m.

We write Q(z) as

Q(z) = bm(z − d1)
l1(z − d2)

l2 . . . (z − di)
li . . . (z − dp)lp ,

where
∑p

i=1 li = m, 1 ≤ p ≤ m; di �= dj , i �= j , 1 ≤ i, j ≤ p; di’s are nonzero constants
and li’s are positive integers, i = 1, 2, . . . , p. Let z0 (α(z0) �= 0, ∞) be a zero of f with
multiplicity p0(≥ s). Then, z0 is a pole of g with multiplicity q0(≥ s), say. From (2.3), we
obtain

np0 − 1 = (n + m)q0 + 1,

i.e.,

mq0 + 2 = n(p0 − q0). (2.4)

From (2.4), we get q0 ≥ n−2
m

and so we have p0 ≥ n+m−2
m

. Let z1 (α(z1) �= 0, ∞) be a
zero of Q(f ) with multiplicity p1 and be a zero of f − di of order qi for i = 1, 2, . . . , p.

Then, p1 = liqi for some i = 1, 2, . . . , p. Hence, z1 is a pole of g with multiplicity q, say.
So from (2.3), we get

qi li + qi − 1 = (n + m)q + 1 ≥ (n + m)s + 1

i.e., qi ≥ (n+m)s+2
li+1 for i = 1, 2, . . . , p.

Suppose that z2 (α(z2) �= 0, ∞) is a pole of f . Then, from (2.3), z2 is either a zero of
gn−1Q(g) or a zero of g′. Therefore,

N(r,∞; f ) ≤ N(r, 0; g) +
p∑

i=1

N(r, di; g) + N0(r, 0; g′) + N(r,∞; α) + N(r, 0; α)

+S(r, f ) + S(r, g)

≤
(

m

n + m − 2
+ m + p

(n + m)s + 2

)
T (r, g) + N0(r, 0; g′) + S(r, f ) + S(r, g),

where N0(r, 0; g′) denotes the reduced counting function of those zeros of g′ which are not
the zeros of gQ(g). We have a similar inequality for g.
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Using the second fundamental theorem of Nevanlinna, we obtain

pT (r, f ) ≤ N(r,∞; f ) + N(r, 0; f ) +
p∑

i=1

N(r, di; f ) − N0(r, 0; f ′) + S(r, f )

≤
(

m

n + m − 2
+ m + p

(n + m)s + 2

)
{T (r, f ) + T (r, g)} + N0(r, 0; g′)

−N0(r, 0; f ′) + S(r, f ) + S(r, g). (2.5)

Similarly,

pT (r, g) ≤
(

m

n + m − 2
+ m + p

(n + m)s + 2

)
{T (r, f ) + T (r, g)} + N0(r, 0; f ′)

−N0(r, 0; g′) + S(r, f ) + S(r, g). (2.6)

Adding (2.5) and (2.6), we obtain

(
p − 2m

n + m − 2
− 2(m + p)

(n + m)s + 2

)
{T (r, f ) + T (r, g)} ≤ S(r, f ) + S(r, g),

which contradicts the fact that (n + m − 2)p > 2m(1 + 1/s). This proves the lemma.

Note 2.1 If P(z) = 0 has only one root of multiplicity m, then the above lemma holds for
n > m + 2 + 2m/s. If all the roots of P(z) = 0 are distinct, then the lemma holds for
n > 4 − m + 2/s.

Lemma 2.8 Let f and g be two transcendental meromorphic functions, whose zeros and
poles are of multiplicities at least s, where s is a positive integer and let n, k be two pos-

itive integers. Let P(z) be defined as in Theorem 1.1. Suppose that F = (f nP (f ))(k)

α
and

G = (gnP (g))(k)

α
where a, b are any two nonzero finite complex constants and α(�≡ 0, ∞)

is a small function of f and g. If there exist two nonzero constants c1 and c2 such that
N(r, c1;F) = N(r, 0; G) and N(r, c2;G) = N(r, 0;F), then n ≤ (3k + 3)/s + m.

Proof By the second fundamental theorem of Nevanlinna, we have

T (r, F ) ≤ N(r, 0; F) + N(r,∞; F) + N(r, c1; F) + S(r, F )

≤ N(r, 0; F) + N(r, 0; G) + N(r,∞;F) + S(r, F ). (2.7)

By (2.1), (2.2), (2.7), and Lemmas 2.1 and 2.3, we obtain

(n + m)T (r, f ) ≤ T (r, F ) − N(r, 0; F) + Nk+1(r, 0; f nP (f )) + S(r, f )

≤ N(r, 0;G) + Nk+1(r, 0; f nP (f )) + N(r,∞; F) + S(r, f )

≤ Nk+1(r, 0; f nP (f )) + Nk+1(r, 0; gnP (g)) + N(r,∞; f )

+kN(r,∞; g) + N(r,∞; α) + N(r, 0;α) + S(r, f ) + S(r, g)

≤
(

k + 2

s
+ m

)
T (r, f ) +

(
2k + 1

s
+ m

)
T (r, g)

+S(r, f ) + S(r, g). (2.8)
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Similarly, we have

(n + m)T (r, g) ≤
(

k + 2

s
+ m

)
T (r, g) +

(
2k + 1

s
+ m

)
T (r, f )

+S(r, f ) + S(r, g). (2.9)

Hence, from (2.8) and (2.9), we get

(
n − 3k + 3

s
− m

)
{T (r, f ) + T (r, g)} ≤ S(r, f ) + S(r, g),

which gives n ≤ (3k + 3)/s + m. This completes the proof of the lemma.

The following lemma can be carried out in line with the proof of Lemma 6 in [11].

Lemma 2.9 Let f and g be two nonconstant meromorphic functions such that

�(∞, f ) + �(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then,

f n(af + b) = gn(ag + b)

implies f = g, where a, b are any two nonzero finite complex constants.

3 Proof of the Theorem

Proof of Theorem 1.1 Let F and G be defined as in Lemma 2.8. Then, F , G are
transcendental meromorphic functions that share (1, l). Thus, from (2.1), we obtain

N2(r, 0; F) ≤ N2

(
r, 0; (f nP (f ))(k)

)
+ S(r, f )

≤ T
(
r, (f nP (f ))(k)

)
− (n + m)T (r, f ) + Nk+2(r, 0; f nP (f )) + S(r, f )

≤ T (r, F ) − (n + m)T (r, f ) + Nk+2(r, 0; f nP (f )) + S(r, f ). (3.1)

Again, by (2.2), we have

N2(r, 0; F) ≤ kN(r,∞; f ) + Nk+2(r, 0; f nP (f )) + S(r, f ). (3.2)

From (3.1), we get

(n + m)T (r, f ) ≤ T (r, F ) + Nk+2(r, 0; f nP (f )) − N2(r, 0; F) + S(r, f ). (3.3)

We now discuss the following three cases separately.
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Case 1. Let l ≥ 2. Suppose that (i) of Lemma 2.4 holds. Then, using (3.2), we deduce from
(3.3) that

(n + m)T (r, f ) ≤ N2(r, 0; G) + N2(r,∞;F) + N2(r,∞;G) + Nk+2(r, 0; f nP (f ))

+S(r, f ) + S(r, g)

≤ Nk+2(r, 0; f nP (f )) + Nk+2(r, 0; gnP (g)) + 2N(r,∞; f )

+(k + 2)N(r, ∞; g) + S(r, f ) + S(r, g)

≤
(

k + 2

s
+ m

)
{T (r, f ) + T (r, g)}+2N(r, ∞; f )+(k + 2)N(r,∞; g)

+S(r, f ) + S(r, g)

≤
(

k + 4

s
+ m

)
T (r, f ) +

(
2k + 4

s
+ m

)
T (r, g) + S(r, f ) + S(r, g)

≤
(
3k + 8

s
+ 2m

)
T (r) + S(r). (3.4)

Similarly,

(n + m)T (r, g) ≤
(
3k + 8

s
+ 2m

)
T (r) + S(r). (3.5)

From (3.4) and (3.5), we obtain

(n − 3k + 8

s
− m)T (r) ≤ S(r),

contradicting the fact that n > max{(3k + 8)/s + m, m + 2 + 2m/s}. So by Lemma 2.4,
either FG = 1 or F = G. Let FG = 1. Then,

[f nP (f )](k)[gnP (g)](k) = α2,

a contradiction for k = 1 by Lemma 2.7. So we have F = G. That is,

[f nP (f )](k) = [gnP (g)](k).

Integrating both sides, we get

[f nP (f )](k−1) = [gnP (g)](k−1) + ck−1,

where ck−1 is a constant. If ck−1 �= 0, from Lemma 2.8, we obtain n ≤ 3k
s

+ m, a
contradiction. Hence, ck−1 = 0. Repeating k times, we obtain

f nP (f ) = gnP (g). (3.6)

If m = 1 then by Lemma 2.9, we have f = g. Suppose that m ≥ 2 and h = f
g
. If h is a

constant, by putting f = gh in (3.6), we get

amgn+m(hn+m − 1) + am−1g
n+m−1(hn+m−1 − 1) + · · ·

+a1g
n+1(hn+1 − 1) + a0g

n(hn − 1) = 0,

which implies hd = 1, where d = (n + m, . . . , n + m − i, . . . , n + 1, n), for
some i = 0, 1, . . . , m. Thus, f = tg for a constant t such that td = 1,
d = (n + m, . . . , n + m − i, . . . , n + 1, n), for some i = 0, 1, . . . , m.

If h is not a constant, then from (3.6), we can say that f and g satisfy the algebraic
equation R(f, g) = 0, where

R(f, g) = f nP (f ) − gnP (g).
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Case 2. Let l = 1 and H �≡ 0. Using Lemma 2.5 and (3.2), from (3.3), we obtain

(n + m)T (r, f ) ≤ N2(r, 0;G) + N2(r,∞;F) + N2(r,∞; G) + 1

2
N(r, 0; F)

+1

2
N(r,∞;F) + Nk+2(r, 0; f nP (f )) + S(r, f ) + S(r, g)

≤ Nk+2(r, 0; f nP (f )) + Nk+2(r, 0; gnP (g)) + 1

2
Nk+1(r, 0; f nP (f ))

+k + 5

2
N(r,∞; f ) + (k + 2)N(r,∞; g) + S(r, f ) + S(r, g)

≤
(
2k + 5

s
+ 3m

2

)
T (r, f ) +

(
2k + 4

s
+ m

)
T (r, g)

+S(r, f ) + S(r, g)

≤
(
4k + 9

s
+ 5m

2

)
T (r) + S(r). (3.7)

Similarly,

(n + m)T (r, g) ≤
(
4k + 9

s
+ 5m

2

)
T (r) + S(r). (3.8)

Combining (3.7) and (3.8), we obtain

[n − 4k + 9

s
− 3m

2
]T (r) ≤ S(r),

a contradiction since n > max{(4k + 9)/s + 3m/2,m + 2 + 2m/s}. We now assume that
H = 0. That is, (

F ′′

F ′ − 2F ′

F − 1

)
−

(
G′′

G′ − 2G′

G − 1

)
= 0.

Integrating both sides of the above equality twice, we get

1

F − 1
= A

G − 1
+ B, (3.9)

where A( �= 0) and B are constants. From (3.9), it is clear that F , G share the value 1 CM
and so they share (1, 2). Hence, n > max{(3k + 8)/s + m, m + 2 + 2m/s}. Now, we
discuss the following three subcases.

Subcase (i). Let B �= 0 and A = B. Then, from (3.9), we get

1

F − 1
= BG

G − 1
. (3.10)

If B = −1, then from (3.10), we obtain FG = 1, a contradiction for k = 1 by Lemma 2.7.
If B �= −1, from (3.10), we have 1

F
= BG

(1+B)G−1 and so N(r, 1
1+B

; G) = N(r, 0;F).
Now, from the second fundamental theorem of Nevanlinna, we get

T (r,G) ≤ N(r, 0; G) + N

(
r,

1

1 + B
; G

)
+ N(r,∞; G) + S(r,G)

≤ N(r, 0; F) + N(r, 0; G) + N(r,∞; G) + S(r, G).
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Using (2.1) and (2.2), from the above inequality, we obtain

T (r,G) ≤ Nk+1(r, 0; f nP (f )) + kN(r,∞; f ) + T (r,G) + Nk+1(r, 0; gnP (g))

−(n + m)T (r, g) + N(r,∞; g) + S(r, g).

Hence,

(n + m)T (r, g) ≤
(
2k + 1

s
+ m

)
T (r, f ) +

(
k + 2

s
+ m

)
T (r, g) + S(r, g).

Thus, we obtain(
n − 3k + 3

s
− m

)
{T (r, f ) + T (r, g)} ≤ S(r, f ) + S(r, g),

a contradiction as n > max{(3k + 8)/s + m, m + 2 + 2m/s}.

Subcase (ii). Let B �= 0 and A �= B. Then, from (3.9), we get F = (B+1)G−(B−A+1)
BG+(A−B)

and

so N(r, B−A+1
B+1 ; G) = N(r, 0;F). Proceeding as in subcase (i), we obtain a contradiction.

Subcase (iii). Let B = 0 and A �= 0. Then, from (3.9), we get F = G+A−1
A

and G = AF − (A − 1). If A �= 1, we have N(r, A−1
A

; F) = N(r, 0;G) and
N(r, 1 − A;G) = N(r, 0;F). So by Lemma 2.8, we have n ≤ 3k+3

s
+m, a contradiction.

Thus, A = 1, and hence, F = G. Then, the result follows from case 1.

Case 3. Let l = 0 and H �≡ 0. Using Lemma 2.6 and (3.2), from (3.3), we get

(n + m)T (r, f ) ≤ N2(r, 0;G)+N2(r,∞;F) + N2(r,∞; G) + 2N(r, 0;F) + N(r, 0;G)

+Nk+2(r, 0; f nP (f ))+2N(r, ∞;F)+N(r,∞;G)+S(r, f )+S(r, g)

≤ Nk+2(r, 0; f nP (f )) + Nk+2(r, 0; gnP (g)) + 2Nk+1(r, 0; f nP (f ))

+Nk+1(r, 0; gnP (g)) + (2k + 4)N(r,∞; f ) + (2k + 3)N(r,∞; g)

+S(r, f ) + S(r, g)

≤
(
5k + 8

s
+ 3m

)
T (r, f )+

(
4k + 6

s
+ 2m

)
T (r, g)+S(r, f )+S(r, g)

≤
(
9k + 14

s
+ 5m

)
T (r) + S(r). (3.11)

Similarly,

(n + m)T (r, g) ≤
(
9k + 14

s
+ 5m

)
T (r) + S(r). (3.12)

From (3.11) and (3.12), we obtain

[n − 9k + 14

s
− 4m]T (r) ≤ S(r),

which contradicts the facts that n > max{(9k + 14)/s + 4m, m + 2 + 2m/s}. So H = 0,
and then proceeding as in case 2, the result follows. This proves the theorem.
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