

## Graded Annihilators and Uniformly *F*-Compatible Ideals

**Rodney Y. Sharp** 

Dedicated to Ngo Viet Trung, on the occasion of his sixtieth birthday

Received: 25 June 2014 / Accepted: 4 September 2014 / Published online: 25 February 2015 © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Abstract Let R be a commutative (Noetherian) local ring of prime characteristic p that is F-pure. This paper is concerned with comparison of three finite sets of radical ideals of R, one of which is only defined in the case when R is F-finite (that is, is finitely generated when viewed as a module over itself via the Frobenius homomorphism). Two of the aforementioned three sets have links to tight closure, via test ideals. Among the aims of the paper are a proof that two of the sets are equal, and a proposal for a generalization of I. M. Aberbach's and F. Enescu's splitting prime.

**Keywords** Commutative Noetherian local ring  $\cdot$  Prime characteristic  $\cdot$  Frobenius homomorphism  $\cdot$  Tight closure  $\cdot$  Test element  $\cdot$  Excellent ring  $\cdot$  Frobenius skew polynomial ring  $\cdot$  Graded annihilator  $\cdot$  *F*-pure ring  $\cdot$  Uniformly *F*-compatible ideal

**Mathematics Subject Classification (2010)** Primary 13A35 · 16S36 · 13E05 · 13F40 · Secondary 13J10

### 1 Introduction

Throughout the paper, let  $(R, \mathfrak{m})$  be a commutative (Noetherian) local ring of prime characteristic *p* having maximal ideal  $\mathfrak{m}$ . In recent years, the study of *R*-modules with a Frobenius action has assisted in the development of the theory of tight closure over *R*. An *R*-module with a Frobenius action can be viewed as a left module over the Frobenius skew polynomial ring over *R*, and such left modules will play a central role in this paper.

The Frobenius skew polynomial ring over R is described as follows. Throughout,  $f : R \longrightarrow R$  denotes the Frobenius ring homomorphism, for which  $f(r) = r^p$  for all  $r \in R$ .

R. Y. Sharp (🖂)

School of Mathematics and Statistics, University of Sheffield, Hicks Building, Sheffield S3 7RH, United Kingdom e-mail: r.y.sharp@sheffield.ac.uk

The *Frobenius skew polynomial ring over* R is the skew polynomial ring R[x, f] associated to R and f in the indeterminate x; as a left R-module, R[x, f] is freely generated by  $(x^i)_{i\geq 0}$ , and so consists of all polynomials  $\sum_{i=0}^{n} r_i x^i$ , where  $n \geq 0$  and  $r_0, \ldots, r_n \in R$ ; however, its multiplication is subject to the rule  $xr = f(r)x = r^p x$  for all  $r \in R$ .

We can think of R[x, f] as a positively-graded ring  $R[x, f] = \bigoplus_{n=0}^{\infty} R[x, f]_n$ , where  $R[x, f]_n = Rx^n$  for  $n \ge 0$ . The graded annihilator of a left R[x, f]-module H is the largest graded two-sided ideal of R[x, f] that annihilates H; it is denoted by gr-ann<sub>R[x, f]</sub>H.</sub>

Let *G* be a left R[x, f]-module that is *x*-torsion-free in the sense that xg = 0 for  $g \in G$ , only when g = 0. Then gr-ann<sub>R[x, f]</sub> G = bR[x, f], where  $b = (0 :_R G)$  is a radical ideal. See [11, Lemma 1.9]. We shall use  $\mathcal{I}(G)$  (or  $\mathcal{I}_R(G)$ ) to denote the set of *R*-annihilators of the R[x, f]-submodules of *G*; we shall refer to the members of  $\mathcal{I}(G)$  as the *G*-special *Rideals*. For a graded two-sided ideal  $\mathfrak{B}$  of R[x, f], we denote by  $\operatorname{ann}_G(\mathfrak{B})$  or  $\operatorname{ann}_G\mathfrak{B}$  the R[x, f]-submodule of *G* consisting of all elements of *G* that are annihilated by  $\mathfrak{B}$ . Also, we shall use  $\mathcal{A}(G)$  to denote the set of special annihilator submodules of *G*, that is, the set of R[x, f]-submodules of *G* of the form  $\operatorname{ann}_G(\mathfrak{A})$ , where  $\mathfrak{A}$  is a graded two-sided ideal of R[x, f]. In [11, §1], the present author showed that there is a sort of 'Galois' correspondence between  $\mathcal{I}(G)$  and  $\mathcal{A}(G)$ . In more detail, there is an order-reversing bijection,  $\Delta : \mathcal{A}(G) \longrightarrow \mathcal{I}(G)$  given by

$$\Delta: N \longmapsto (\operatorname{gr-ann}_{R[x, f]} N) \cap R = (0:_R N).$$

The inverse bijection,  $\Delta^{-1} : \mathcal{I}(G) \longrightarrow \mathcal{A}(G)$ , also order-reversing, is given by

 $\Delta^{-1}: \mathfrak{b} \longmapsto \operatorname{ann}_G(\mathfrak{b}R[x, f])).$ 

We shall be mainly concerned in this paper with the situation where *R* is *F*-pure. We remind the reader what this means. For  $j \in \mathbb{N}$  (the set of positive integers) and an *R*-module *M*, let  $M^{(j)}$  denote *M* considered as a left *R*-module in the natural way and as a right *R*-module via  $f^j$ , the *j*th iterate of the Frobenius ring homomorphism. Then *R* is *F*-pure if, for every *R*-module *M*, the natural map  $M \longrightarrow R^{(1)} \otimes_R M$  (which maps  $m \in M$  to  $1 \otimes m$ ) is injective.

Note that  $R^{(j)} \cong Rx^j$  as (R, R)-bimodules. Let  $i \in \mathbb{N}_0$ , the set of non-negative integers. When we endow  $Rx^i$  and  $Rx^j$  with their natural structures as (R, R)-bimodules (inherited from their being graded components of R[x, f]), there is an isomorphism of (left) *R*-modules  $\phi : Rx^{i+j} \otimes_R M \xrightarrow{\cong} Rx^i \otimes_R (Rx^j \otimes_R M)$  for which  $\phi(rx^{i+j} \otimes m) = rx^i \otimes (x^j \otimes m)$  for all  $r \in R$  and  $m \in M$ . It follows that *R* is *F*-pure if and only if the left R[x, f]-module  $R[x, f] \otimes_R M$  is *x*-torsion-free for every *R*-module *M*. This means that, when *R* is *F*-pure, there is a good supply of natural *x*-torsion-free left R[x, f]-modules.

In fact, we shall use  $\Phi$  (or  $\Phi_R$  when it is desirable to specify which ring is being considered) to denote the functor  $R[x, f] \otimes_R \bullet$  from the category of *R*-modules (and all *R*-homomorphisms) to the category of all  $\mathbb{N}_0$ -graded left R[x, f]-modules (and all homogeneous R[x, f]-homomorphisms). For an *R*-module *M*, we shall identify  $\Phi(M)$  with  $\bigoplus_{n \in \mathbb{N}_0} Rx^n \otimes_R M$ , and (usually) identify its 0th component  $R \otimes_R M$  with *M*, in the obvious ways.

Let *E* be the injective envelope of the simple *R*-module *R*/m. We shall be concerned with  $\Phi(E)$ , the  $\mathbb{N}_0$ -graded left R[x, f]-module  $\bigoplus_{n \in \mathbb{N}_0} Rx^n \otimes_R E$ . Assume now that *R* is *F*-pure. In [12, Corollary 4.11], the present author proved that the set  $\mathcal{I}(\Phi(E))$  is a finite set of radical ideals of *R*; in [11, Theorem 3.6 and Corollary 3.7], he proved that  $\mathcal{I}(\Phi(E))$  is closed under taking primary (prime in this case) components; and in [14, Corollary 2.8], he proved that the big test ideal  $\tilde{\tau}(R)$  of *R* (for tight closure) is equal to the smallest member



of  $\mathcal{I}(\Phi(E))$  that meets  $R^\circ$ , the complement in R of the union of the minimal prime ideals of R.

Let  $\mathfrak{a} \in \mathcal{I}(\Phi(E))$  (with  $\mathfrak{a} \neq R$ ), still in the *F*-pure case. The special annihilator submodule  $\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$  of  $\Phi(E)$  corresponding to  $\mathfrak{a}$  inherits a natural structure as a graded left module over the Frobenius skew polynomial ring  $(R/\mathfrak{a})[x, f]$ , and its 0th component is contained in (0 :<sub>*E*</sub>  $\mathfrak{a}$ ). As *R*/ $\mathfrak{a}$ -module, the latter is isomorphic to the injective envelope of the simple *R*/ $\mathfrak{a}$ -module. Motivated by results in [14, §3] in the case where *R* is complete, and by work of K. Schwede in [10, §5] in the *F*-finite case, we say that  $\mathfrak{a}$  is *fully*  $\Phi(E)$ -*special* if (it is  $\Phi(E)$ -special and) its 0th component is exactly (0 :<sub>*E*</sub>  $\mathfrak{a}$ ). The main result of this paper is that a  $\Phi(E)$ -special ideal of *R* is always fully  $\Phi(E)$ -special provided that *R* is an (*F*-pure) homomorphic image of an excellent regular local ring of characteristic *p*. When *R* satisfies this condition, corollaries can be drawn from that main result: we shall establish an analogue of [14, Theorem 3.1] and, in particular, show that  $R/\mathfrak{a}$  is *F*-pure whenever  $\mathfrak{a}$  is a proper  $\Phi(E)$ -special ideal of *R*.

Along the way, we shall show that, in the case where *R* is *F*-finite as well as *F*-pure, the set  $\mathcal{I}(\Phi(E))$  of  $\Phi(E)$ -special ideals of *R* is equal to the set of *uniformly F*-compatible *ideals* of *R*, introduced by K. Schwede in [10, §3]. An ideal b of *R* is said to be *uniformly F*-compatible if, for every j > 0 and every  $\phi \in \text{Hom}_R(R^{(j)}, R)$ , we have  $\phi(\mathfrak{b}^{(j)}) \subseteq \mathfrak{b}$ . In [10, Corollary 5.3 and Corollary 3.3], Schwede proved that there are only finitely many uniformly *F*-compatible ideals of *R* and that they are all radical; in [10, Proposition 4.7 and Corollary 4.8], he proved that the set of uniformly *F*-compatible ideals is closed under taking primary (prime in this case) components; in [10, Theorem 6.3], Schwede proved that the big test ideal  $\tilde{\tau}(R)$  of *R* is equal to the smallest uniformly *F*-compatible ideal of *R* that meets  $R^\circ$ ; and in [10, Remark 4.4 and Proposition 4.7], he proved that there is a unique largest proper uniformly *F*-compatible ideal of *R*, and that is prime and equal to the splitting prime of *R* discovered and defined by I. M. Aberbach and F. Enescu [1, §3].

Thus, in the *F*-finite *F*-pure case, the set of uniformly *F*-compatible ideals of *R* has properties similar to some properties of  $\mathcal{I}(\Phi(E))$ . Are the two sets the same? We shall, during the course of the paper, show that the answer is 'yes'. It should be emphasized, however, that Schwede only defined uniformly *F*-compatible ideals in the *F*-finite case, whereas the majority of this paper is devoted to the study of fully  $\Phi(E)$ -special ideals in the (*F*-pure but) not necessarily *F*-finite case.

We shall use the notation of this Introduction throughout the remainder of the paper. In particular, R will denote a local ring of prime characteristic p having maximal ideal m. We shall sometimes use the notation (R, m) just to remind the reader that R is local. The completion of R will be denoted by  $\hat{R}$ . We shall only assume that R is reduced, or F-pure, or F-finite, when there is an explicit statement to that effect; also E will continue to denote  $E_R(R/m)$ . We continue to use  $\mathbb{N}$ , respectively  $\mathbb{N}_0$ , to denote the set of all positive, respectively non-negative, integers.

For  $j \in \mathbb{N}_0$ , the *j*th component of an  $\mathbb{N}_0$ -graded left R[x, f]-module *G* will be denoted by  $G_j$ .

#### **2** Fully $\Phi(E)$ -Special Ideals

We remind the reader that we usually identify the 0th component of  $\Phi(E) = \bigoplus_{n \in \mathbb{N}_0} Rx^n \otimes_R E$  with *E* in the obvious natural way. For an ideal  $\mathfrak{a}$  of *R*, we have, with this convention, that the 0th component of  $\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$  is contained in  $(0 :_E \mathfrak{a})$ .



**Lemma 2.1** Assume that  $(R, \mathfrak{m})$  is *F*-pure; let  $\mathfrak{a}$  be an ideal of *R*. Then the 0th component  $(\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$  of  $\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$  contains  $(0 :_E \mathfrak{a})$  if and only if  $\mathfrak{a}$  is  $\Phi(E)$ -special and  $(\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0 = (0 :_E \mathfrak{a})$ .

*Proof* Only the implication ' $\Rightarrow$ ' needs proof.

Assume that  $(0:_E \mathfrak{a}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$ . Since  $\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$  is an R[x, f]-submodule of  $\Phi(E)$ , it follows that  $\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$  contains the image J of the map

 $\Phi((0:_E \mathfrak{a})) = R[x, f] \otimes_R (0:_E \mathfrak{a}) \longrightarrow R[x, f] \otimes_R E = \Phi(E)$ 

induced by inclusion. Let b be the radical ideal of R for which  $\operatorname{gr-ann}_{R[x,f]}J = bR[x, f]$ , so that  $b = (0 :_R J)$ . As  $J \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$ , we must have  $\mathfrak{a} \subseteq b$ . Furthermore, bannihilates  $(0 :_E \mathfrak{a}) \cong \operatorname{Hom}_R(R/\mathfrak{a}, E)$ , and since an R-module and its Matlis dual have the same annihilator, we also have  $b \subseteq \mathfrak{a}$ . Thus  $\mathfrak{a} = b$  is the R-annihilator of an R[x, f]submodule of  $\Phi(E)$ , and so  $\mathfrak{a} \in \mathcal{I}(\Phi(E))$ .

Finally, note that an  $e \in (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$  must be annihilated by  $\mathfrak{a}$ , and so lies in  $(0:_E \mathfrak{a})$ .

**Definition 2.2** Assume that  $(R, \mathfrak{m})$  is *F*-pure; let  $\mathfrak{a}$  be an ideal of *R*. We say that  $\mathfrak{a}$  is *fully*  $\Phi(E)$ -special if the equivalent conditions of Lemma 2.1 are satisfied.

Thus a is fully  $\Phi(E)$ -special if and only if  $(0:_E \mathfrak{a}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$ , and then a is  $\Phi(E)$ -special and we have the equality  $(0:_E \mathfrak{a}) = (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$ .

To facilitate the presentation of some examples of  $\Phi(E)$ -special ideals that are fully  $\Phi(E)$ -special, we review next the theory of *S*-tight closure, where *S* is a multiplicatively closed subset of *R*. This theory was developed in [14]. The special case of the theory in which  $S = R^{\circ}$  is the 'classical' tight closure theory of M. Hochster and C. Huneke [2].

**Reminders 2.3** Let *H* be a left R[x, f]-module and let *S* be a multiplicatively closed subset of *R*.

(i) We define the *internal S-tight closure of zero in H*, denoted by  $\Delta^{S}(H)$ , to be the R[x, f]-submodule of H given by

 $\Delta^{S}(H) = \left\{ h \in H : \text{ there exists } s \in S \text{ with } sx^{n}h = 0 \text{ for all } n \gg 0 \right\}.$ 

When *M* is an *R*-module and we take the graded left R[x, f]-module  $\Phi(M) = R[x, f] \otimes_R M$  for *H*, the R[x, f]-submodule  $\Delta^S(\Phi(M))$  of  $\Phi(M)$  is graded, and we refer to its 0th component as the *S*-tight closure of 0 in *M*, or the tight closure with respect to *S* of 0 in *M*, and denote it by  $0_M^{*,S}$ . See [14, §1].

(ii) By [14, Example 1.3(ii)], we have, for an R-module M,

$$\Delta^{S}(R[x, f] \otimes_{R} M) = 0_{M}^{*,S} \oplus 0_{Rx \otimes_{R} M}^{*,S} \oplus \cdots \oplus 0_{Rx^{n} \otimes_{R} M}^{*,S} \oplus \cdots$$

(iii) Recall that an *S*-test element for *R* is an element  $s \in S$  such that, for every *R*-module *M* and every  $j \in \mathbb{N}_0$ , the element  $sx^j$  annihilates  $1 \otimes m \in (\Phi(M))_0$  for every  $m \in 0^{*,S}_M$ . The ideal of *R* generated by all the *S*-test elements for *R* is called the *S*-test ideal of *R*, and denoted by  $\tau^S(R)$ .



**Reminders 2.4** Suppose that  $(R, \mathfrak{m})$  is *F*-pure. Let *S* be a multiplicatively closed subset of *R*. Recall that the set  $\mathcal{I}(\Phi(E))$  of  $\Phi(E)$ -special *R*-ideals is finite; let  $\mathfrak{b}^{S,\Phi(E)}$  denote the intersection of all the minimal members of the set

$$\{\mathfrak{p} \in \operatorname{Spec}(R) \cap \mathcal{I}(\Phi(E)) : \mathfrak{p} \cap S \neq \emptyset\}$$

Thus  $\mathfrak{b}^{S,\Phi(E)}$  is the smallest member of  $\mathcal{I}(\Phi(E))$  that meets S.

- (i) By [14, Theorem 2.6], the set  $S \cap \mathfrak{b}^{S, \Phi(E)}$  is (non-empty and) equal to the set of *S*-test elements for *R*.
- (ii) Thus there exists an S-test element for R.
- (iii) Furthermore,  $\Delta^{S}(\Phi(E)) = \operatorname{ann}_{\Phi(E)}(\mathfrak{b}^{S,\Phi(E)}R[x, f])$  and  $(0:_{R} \Delta^{S}(\Phi(E))) = \mathfrak{b}^{S,\Phi(E)}$ , by [14, Proposition 1.5].
- (iv) By [14, Proposition 2.10(v)], we have  $\mathfrak{b}^{S,\Phi(E)} = (0:_R 0_E^{*,S}).$

**Lemma 2.5** (Sharp [14, Corollary 2.8]) Suppose that  $(R, \mathfrak{m})$  is *F*-pure. Let *S* be the complement in *R* of the union of finitely many prime ideals.

Then the S-test ideal  $\tau^{S}(R)$  is equal to  $\mathfrak{b}^{S,\Phi(E)}$ , the smallest member of the finite set  $\mathcal{I}(\Phi(E))$  that meets S.

We shall also use the following result from [14].

**Theorem 2.6** (Sharp [14, Theorem 2.12]) Suppose that  $(R, \mathfrak{m})$  is *F*-pure. Let  $\mathfrak{a} \in \mathcal{I}(\Phi(E))$ . Then there exists a multiplicatively closed subset *S* of *R* such that  $\mathfrak{a}$  is the *S*-test ideal of *R*. Moreover, *S* can be taken to be the complement in *R* of the union of finitely many prime ideals.

We are now able to give examples of fully  $\Phi(E)$ -special ideals because the next result shows that, when  $(R, \mathfrak{m})$  is complete and *F*-pure, a  $\Phi(E)$ -special ideal of *R* is automatically fully  $\Phi(E)$ -special.

**Proposition 2.7** Suppose that  $(R, \mathfrak{m})$  is complete and *F*-pure. Then every  $\Phi(E)$ -special ideal of *R* is fully  $\Phi(E)$ -special.

*Proof* Let  $\mathfrak{a}$  be a  $\Phi(E)$ -special ideal of R. If  $\mathfrak{a} = R$ , then

$$(0:_E \mathfrak{a}) = 0 \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f])$$

and a is fully  $\Phi(E)$ -special. We therefore assume that a is proper.

By Theorem 2.6 and [14, Corollary 2.8], there exist finitely many prime ideals  $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$  of *R* such that, if we set  $S := R \setminus \bigcup_{i=1}^n \mathfrak{p}_i$ , then  $\mathfrak{a}$  is the *S*-test ideal of *R*, that is  $\mathfrak{a} = \tau^S(R) = \mathfrak{b}^{S,\Phi(E)}$ , where the notation is as in 2.3(iii) and 2.4. Therefore, by 2.3(ii) and 2.4(iii),

$$0_E^{*,S} \oplus 0_{R_X \otimes_R E}^{*,S} \oplus \dots \oplus 0_{R_X^n \otimes_R E}^{*,S} \oplus \dots = \Delta^S(\Phi(E))$$
  
= ann\_{\Phi(E)}(\mathfrak{b}^{S,\Phi(E)}R[x, f]).

Now, we know that  $\mathfrak{b}^{S,\Phi(E)} = (0 :_R 0_E^{*,S})$ , by 2.4(iv). Since *R* is complete, it follows from Matlis duality (see, for example, [15, p. 154]) that  $0_E^{*,S} = (0 :_E \mathfrak{b}^{S,\Phi(E)})$ . We have thus shown that  $(0 :_E \mathfrak{a}) = R \otimes_R (0 :_E \mathfrak{a}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$ . Thus  $\mathfrak{a}$  is fully  $\Phi(E)$ -special.

Next, we develop some theory for fully  $\Phi(E)$ -special ideals.



**Lemma 2.8** Suppose that  $(R, \mathfrak{m})$  is *F*-pure, and let  $\mathfrak{a}$  be a fully  $\Phi(E)$ -special ideal of *R*. Then  $\mathfrak{a}$  is radical and every associated prime of  $\mathfrak{a}$  is also fully  $\Phi(E)$ -special.

*Proof* We can assume that a is proper. Since a is  $\Phi(E)$ -special, it must be radical. Let  $\mathfrak{a} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$  be the minimal primary (prime in this case) decomposition of a, and let  $i \in \{1, \ldots, t\}$ .

Since a is fully  $\Phi(E)$ -special,  $(0 :_E \mathfrak{a}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_0$ . Let  $e \in (0 :_E \mathfrak{p}_i)$  and let  $r \in \mathfrak{p}_i$ . We show that  $rx^n$  annihilates the element  $1 \otimes e$  of the 0th component of  $\Phi(E)$ . There exists

$$a \in \bigcap_{\substack{j=1\\j\neq i}}^{t} \mathfrak{p}_j \setminus \mathfrak{p}_i.$$

Now  $(0 :_E \mathfrak{p}_i) = a(0 :_E \mathfrak{p}_i)$ , because multiplication by *a* provides a monomorphism of  $R/\mathfrak{p}_i$  into itself and *E* is injective. Therefore e = ae' for some  $e' \in (0 :_E \mathfrak{p}_i)$ . Therefore  $rx^n \otimes e = rx^n \otimes ae' = ra^{p^n}x^n \otimes e' = 0$  since  $ra^{p^n} \in \mathfrak{a}$  and

$$(0:_E \mathfrak{p}_i) \subseteq (0:_E \mathfrak{a}) \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]).$$

Therefore  $(0:_E \mathfrak{p}_i) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{p}_i R[x, f]))_0$  and  $\mathfrak{p}_i$  is fully  $\Phi(E)$ -special.

**Proposition 2.9** Suppose that  $(R, \mathfrak{m})$  is *F*-pure. Let  $(\mathfrak{a}_{\lambda})_{\lambda \in \Lambda}$  be a non-empty family of fully  $\Phi(E)$ -special ideals of *R*. Then  $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$  is again fully  $\Phi(E)$ -special.

*Proof* Set  $\mathfrak{a} := \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$ , and observe that  $\mathfrak{a}R[x, f] = \sum_{\lambda \in \Lambda} (\mathfrak{a}_{\lambda}R[x, f])$ . By assumption, we have  $(0 :_E \mathfrak{a}_{\lambda}) \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{a}_{\lambda}R[x, f])$  for all  $\lambda \in \Lambda$ . It follows that

$$(0:_{E} \mathfrak{a}) = \left(0:_{E} \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}\right) = \bigcap_{\lambda \in \Lambda} (0:_{E} \mathfrak{a}_{\lambda})$$
$$\subseteq \bigcap_{\lambda \in \Lambda} (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}_{\lambda}R[x, f]))_{0}$$
$$= \left(\operatorname{ann}_{\Phi(E)}\left(\sum_{\lambda \in \Lambda} (\mathfrak{a}_{\lambda}R[x, f])\right)\right)_{0} = (\operatorname{ann}_{\Phi(E)}(\mathfrak{a}R[x, f]))_{0}.$$

Therefore  $\mathfrak{a} := \sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$  is fully  $\Phi(E)$ -special.

**Corollary 2.10** Suppose that  $(R, \mathfrak{m})$  is *F*-pure. Then *R* has a unique largest fully  $\Phi(E)$ -special proper ideal, and this is prime.

**Proof** The zero ideal is fully  $\Phi(E)$ -special, and so it follows from Proposition 2.9 that the sum b of all the fully  $\Phi(E)$ -special proper ideals of R is fully  $\Phi(E)$ -special (and contained in m), and so is the unique largest fully  $\Phi(E)$ -special proper ideal of R. Also b must be prime, since all the associated primes of b are fully  $\Phi(E)$ -special, by Lemma 2.8.

In what follows, we shall have cause to pass between R and its completion. Note that if R is F-pure, then so too is  $\hat{R}$ , by Hochster and Roberts [3, Corollary 6.13]. The following technical lemma will be helpful.

**Lemma 2.11** (See [13, Lemma 4.3]) *There is a unique way of extending the R-module structure on*  $E := E_R(R/\mathfrak{m})$  *to an*  $\widehat{R}$ *-module structure. Recall that, as an*  $\widehat{R}$ *-module,*  $E \cong E_{\widehat{R}}(\widehat{R}/\mathfrak{m})$ .

Since each element of  $\Phi_R(E) = R[x, f] \otimes_R E$  is annihilated by some power of  $\mathfrak{m}$ , the left R[x, f]-module structure on  $\Phi_R(E)$  can be extended in a unique way to a left  $\widehat{R}[x, f]$ -module structure.

The map  $\beta : \Phi_R(E) = R[x, f] \otimes_R E \longrightarrow \widehat{R}[x, f] \otimes_{\widehat{R}} E = \Phi_{\widehat{R}}(E)$  for which

 $\beta(rx^i \otimes h) = rx^i \otimes h$  for all  $r \in R$ ,  $i \in \mathbb{N}_0$  and  $h \in E$ 

is a homogeneous  $\widehat{R}[x, f]$ -isomorphism.

Since each element of  $\Phi_R(E)$  is annihilated by some power of  $\mathfrak{m}$ , it follows that a subset of  $\Phi_R(E)$  is an R[x, f]-submodule if and only if it is an  $\widehat{R}[x, f]$ -submodule. Consequently,

 $\mathcal{I}_{R}(\Phi_{R}(E)) = \left\{ \mathfrak{B} \cap R : \mathfrak{B} \in \mathcal{I}_{\widehat{R}}(\Phi_{\widehat{R}}(E)) \right\}.$ 

**Lemma 2.12** Suppose that  $(R, \mathfrak{m})$  is *F*-pure, and let  $\mathfrak{a}$  be an ideal of *R*. Then  $\mathfrak{a}\widehat{R}$  is a fully  $\Phi_{\widehat{R}}(E)$ -special ideal of  $\widehat{R}$  if and only if  $\mathfrak{a}$  is a fully  $\Phi_R(E)$ -special ideal of *R*.

**Proof** By Lemma 2.11, when we extend the left R[x, f]-module structure on  $\Phi_R(E)$ , in the unique way possible, to a left  $\widehat{R}[x, f]$ -module structure,  $E \cong E_{\widehat{R}}(\widehat{R}/\widehat{\mathfrak{m}})$  as  $\widehat{R}$ -modules and  $\Phi_R(E) \cong \Phi_{\widehat{R}}(E)$  as left  $\widehat{R}[x, f]$ -modules. The claim therefore follows from the facts that

$$\operatorname{ann}_{\Phi_R(E)}(\mathfrak{a}R[x,f]) = \operatorname{ann}_{\Phi_R(E)}((\mathfrak{a}R)R[x,f])$$

and  $(0:_E \mathfrak{a}) = (0:_E \mathfrak{a}\widehat{R}).$ 

# **3** The Case Where *R* Is an *F*-Pure Homomorphic Image of an Excellent Regular Local Ring of Characteristic *p*

The main aim of this section is to prove that, when *R* is an *F*-pure homomorphic image of an excellent regular local ring of characteristic *p*, every  $\Phi(E)$ -special ideal of *R* is a fully  $\Phi(E)$ -special ideal. This will enable us to extend some results obtained in [14, §3] about an *F*-pure complete local ring to an *F*-pure homomorphic image of an excellent regular local ring of characteristic *p*. We begin the section with a lemma that is derived from a result of G. Lyubeznik [5, Lemma 4.1].

**Lemma 3.1** Let  $(S, \mathfrak{M})$  be a complete regular local ring of characteristic p, and let  $\mathfrak{B}$  be a proper, non-zero ideal of S. Denote  $E_S(S/\mathfrak{M})$  by  $E_S$ , and let S[x, f] denote the Frobenius skew polynomial ring over S. Let  $n \in \mathbb{N}$ .

Since S is regular,  $S^{(n)}$  is faithfully flat over S, and we identify  $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$  as an S-submodule of  $Sx^n \otimes_S E_S$  in the natural way. Let  $a_1, \ldots, a_d$  be a regular system of parameters for S. Consider the S-isomorphism  $\delta_n : Sx^n \otimes_S E_S \xrightarrow{\cong} E_S$  of [11, 4.2(iii)], for which (with the notation used in the statement of that result)

$$\delta_n\left(bx^n\otimes\left[\frac{s}{(a_1\dots a_d)^j}\right]\right)=\left[\frac{bs^{p^n}}{(a_1\dots a_d)^{jp^n}}\right]\quad\text{for all }b,s\in S\text{ and }j\in\mathbb{N}_0.$$

The isomorphism  $\delta_n$  maps

- (i)  $Sx^n \otimes_S (0:_{E_S} \mathfrak{B}) \text{ onto } (0:_{E_S} \mathfrak{B}^{[p^n]}), \text{ and}$ (ii)  $\mathfrak{B}(Sx^n \otimes_S (0:_{E_S} \mathfrak{B})) \text{ onto } (0:_{E_S} (\mathfrak{B}^{[p^n]}:\mathfrak{B})).$

*Proof* (i) Use of the analogue of Lyubeznik [5, Lemma 4.1] for the functor  $Sx^n \otimes_S \bullet$  shows that the Matlis dual of  $Sx^n \otimes_S (0_{E_S} \mathfrak{B})$  is S-isomorphic to  $Sx^n \otimes_S (S/\mathfrak{B}) \cong S/\mathfrak{B}^{[p^n]}$ . Since each S-module has the same annihilator as its Matlis dual, we thus see that  $Sx^n \otimes_S (0:_{E_S} \mathfrak{B})$ has annihilator  $\mathfrak{B}^{[p^n]}$ . As S is complete,  $T = (0:_{E_S} (0:_S T))$  for each submodule T of  $E_S$ , by Matlis duality (see, for example, [15, p. 154]). It therefore follows that

$$\delta_n(Sx^n \otimes_S (0:_{E_S} \mathfrak{B})) = (0:_{E_S} \mathfrak{B}^{\lfloor p^n \rfloor}).$$

(ii) Set  $N := Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$ . Similar reasoning shows that

$$\delta_n(\mathfrak{B}N) = (0:_{E_S} (0:_S \mathfrak{B}N)) = (0:_{E_S} ((0:_S N):\mathfrak{B})) = (0:_{E_S} (\mathfrak{B}^{\lfloor p^* \rfloor}:\mathfrak{B})).$$

**Proposition 3.2** Suppose that  $R = S/\mathfrak{A}$ , where  $(S, \mathfrak{M})$  is a regular local ring of characteristic p, and  $\mathfrak{A}$  is a proper ideal of S. Assume also that R is F-pure. Let b be a proper ideal of R; let  $\mathfrak{B}$  be the unique ideal of S that contains  $\mathfrak{A}$  and is such that  $\mathfrak{B}/\mathfrak{A} = \mathfrak{b}$ .

Then b is fully  $\Phi(E)$ -special if and only if  $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subset (\mathfrak{B}^{[p^n]} : \mathfrak{B})$  for all  $n \in \mathbb{N}$ .

*Note* In the *F*-finite case, this result is already known and due to K. Schwede [10, Proposition 3.11 and Lemma 5.1].

*Proof* If  $\mathfrak{A} = 0$ , then R is regular, so that its big test ideal is R itself (by [6, Theorem 8.8], for example) and the only proper  $\Phi(E)$ -special ideal of R is 0; also,  $(0^{\lfloor p^n \rfloor}: 0) = S$ , and the only proper ideal  $\mathfrak{B}$  of S satisfying  $(0^{[p^n]}: 0) \subseteq (\mathfrak{B}^{[p^n]}: \mathfrak{B})$  for all  $n \in \mathbb{N}$  is the zero ideal. Thus, the result is true when  $\mathfrak{A} = 0$ ; we therefore assume for the remainder of this proof that  $\mathfrak{A} \neq 0$ .

Note that  $\widehat{R} = \widehat{S}/2 \widehat{\Omega} \widehat{S}$  is again *F*-pure and that  $\widehat{S}$  is an excellent complete regular local ring of characteristic p, with maximal ideal  $\mathfrak{MS}$ .

We also note that b is a fully  $\Phi_R(E)$ -special ideal of R if and only if  $\widehat{\mathfrak{b}R}$  is a fully  $\Phi_{\widehat{R}}(E)$ special ideal of  $\widehat{R}$ , by Lemma 2.12. Furthermore, by the faithful flatness of  $\widehat{S}$  over S, we have, for  $n \in \mathbb{N}$ ,

$$((\mathfrak{A}\widehat{S})^{[p^n]}:\mathfrak{A}\widehat{S}) = (\mathfrak{A}^{[p^n]}:\mathfrak{A})\widehat{S} \subseteq (\mathfrak{B}^{[p^n]}:\mathfrak{B})\widehat{S} = ((\mathfrak{B}\widehat{S})^{[p^n]}:\mathfrak{B}\widehat{S})$$

if and only if  $(\mathfrak{A}^{[p^n]}:\mathfrak{A}) \subset (\mathfrak{B}^{[p^n]}:\mathfrak{B})$ . Therefore, we can, and do, assume henceforth in this proof that S is complete.

Let  $E_S := E_S(S/\mathfrak{M})$ . Now  $(0:_{E_S} \mathfrak{A}) = E := E_R(R/\mathfrak{m})$  and  $(0:_{E_S} \mathfrak{B}) = (0:_E \mathfrak{b})$ . Note that b is fully  $\Phi_R(E)$ -special if and only if, for each  $n \in \mathbb{N}$  and each  $r \in \mathfrak{b}$ , the element  $rx^n \in Rx^n$  annihilates the *R*-submodule  $(0:_E \mathfrak{b})$  of the 0th component *E* of  $\Phi_R(E)$ .

Let  $n \in \mathbb{N}$ . There is an exact sequence of (S, S)-bimodules

$$0 \longrightarrow \mathfrak{A}Sx^n \xrightarrow{\subseteq} Sx^n \xrightarrow{\nu} Rx^n \longrightarrow 0,$$

where  $v(sx^n) = (s + \mathfrak{A})x^n$  for all  $s \in S$ . The map

$$Sx^n \otimes_S (0:_{E_S} \mathfrak{A}) \longrightarrow Rx^n \otimes_S (0:_{E_S} \mathfrak{A}) = Rx^n \otimes_R (0:_{E_S} \mathfrak{A}) = Rx^n \otimes_R E$$

induced by  $\nu$  therefore has kernel  $\mathfrak{A}(Sx^n \otimes_S (0 :_{E_S} \mathfrak{A}))$ .

Springer

It follows that  $\mathfrak{b}$  is fully  $\Phi_R(E)$ -special if and only if, for all  $n \in \mathbb{N}$ ,  $s \in \mathfrak{B}$  and  $g \in (0:_{E_S} \mathfrak{B}) = (0:_E \mathfrak{b})$ , the element  $sx^n \otimes g$  of  $Sx^n \otimes_S (0:_{E_S} \mathfrak{A})$  lies in

$$\mathfrak{A}(Sx^n \otimes_S (0:_{E_S} \mathfrak{A}))$$

In other words, b is fully  $\Phi_R(E)$ -special if and only if, for all  $n \in \mathbb{N}$ , we have

$$\mathfrak{B}(Sx^n \otimes_S (0:_{E_S} \mathfrak{B})) \subseteq \mathfrak{A}(Sx^n \otimes_S (0:_{E_S} \mathfrak{A})).$$

(We are here identifying  $Sx^n \otimes_S (0 :_{E_S} \mathfrak{B})$  and  $Sx^n \otimes_S (0 :_{E_S} \mathfrak{A})$  with submodules of  $Sx^n \otimes_S E_S$  in the obvious ways, using the faithful flatness of  $S^{(n)}$  over S.)

By [11, 4.2(iii)], we have  $Sx^n \otimes_S E_S \cong E_S$ . Since S is complete, each submodule T of  $E_S$  satisfies  $T = (0:_{E_S} (0:_S T))$ . Set  $N := Sx^n \otimes_S E_S$ . Thus

$$\mathfrak{A}(Sx^n \otimes_S (0:_{E_S} \mathfrak{A})) = (0:_N (0:_S (\mathfrak{A}(Sx^n \otimes_S (0:_{E_S} \mathfrak{A}))))) = (0:_N (\mathfrak{A}^{\lfloor p^n \rfloor}:\mathfrak{A})),$$

by Lemma 3.1. Similarly,  $\mathfrak{B}(Sx^n \otimes_S (0:_{E_S} \mathfrak{B})) = (0:_N (\mathfrak{B}^{[p^n]}:\mathfrak{B}))$ . It follows that  $\mathfrak{b}$  is fully  $\Phi_R(E)$ -special if and only if

$$(0:_N (\mathfrak{B}^{\lfloor p^n \rfloor}:\mathfrak{B})) \subseteq (0:_N (\mathfrak{A}^{\lfloor p^n \rfloor}:\mathfrak{A}))$$
 for all  $n \in \mathbb{N}$ ,

that is (since  $N \cong E_S$ ), if and only if  $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{B}^{[p^n]} : \mathfrak{B})$  for all  $n \in \mathbb{N}$ .

**Theorem 3.3** Suppose that  $R = S/\mathfrak{A}$  is a homomorphic image of an excellent regular local ring  $(S, \mathfrak{M})$  of characteristic p, modulo a proper ideal  $\mathfrak{A}$ . Assume that R is F-pure. Then each  $\Phi(E)$ -special ideal of R is fully  $\Phi(E)$ -special.

*Proof* Once again, the claim is easy to prove if  $\mathfrak{A} = 0$ , and so we assume henceforth in this proof that  $\mathfrak{A} \neq 0$ .

Note that  $\widehat{R} = \widehat{S}/\mathfrak{A}\widehat{S}$  is again *F*-pure and that  $\widehat{S}$  is an excellent complete regular local ring of characteristic *p*, with maximal ideal  $\mathfrak{M}\widehat{S}$ .

Let  $\mathfrak{b}$  be a  $\Phi(E)$ -special R-ideal with  $\mathfrak{b} \neq R$ . Then  $\mathfrak{b} = \mathfrak{c} \cap R$  for some  $\Phi_{\widehat{R}}(E)$ -special  $\widehat{R}$ -ideal  $\mathfrak{c}$ . (We have used Lemma 2.11 here.) Let  $\mathfrak{C}$  be the unique ideal of  $\widehat{S}$  that contains  $\mathfrak{A}\widehat{S}$  and is such that  $\mathfrak{C}/\mathfrak{A}\widehat{S} = \mathfrak{c}$ . By Proposition 2.7, the ideal  $\mathfrak{c}$  of  $\widehat{R}$  is fully  $\Phi_{\widehat{R}}(E)$ -special, and so, by Proposition 3.2, we have

$$(\mathfrak{A}^{[p^n]}:\mathfrak{A})\widehat{S} = ((\mathfrak{A}\widehat{S})^{[p^n]}:\mathfrak{A}\widehat{S}) \subseteq (\mathfrak{C}^{[p^n]}:\mathfrak{C}) \text{ for all } n \in \mathbb{N}.$$

Set  $\mathfrak{C} \cap S := \mathfrak{B}$ , so that  $\mathfrak{B}/\mathfrak{A} = \mathfrak{b}$ .

Let  $n \in \mathbb{N}$  and  $s \in (\mathfrak{A}^{[p^n]} : \mathfrak{A})$ . Therefore,  $s \in (\mathfrak{C}^{[p^n]} : \mathfrak{C})$ . It follows from G. Lyubeznik and K. E. Smith [6, Lemma 6.6] that  $\mathfrak{C}^{[p^n]} \cap S = (\mathfrak{C} \cap S)^{[p^n]}$ . (Lyubeznik's and Smith's proof of this result uses work of N. Radu [9, Corollary 5], which, in turn, uses D. Popescu's general Néron desingularization [7, 8].) We can now deduce that

$$s(\mathfrak{C} \cap S) \subseteq s\mathfrak{C} \cap S \subseteq \mathfrak{C}^{[p^n]} \cap S = (\mathfrak{C} \cap S)^{[p^n]},$$

so that  $s \in ((\mathfrak{C} \cap S)^{[p^n]} : \mathfrak{C} \cap S) = (\mathfrak{B}^{[p^n]} : \mathfrak{B}).$ 

We have thus shown that  $(\mathfrak{A}^{[p^n]}:\mathfrak{A}) \subseteq (\mathfrak{B}^{[p^n]}:\mathfrak{B})$  for all  $n \in \mathbb{N}$ , so that  $\mathfrak{b} = \mathfrak{B}/\mathfrak{A}$  is fully  $\Phi(E)$ -special by Proposition 3.2.

In the case where *R* is an *F*-pure homomorphic image of an excellent regular local ring of characteristic *p*, the characterization of  $\mathcal{I}(\Phi(E))$  afforded by Proposition 3.2 and Theorem 3.3 enables us to see that set behaves well under localization. As the ideals in  $\mathcal{I}(\Phi(E))$  are precisely those that can be expressed as intersections of finitely many prime



members of  $\mathcal{I}(\Phi(E))$ , it is of interest to examine the behaviour of  $\mathcal{I}(\Phi(E)) \cap \text{Spec}(R)$ under localization. The next proposition, which is an extension of part of [12, Proposition 2.8], is in preparation for this investigation.

**Proposition 3.4** Let *S* be a regular local ring of characteristic *p*, and let  $n \in \mathbb{N}$ . Let  $\mathfrak{A}, \mathfrak{B}_1, \ldots, \mathfrak{B}_t, \mathfrak{C}$  be ideals of *S* with  $0 \neq \mathfrak{A} \neq S$ , and let  $\mathfrak{A} = \mathfrak{Q}_1 \cap \ldots \cap \mathfrak{Q}_t$  be a minimal primary decomposition of  $\mathfrak{A}$ .

- (i) We have  $(\mathfrak{B}_1 \cap \cdots \cap \mathfrak{B}_t)^{[p^n]} = \mathfrak{B}_1^{[p^n]} \cap \cdots \cap \mathfrak{B}_t^{[p^n]}$ .
- (ii) If  $\mathfrak{Q}$  is a  $\mathfrak{P}$ -primary ideal of S, then  $\mathfrak{Q}^{[p^n]}$  is also  $\mathfrak{P}$ -primary.
- (iii) The equation  $\mathfrak{A}^{[p^n]} = \mathfrak{Q}_1^{[p^n]} \cap \cdots \cap \mathfrak{Q}_t^{[p^n]}$  provides a minimal primary decomposition of  $\mathfrak{A}^{[p^n]}$ .
- (iv) We have  $(\mathfrak{A}:\mathfrak{C})^{[p^n]} = (\mathfrak{A}^{[p^n]}:\mathfrak{C}^{[p^n]})$  and  $(\mathfrak{A}^{[p^n]}:\mathfrak{A}) \subseteq ((\mathfrak{A}:\mathfrak{C})^{[p^n]}:(\mathfrak{A}:\mathfrak{C})).$
- (v) If  $\mathfrak{P}$  is an associated prime ideal of  $\mathfrak{A}$ , then  $(\mathfrak{A}^{[p^n]}:\mathfrak{A}) \subseteq (\mathfrak{P}^{[p^n]}:\mathfrak{P})$ .
- (vi) Since  $0 \neq \mathfrak{A} \neq S$ , we have  $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \neq S$ . If  $\mathfrak{P}_1 := \sqrt{\mathfrak{Q}_1}$  is a minimal prime ideal of  $\mathfrak{A}$ , then  $\mathfrak{P}_1$  is a minimal prime ideal of  $(\mathfrak{A}^{[p^n]} : \mathfrak{A})$  and the unique  $\mathfrak{P}_1$ -primary component of  $(\mathfrak{A}^{[p^n]} : \mathfrak{A})$  is  $(\mathfrak{Q}_1^{[p^n]} : \mathfrak{Q}_1)$ .

*Proof* Parts (i), (ii) and (iii) were essentially proved in [12, Proposition 2.8], while parts (iv), (v) and (vi) can be proved by obvious modifications of the arguments used to prove the corresponding parts of [12, Proposition 2.8].  $\Box$ 

**Corollary 3.5** Suppose that *R* is *F*-pure and a homomorphic image of an excellent regular local ring *S* of characteristic *p* modulo a proper ideal  $\mathfrak{A}$ . Let  $\mathfrak{p} \in \operatorname{Spec}(R)$ . Then

$$\mathcal{I}_{R_{\mathfrak{p}}}(\Phi_{R_{\mathfrak{p}}}(E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}))) \cap \operatorname{Spec}(R_{\mathfrak{p}}) = \left\{\mathfrak{q}R_{\mathfrak{p}} : \mathfrak{q} \in \mathcal{I}(\Phi(E)) \cap \operatorname{Spec}(R) \text{ and } \mathfrak{q} \subseteq \mathfrak{p}\right\}.$$

*Proof* Note that, by M. Hochster and J. L. Roberts [3, Lemma 6.2], the localization  $R_p$  is again *F*-pure. The claim is easy to prove when  $\mathfrak{A} = 0$ , and so we assume that  $\mathfrak{A} \neq 0$ .

For each lower case fraktur letter that denotes an ideal of R, let the corresponding upper case fraktur letter denote the unique ideal of S that contains  $\mathfrak{A}$  and has quotient modulo  $\mathfrak{A}$  equal to the specified ideal of R. For example,  $\mathfrak{P}$  denotes the unique ideal of S that contains  $\mathfrak{A}$  and is such that  $\mathfrak{P}/\mathfrak{A} = \mathfrak{p}$ .

Note that  $R_{\mathfrak{p}} \cong S_{\mathfrak{P}}/\mathfrak{A}S_{\mathfrak{P}}$  is again a homomorphic image of an excellent regular local ring  $S_{\mathfrak{P}}$  of characteristic *p*. Let  $\mathfrak{q} \in \operatorname{Spec}(R)$  with  $\mathfrak{q} \subseteq \mathfrak{p}$ .

Suppose first that  $q \in \mathcal{I}(\Phi(E)) \cap \operatorname{Spec}(R)$ . By Theorem 3.3, we see that q is fully  $\Phi(E)$ -special; use of Proposition 3.2 shows that  $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{Q}^{[p^n]} : \mathfrak{Q})$  for all  $n \in \mathbb{N}$ . Therefore

$$((\mathfrak{A}S_{\mathfrak{P}})^{[p^n]} : \mathfrak{A}S_{\mathfrak{P}}) \subseteq ((\mathfrak{Q}S_{\mathfrak{P}})^{[p^n]} : \mathfrak{Q}S_{\mathfrak{P}}) \text{ for all } n \in \mathbb{N}.$$

Since the standard isomorphism  $S_{\mathfrak{P}}/\mathfrak{A}S_{\mathfrak{P}} \xrightarrow{\cong} R_{\mathfrak{p}}$  maps  $\mathfrak{Q}S_{\mathfrak{P}}/\mathfrak{A}S_{\mathfrak{P}}$  onto  $\mathfrak{q}R_{\mathfrak{p}}$ , it follows from Proposition 3.2 that  $\mathfrak{q}R_{\mathfrak{p}}$  is fully  $\Phi_{R_{\mathfrak{p}}}(E_{R_{\mathfrak{p}}}(R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}))$ -special.

Conversely, suppose that  $\mathfrak{q}R_\mathfrak{p}$  is  $\Phi_{R_\mathfrak{p}}(E_{R_\mathfrak{p}}(R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}))$ -special, so that, by Theorem 3.3, it is fully  $\Phi_{R_\mathfrak{p}}(E_{R_\mathfrak{p}}(R_\mathfrak{p}/\mathfrak{p}R_\mathfrak{p}))$ -special. By Proposition 3.2, this means that

$$((\mathfrak{A}S_{\mathfrak{P}})^{[p^n]}:\mathfrak{A}S_{\mathfrak{P}})\subseteq ((\mathfrak{Q}S_{\mathfrak{P}})^{[p^n]}:\mathfrak{Q}S_{\mathfrak{P}}) \quad \text{for all } n \in \mathbb{N}.$$

Let <sup>e</sup> and <sup>c</sup> denote extension and contraction of ideals under the natural ring homomorphism  $S \longrightarrow S_{\mathfrak{P}}$ . Contract the last displayed inclusion relations back to S to see that

$$(\mathfrak{A}^{[p^n]}:\mathfrak{A}) \subseteq (\mathfrak{A}^{[p^n]}:\mathfrak{A})^{ec} \subseteq (\mathfrak{Q}^{[p^n]}:\mathfrak{Q})^{ec} = (\mathfrak{Q}^{[p^n]}:\mathfrak{Q}) \quad \text{for all } n \in \mathbb{N}$$

because  $(\mathfrak{Q}^{[p^n]} : \mathfrak{Q})$  is  $\mathfrak{Q}$ -primary (for all  $n \in \mathbb{N}$ ), by Proposition 3.4(vi). It follows from Proposition 3.2 that  $\mathfrak{Q}/\mathfrak{A} = \mathfrak{q}$  is fully  $\Phi(E)$ -special. 

We can now recover a special case of a result of Lyubeznik and Smith.

**Corollary 3.6** (G. Lyubeznik and K. E. Smith [6, Theorem 7.1]) Suppose that R is F-pure and a homomorphic image of an excellent regular local ring S of characteristic p modulo a proper ideal  $\mathfrak{A}$ . Let  $\mathfrak{p} \in \operatorname{Spec}(R)$ . Then the big test ideal of  $R_{\mathfrak{p}}$  is the extension to  $R_{\mathfrak{p}}$  of the big test ideal of R. In symbols,  $\tilde{\tau}(R_{\mathfrak{p}}) = \tilde{\tau}(R)R_{\mathfrak{p}}$ .

*Proof* The big test ideal  $\tilde{\tau}(R)$  of R is equal to the intersection of the (finitely many) members of  $\mathcal{I}(\Phi(E)) \cap \operatorname{Spec}(R)$  of positive height, and a similar statement holds for  $R_{\mathfrak{p}}$ . The claim therefore follows from Corollary 3.5. 

Some results were obtained in [14, Theorem 3.1] for an F-pure complete local ring of characteristic p. We can now use Theorem 3.3 to establish analogous results for an F-pure homomorphic image of an excellent regular local ring of characteristic p.

**Theorem 3.7** Suppose  $(R, \mathfrak{m})$  is F-pure and that every  $\Phi(E)$ -special ideal of R is fully  $\Phi(E)$ -special. (For example, by Theorem 3.3, this would be the case if R were a homomorphic image of an excellent regular local ring of characteristic p.) Let c be a proper ideal of R that is  $\Phi(E)$ -special. In the light of Theorem 2.6, let  $\mathfrak{p}_1, \ldots, \mathfrak{p}_w$  be prime ideals of R for which the multiplicatively closed subset  $S = R \setminus \bigcup_{i=1}^{w} \mathfrak{p}_i$  of R satisfies  $\mathfrak{c} = \tau^S(R)$ . Set  $J := \Delta^{S}(\Phi(E)), a \text{ graded left } R[x, f]\text{-module}.$ 

- (i)
- We have  $J = 0_E^{*,S} \oplus 0_{Rx\otimes_R E}^{*,S} \oplus \cdots \oplus 0_{Rx^n\otimes_R E}^{*,S} \oplus \cdots = \operatorname{ann}_{\Phi(E)}(\mathfrak{c}R[x, f])$ . When we regard J as a graded left  $(R/\mathfrak{c})[x, f]$ -module in the natural way, it is x-(ii) torsion-free and has  $\mathcal{I}_{R/\mathfrak{c}}(J) = \{\mathfrak{g}/\mathfrak{c} : \mathfrak{g} \in \mathcal{I}(\Phi(E)) : \mathfrak{g} \supseteq \mathfrak{c}\}.$
- The 0th component  $J_0$  of J is  $(0 :_E \mathfrak{c})$ ; as  $R/\mathfrak{c}$ -module, this is isomorphic to (iii)  $E_{R/\mathfrak{c}}((R/\mathfrak{c})/(\mathfrak{m}/\mathfrak{c})).$
- (iv) The ring  $R/\mathfrak{c}$  is F-pure.
- We have  $\mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0)) \subseteq \mathcal{I}_{R/\mathfrak{c}}(J)$ , so that (v)

 $\{\mathfrak{d}:\mathfrak{d} \text{ is an ideal of } R \text{ with } \mathfrak{d} \supseteq \mathfrak{c} \text{ and } \mathfrak{d}/\mathfrak{c} \in \mathcal{I}(\Phi_{R/\mathfrak{c}}(J_0))\} \subseteq \mathcal{I}(\Phi_R(E)).$ 

*Proof* Since the  $\Phi(E)$ -special ideal  $\mathfrak{c}$  is fully  $\Phi(E)$ -special, we have  $J_0 = (0 :_E \mathfrak{c})$ . Given this observation, one can now use the arguments employed in the proof of [14, Theorem 3.1] to furnish a proof of this theorem.  $\square$ 

The next corollary follows from Theorem 3.7 just as, in [14], Corollary 3.2 follows from Theorem 3.1.

**Corollary 3.8** Suppose that  $(R, \mathfrak{m})$  is local, *F*-pure and that every  $\Phi(E)$ -special ideal of R is fully  $\Phi(E)$ -special. (For example, by Theorem 3.3, this would be the case if R were a homomorphic image of an excellent regular local ring of characteristic p.) Let c be a proper ideal of R that is  $\Phi(E)$ -special. Denote  $R/\mathfrak{c}$  by R, and note that R is F-pure, by



Theorem 3.7(iv). Let T be a multiplicatively closed subset of  $\overline{R}$  which is the complement in  $\overline{R}$  of the union of finitely many prime ideals. The finitistic T-test ideal  $\tau^{\text{fg},T}(\overline{R})$  of  $\overline{R}$  is defined to be  $\bigcap_L (0 :_{\overline{R}} 0_L^{*,T})$ , where the intersection is taken over all finitely generated  $\overline{R}$ -modules L.

- (i) If  $\mathfrak{h}$  denotes the unique ideal of R that contains  $\mathfrak{c}$  and is such that  $\mathfrak{h}/\mathfrak{c} = \tau^{\mathrm{fg},T}(\overline{R})$ , the finitistic *T*-test ideal of  $\overline{R}$ , then  $\mathfrak{h} \in \mathcal{I}(\Phi(E))$ .
- (ii) In particular, if  $\mathfrak{h}'$  denotes the unique ideal of R that contains  $\mathfrak{c}$  and is such that  $\mathfrak{h}'/\mathfrak{c} = \tau(\overline{R})$ , the test ideal of  $\overline{R}$ , then  $\mathfrak{h}' \in \mathcal{I}(\Phi(E))$ .
- (iii) If  $\mathfrak{g}$  denotes the unique ideal of R that contains  $\mathfrak{c}$  and is such that  $\mathfrak{g}/\mathfrak{c} = \tau^T(\overline{R})$ , the *T*-test ideal of  $\overline{R}$ , then  $\mathfrak{g} \in \mathcal{I}(\Phi(E))$ .
- (iv) In particular, if  $\mathfrak{g}'$  denotes the unique ideal of R that contains  $\mathfrak{c}$  and is such that  $\mathfrak{g}'/\mathfrak{c} = \widetilde{\tau}(\overline{R})$ , the big test ideal of  $\overline{R}$ , then  $\mathfrak{g}' \in \mathcal{I}(\Phi(E))$ .

*Proof* Straightforward modifications of the arguments given in the proof of [14, Corollary 3.2] will provide a proof for this.

**Lemma 3.9** Assume that  $(R, \mathfrak{m})$  is local, *F*-pure and a homomorphic image of an excellent regular local ring of characteristic *p*.

- (i) There is a strictly ascending chain 0 = τ<sub>0</sub> ⊂ τ<sub>1</sub> ⊂ ··· ⊂ τ<sub>t</sub> ⊂ τ<sub>t+1</sub> = R of radical ideals of R such that, for each i = 0, ..., t, the reduced local ring R/τ<sub>i</sub> is F-pure and its test ideal is τ<sub>i+1</sub>/τ<sub>i</sub>. We call this the test ideal chain of R. All of τ<sub>0</sub> = 0, τ<sub>1</sub>, ··· , τ<sub>t</sub>, and all their associated primes, belong to I(Φ(E)).
- (ii) There is a strictly ascending chain  $0 = \tilde{\tau}_0 \subset \tilde{\tau}_1 \subset \cdots \subset \tilde{\tau}_w \subset \tilde{\tau}_{w+1} = R$ of radical ideals in  $\mathcal{I}(\Phi(E))$  such that, for each  $i = 0, \ldots, w$ , the reduced local ring  $R/\tilde{\tau}_i$  is F-pure and its big test ideal is  $\tilde{\tau}_{i+1}/\tilde{\tau}_i$ . We call this the big test ideal chain of R. All of  $\tilde{\tau}_0 = 0, \tilde{\tau}_1, \cdots, \tilde{\tau}_w$ , and all their associated primes, belong to  $\mathcal{I}(\Phi(E))$ .

*Note* In the case when *R* is an (*F*-pure) homomorphic image of an *F*-finite regular local ring, part (i) of this result is known and due to Janet Cowden Vassilev [16, §3].

*Proof* (i) Set  $\tau_1 := \tau(R)$ , and note that  $\tau(R) \in \mathcal{I}(\Phi(E))$ . If  $\tau_1 \neq R$ , apply Theorem 3.7 with the choice  $\mathfrak{c} = \tau(R) = \tau_1$ . That shows that  $R/\tau_1$  is *F*-pure. Now argue by induction on dim *R*, noting that  $R/\tau_1$  is a homomorphic image of an excellent regular local ring of characteristic *p*. Use Theorem 3.7(v) to show that all of  $\tau_0, \tau_1, \ldots, \tau_t$  belong to  $\mathcal{I}(\Phi(E))$ .

(ii) This is proved similarly.

### 4 The *F*-Finite Case

In the *F*-finite case, the results above have strong connections with work of K. Schwede in [10], and the purpose of this section is to explore some of those connections. The introduction contains a description of certain properties of the set of all uniformly *F*-compatible ideals in an *F*-finite, *F*-pure local ring *R*, and some of these are similar to properties of the set of all fully  $\Phi(E)$ -special ideals of *R*: we shall show in this section that, in this special case, an ideal of *R* is uniformly *F*-compatible if and only if it is  $\Phi(E)$ -special, and that this is the case if and only if it is fully  $\Phi(E)$ -special.



**Definition 4.1** Suppose that *R* is *F*-finite, let  $\mathfrak{b}$  be an ideal of *R*. Then  $\mathfrak{b}$  is said to be *uniformly F-compatible* if, for every n > 0 and every  $\phi \in \operatorname{Hom}_{R}(R^{(n)}, R)$ , we have  $\phi(\mathfrak{b}^{(n)}) \subseteq \mathfrak{b}$ .

**Proposition 4.2** (Schwede [10, Lemma 5.1]) Suppose that  $(R, \mathfrak{m})$  is *F*-finite, let  $\mathfrak{b}$  be an ideal of *R*. Then  $\mathfrak{b}$  is uniformly *F*-compatible if and only if  $(0 :_E \mathfrak{b}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{b}R[x, f]))_0$ .

Thus, when R is F-finite and F-pure,  $\mathfrak{b}$  is uniformly F-compatible if and only if it is fully  $\Phi(E)$ -special.

*Proof* Let  $n \in \mathbb{N}$  and  $r \in R$ . Multiplication by r yields an R-homomorphism of  $R^{(n)}$ , which, strictly speaking, we should denote by  $r \operatorname{Id}_{R^{(n)}}$ . Also  $f^n : R \longrightarrow R^{(n)}$  is an R-homomorphism. Thus we can consider the composition of R-homomorphisms  $R \xrightarrow{f^n}$ 

 $R^{(n)} \xrightarrow{r} R^{(n)}$ .

Application of the functor  $\cdot \otimes_R E$  yields a composition of *R*-homomorphisms

$$R \otimes_R E \longrightarrow R^{(n)} \otimes_R E \stackrel{r}{\longrightarrow} R^{(n)} \otimes_R E,$$

where the 'r' over the second arrow is an abbreviation for  $r \operatorname{Id}_{R^{(n)}} \otimes_R E$ . But  $R^{(n)} \cong Rx^n$  as (R, R)-bimodules; furthermore,  $(0 :_E \mathfrak{b}) \cong \operatorname{Hom}_R(R/\mathfrak{b}, E)$ . It follows that  $(0 :_E \mathfrak{b}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{b}R[x, f]))_0$  if and only if, for all  $n \in \mathbb{N}$  and all  $r \in \mathfrak{b}$ , the composition

$$(0:_E \mathfrak{b}) \xrightarrow{\subseteq} E \xrightarrow{\cong} R \otimes_R E \longrightarrow R^{(n)} \otimes_R E \xrightarrow{r} R^{(n)} \otimes_R E$$

(in which the second map is the natural isomorphism) is zero.

Let M be an R-module. Recall that there is an R-homomorphism

$$\xi_M : M \otimes_R E \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(M, R), E)$$

such that, for  $m \in M$ ,  $e \in E$  and  $g \in \text{Hom}_R(M, R)$ , we have  $(\xi_M(m \otimes e))(g) = g(m)e$ . Furthermore, as M varies, the  $\xi_M$  constitute a natural transformation of functors; also  $\xi_M$  is an isomorphism whenever M is finitely generated. We shall use D to denote the functor  $\text{Hom}_R(\bullet, E)$ .

Since  $R^{(n)}$  is a finitely generated *R*-module,  $(0 :_E \mathfrak{b}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{b}R[x, f]))_0$  if and only if, for all  $n \in \mathbb{N}$  and all  $r \in \mathfrak{b}$ , the composition

$$D(R/\mathfrak{b}) \to D(R) \xrightarrow{\cong} D(\operatorname{Hom}_{R}(R, R)) \to D(\operatorname{Hom}_{R}(R^{(n)}, R)) \xrightarrow{r} D(\operatorname{Hom}_{R}(R^{(n)}, R))$$

is zero. (Here, the first map is induced from the natural epimorphism  $R \longrightarrow R/b$ , the second map is the natural isomorphism, and the sequence from the middle term rightwards is the result of application of the functor  $\operatorname{Hom}_R(\operatorname{Hom}_R(\bullet, R), E)$  to the composition  $R \xrightarrow{f^n} R^{(n)} \xrightarrow{r} R^{(n)}$  described at the beginning of the proof.)

Since *D* is a faithful functor (because *E* is an injective cogenerator for *R*), we can deduce that  $(0 :_E \mathfrak{b}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{b}R[x, f]))_0$  if and only if, for all  $n \in \mathbb{N}$  and all  $r \in \mathfrak{b}$ , the composition

$$\operatorname{Hom}_{R}(R^{(n)}, R) \xrightarrow{r} \operatorname{Hom}_{R}(R^{(n)}, R) \longrightarrow \operatorname{Hom}_{R}(R, R) \xrightarrow{\cong} R \longrightarrow R/\mathfrak{k}$$

is zero, that is, if and only if b is uniformly F-compatible.



**Proposition 4.3** (Schwede [10]) Suppose that  $(R, \mathfrak{m})$  is *F*-finite, and let  $\mathfrak{a}$  be an ideal of *R*. Note that the completion  $\widehat{R}$  of *R* is again *F*-finite.

- (i) If a is a uniformly *F*-compatible ideal of *R*, then  $a\widehat{R}$  is a uniformly *F*-compatible ideal of  $\widehat{R}$ . See Schwede [10, Lemma 3.9].
- (ii) If  $\mathfrak{C}$  is a uniformly *F*-compatible ideal of  $\widehat{R}$ , then  $\mathfrak{C} \cap R$  is a uniformly *F*-compatible ideal of *R*. See Schwede [10, Lemma 3.8].

*Proof* For a finitely generated *R*-module *M*, we identify  $\widehat{M}$  with  $M \otimes_R \widehat{R}$  in the usual way, and we note that there is a natural  $\widehat{R}$ -isomorphism  $\psi_M$ : Hom<sub>*R*</sub>(*M*, *R*)  $\otimes_R \widehat{R} \xrightarrow{\cong}$  Hom<sub> $\widehat{R}$ </sub>( $M \otimes_R \widehat{R}, R \otimes_R \widehat{R}$ ) for which  $\psi_M(g \otimes \widehat{r}) = \widehat{r}(g \otimes \operatorname{Id}_{\widehat{R}})$  for all  $g \in \operatorname{Hom}_R(M, R)$  and  $\widehat{r} \in \widehat{R}$ . Let  $n \in \mathbb{N}$ . Consideration of Cauchy sequences shows that  $\widehat{M^{(n)}} = \widehat{M}^{(n)}$ . In particular,  $\widehat{R^{(n)}} = \widehat{R}^{(n)}$  and  $\widehat{\mathfrak{a}^{(n)}} = (\widehat{\mathfrak{a}})^{(n)} = (\widehat{\mathfrak{a}})^{(n)}$ .

There is an  $\widehat{R}$ -isomorphism  $\gamma : R^{(n)} \otimes_R \widehat{R} \xrightarrow{\cong} \widehat{R}^{(n)}$  which maps  $\mathfrak{a}^{(n)} \otimes_R \widehat{R}$  onto  $(\mathfrak{a}\widehat{R})^{(n)}$ . Also, the natural  $\widehat{R}$ -isomorphism  $\delta : R \otimes_R \widehat{R} \xrightarrow{\cong} \widehat{R}$  maps  $\mathfrak{a} \otimes_R \widehat{R}$  onto  $\mathfrak{a}\widehat{R}$ .

(i) Let  $\theta \in \text{Hom}_{\widehat{R}}(R^{(n)} \otimes_R \widehat{R}, R \otimes_R \widehat{R})$ . By the above, there exist  $\phi_1, \ldots, \phi_t \in \text{Hom}_R(R^{(n)}, R)$  and  $\widehat{r}_1, \ldots, \widehat{r}_t \in \widehat{R}$  such that  $\theta = \widehat{r}_1(\phi_1 \otimes \text{Id}_{\widehat{R}}) + \cdots + \widehat{r}_t(\phi_t \otimes \text{Id}_{\widehat{R}})$ . Since  $\phi_i(\mathfrak{a}^{(n)}) \subseteq \mathfrak{a}$  for all  $n \in \mathbb{N}$  and  $i = 1, \ldots, t$ , we see that  $\theta(\mathfrak{a}^{(n)} \otimes_R \widehat{R}) \subseteq \mathfrak{a} \otimes_R \widehat{R}$  for all  $n \in \mathbb{N}$ . Use of the above-mentioned isomorphisms  $\gamma$  and  $\delta$  now enables us to conclude that  $\mathfrak{a}\widehat{R}$  is a uniformly *F*-compatible ideal of  $\widehat{R}$ .

(ii) Let  $\phi \in \text{Hom}_R(R^{(n)}, R)$ , and set  $\mathfrak{c} := \mathfrak{C} \cap R$ . Then

$$\phi \otimes \operatorname{Id}_{\widehat{R}} \in \operatorname{Hom}_{\widehat{R}}(R^{(n)} \otimes_R \widehat{R}, R \otimes_R \widehat{R})$$

and  $\delta \circ (\phi \otimes \operatorname{Id}_{\widehat{R}}) \circ \gamma^{-1}$  maps  $\mathfrak{C}^{(n)}$  into  $\mathfrak{C}$ , and therefore maps  $(\mathfrak{c}\widehat{R})^{(n)}$  into  $\mathfrak{C}$ . Therefore  $\delta \circ (\phi \otimes \operatorname{Id}_{\widehat{R}})$  maps  $\mathfrak{c}^{(n)} \otimes_R \widehat{R}$  into  $\mathfrak{C}$ , so that  $\phi(a) \in \mathfrak{C} \cap R = \mathfrak{c}$  for all  $a \in \mathfrak{c}^{(n)}$ . Therefore  $\mathfrak{c}$  is a uniformly *F*-compatible ideal of *R*.

**Theorem 4.4** Suppose that  $(R, \mathfrak{m})$  is *F*-pure and *F*-finite. Then each  $\Phi(E)$ -special ideal  $\mathfrak{a}$  of *R* is automatically fully  $\Phi(E)$ -special.

*Proof* Note that  $\widehat{R}$  is also *F*-pure, by Hochster and Roberts [3, Corollary 6.13]. Also,  $\widehat{R}$  is *F*-finite, because the completion of the finitely generated *R*-module  $R^{(1)}$  is  $\widehat{R}^{(1)}$ .

Thus, by definition,  $\mathfrak{a}$  is the *R*-annihilator of an R[x, f]-submodule of  $\Phi(E)$ . It follows from Lemma 2.11 that  $\mathfrak{a} = \mathfrak{A} \cap R$  for some ideal  $\mathfrak{A}$  of  $\widehat{R}$  that is the  $\widehat{R}$ -annihilator of an  $\widehat{R}[x, f]$ -submodule of  $\Phi_{\widehat{R}}(E)$ . Thus  $\mathfrak{A}$  is  $\Phi_{\widehat{R}}(E)$ -special. It follows from Proposition 2.7 that  $\mathfrak{A}$  is a fully  $\Phi_{\widehat{R}}(E)$ -special ideal of  $\widehat{R}$ , and so is uniformly *F*-compatible, by Proposition 4.2. Therefore, by Proposition 4.3(ii), the contraction  $\mathfrak{A} \cap R = \mathfrak{a}$  is a uniformly *F*-compatible ideal of *R*, and is therefore fully  $\Phi(E)$ -special, by Proposition 4.2 again.  $\Box$ 

**Corollary 4.5** Suppose that  $(R, \mathfrak{m})$  is *F*-pure and *F*-finite; let  $\mathfrak{a}$  be an ideal of *R*. Then the following statements are equivalent:

- (i) a *is uniformly F*-compatible;
- (ii)  $\mathfrak{a}$  is  $\Phi(E)$ -special;
- (iii)  $\mathfrak{a}$  is fully  $\Phi(E)$ -special.

*Proof* This is now immediate from Proposition 4.2 and Theorem 4.4.

**Question 4.6** Suppose that  $(R, \mathfrak{m})$  is *F*-pure.



193

We have seen that each  $\Phi(E)$ -special ideal of R is fully  $\Phi(E)$ -special if R is complete (by Proposition 2.7) or if R is a homomorphic image of an excellent regular local ring of characteristic p (by Theorem 3.3) or if R is F-finite (by Theorem 4.4).

Note that each complete local ring is excellent, and that each *F*-finite local ring of characteristic *p* is excellent (by E. Kunz [4, Theorem 2.5]). The above results raise the following question. If the *F*-pure local ring *R* is excellent, is it the case that every  $\Phi(E)$ -special ideal of *R* is fully  $\Phi(E)$ -special?

### 5 A Generalization of Aberbach's and Enescu's Splitting Prime

Recall from [6, Remark 2.8 and Proposition 2.9] that G. Lyubeznik and K. E. Smith defined  $(R, \mathfrak{m})$  to be *strongly F-regular* (even in the case where *R* is not *F*-finite) precisely when the zero submodule of *E* is tightly closed in *E*. See M. Hochster and C. Huneke [2, §8].

**Theorem 5.1** Suppose that (R, m) is *F*-pure and that every  $\Phi(E)$ -special ideal of *R* is fully  $\Phi(E)$ -special. (For example, by Theorem 3.3, this would be the case if *R* were a homomorphic image of an excellent regular local ring of characteristic *p*; it would also be the case if *R* were *F*-finite, by Theorem 4.4.)

- (i) There exists a unique largest  $\Phi(E)$ -special proper ideal,  $\mathfrak{c}$  say, of R and this is prime. Furthermore,  $R/\mathfrak{c}$  is strongly F-regular.
- (ii) Let T be the R[x, f]-submodule of  $\Phi(E)$  generated by  $(0 :_E \mathfrak{m}) \subseteq R \otimes_R E$ . Then gr-ann<sub>R[x, f]</sub> $T = \mathfrak{c}R[x, f]$ .

*Proof* (i) By Corollary 2.10, there is a unique largest  $\Phi(E)$ -special proper ideal c of R, and this is prime. By Corollary 3.8(iv), the big test ideal of R/c is R/c itself, so that  $1_{R/c}$  is a big test element for R/c. Therefore, the zero submodule of  $E_{R/c}(R/m)$  is tightly closed in  $E_{R/c}(R/m)$ , and so R/c is strongly F-regular.

(ii) Note that T is the image of the R[x, f]-homomorphism

$$R[x, f] \otimes_R (0:_E \mathfrak{m}) \longrightarrow R[x, f] \otimes_R E = \Phi(E)$$

induced by the inclusion map  $(0 :_E \mathfrak{m}) \xrightarrow{\subseteq} E$ . Let  $\mathfrak{d}$  be the  $\Phi(E)$ -special ideal of R for which  $\operatorname{gr-ann}_{R[x,f]}T = \mathfrak{d}R[x,f]$ . Since  $\mathfrak{d}$  annihilates  $(0 :_E \mathfrak{m})$ , we see that  $\mathfrak{d}$  is proper. Suppose that there exists  $\mathfrak{h} \in \mathcal{I}(\Phi(E))$  such that  $\mathfrak{d} \subset \mathfrak{h} \subseteq \mathfrak{m}$ . (The symbol 'C' is reserved to denote strict inclusion.) Thus, we have  $(0 :_E \mathfrak{m}) \subseteq (0 :_E \mathfrak{h}) \subseteq (0 :_E \mathfrak{d})$ . But we know that every  $\Phi(E)$ -special ideal of R is fully  $\Phi(E)$ -special, and therefore  $(0 :_E \mathfrak{h}) \subseteq (\operatorname{ann}_{\Phi(E)}(\mathfrak{h}R[x,f]))_0$ . Since  $\operatorname{ann}_{\Phi(E)}(\mathfrak{h}R[x,f])$  is an R[x,f]-submodule of  $\Phi(E)$ , it follows that

$$T \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{h}R[x, f]) \subseteq \operatorname{ann}_{\Phi(E)}(\mathfrak{d}R[x, f]).$$

Now take graded annihilators: in view of the bijective correspondence between the sets  $\mathcal{I}(\Phi(E))$  and  $\mathcal{A}(\Phi(E))$  alluded to in the Introduction, we have

$$\partial R[x, f] = \operatorname{gr-ann}_{R[x, f]}(\operatorname{ann}_{\Phi(E)}(\partial R[x, f]))$$
  

$$\subseteq \operatorname{gr-ann}_{R[x, f]}(\operatorname{ann}_{\Phi(E)}(\mathfrak{h}R[x, f])) = \mathfrak{h}R[x, f]$$
  

$$\subseteq \operatorname{gr-ann}_{R[x, f]}T = \partial R[x, f].$$

Hence  $\mathfrak{h} = \mathfrak{d}$  and we have a contradiction.



Thus  $\mathfrak{d}$  is a maximal member of the set of proper  $\Phi(E)$ -special ideals of R; therefore  $\mathfrak{d} = \mathfrak{c}$ .

**Definition 5.2** (I. M. Aberbach and F. Enescu [1, Definition 3.2]) Suppose  $(R, \mathfrak{m})$  is *F*-finite and reduced. Let *u* be a generator for the socle  $(0:_E \mathfrak{m})$  of *E*. Aberbach and Enescu defined

$$\mathfrak{P} = \left\{ r \in R : r \otimes u = 0 \text{ in } R^{(n)} \otimes_R E \text{ for all } n \gg 0 \right\},\$$

an ideal of R.

In [1, §3], Aberbach and Enescu showed that in the case where  $(R, \mathfrak{m})$  is *F*-finite and *F*-pure, and with the notation of 5.2, the ideal  $\mathfrak{P}$  is prime and is equal to the set of elements  $c \in R$  for which, for all  $e \in \mathbb{N}$ , the *R*-homomorphism  $\phi_{c,e} : R \longrightarrow R^{1/p^e}$  for which  $\phi_{c,e}(1) = c^{1/p^e}$  does not split over *R*. Aberbach and Enescu call this  $\mathfrak{P}$  the *splitting prime* for *R*. By [1, Theorem 4.8(i)], the ring  $R/\mathfrak{P}$  is strongly *F*-regular.

**Proposition 5.3** Suppose that  $(R, \mathfrak{m})$  is *F*-finite and *F*-pure. Let  $\mathfrak{P}$  be Aberbach's and Enescu's splitting prime, as in 5.2. Let  $\mathfrak{q}$  be the unique largest  $\Phi(E)$ -special proper ideal of *R*, as in Theorem 5.1. Then  $\mathfrak{P} = \mathfrak{q}$ .

*Proof* Let u be a generator for the socle  $(0:_E \mathfrak{m})$  of E. We can write

$$\mathfrak{P} = \left\{ r \in R : rx^n \otimes u = 0 \text{ in } Rx^n \otimes_R E \text{ for all } n \gg 0 \right\}.$$

Now for a positive integer j and  $r \in R$ , if  $rx^j \otimes u = 0$  in  $\Phi(E)$ , then

$$x(rx^{j-1} \otimes u) = r^p x^j \otimes u = 0,$$

so that  $rx^{j-1} \otimes u = 0$  because the left R[x, f]-module  $\Phi(E)$  is x-torsion-free. Therefore

$$\mathfrak{P} = \left\{ r \in R : rx^n \otimes u = 0 \text{ in } Rx^n \otimes_R E \text{ for all } n \ge 0 \right\}.$$

Let *T* be the R[x, f]-submodule of  $\Phi(E)$  generated by  $(0:_E \mathfrak{m}) \subseteq R \otimes_R E$ . We thus see that  $\mathfrak{P}R[x, f] = \operatorname{gr-ann}_{R[x, f]}T$ , and this is  $\mathfrak{q}R[x, f]$  by Theorem 5.1. Hence  $\mathfrak{P} = \mathfrak{q}$ .  $\Box$ 

*Remark 5.4* Suppose that  $(R, \mathfrak{m})$  is *F*-pure and a homomorphic image of an excellent regular local ring *S* of characteristic *p* modulo an ideal  $\mathfrak{A}$ . By Theorem 5.1(i), there exists a unique largest  $\Phi(E)$ -special proper ideal,  $\mathfrak{q}$  say, of *R* and this is prime. Let  $\mathfrak{Q}$  be the unique ideal of *S* containing  $\mathfrak{A}$  for which  $\mathfrak{Q}/\mathfrak{A} = \mathfrak{q}$ .

- (i) The results of this section suggest that q can be viewed as a generalization of Aberbach's and Enescu's splitting prime: for example, Proposition 5.3 shows that q is that splitting prime in the case where *R* is, in addition, *F*-finite.
- (ii) Note that R/q is strongly *F*-regular (in the sense of Lyubeznik and Smith mentioned at the beginning of the section).
- (iii) By Proposition 3.2, we have  $(\mathfrak{A}^{[p^n]} : \mathfrak{A}) \subseteq (\mathfrak{Q}^{[p^n]} : \mathfrak{Q})$  for all  $n \in \mathbb{N}$ . In the special case in which S is F-finite, this result was obtained by Aberbach and Enescu [1, Proposition 4.4].

### References

<sup>1.</sup> Aberbach, I.M., Enescu, F.: The structure of F-pure rings. Math. Z. 250, 791-806 (2005)

- 195
- Hochster, M., Huneke, C.: Tight closure, invariant theory and the Briançon-Skoda Theorem. J. Am. Math. Soc. 3, 31–116 (1990)
- Hochster, M., Roberts, J.L.: Rings of invariants of reductive groups acting on regular rings are Cohen– Macaulay. Adv. Math. 13, 115–175 (1974)
- 4. Kunz, E.: On Noetherian rings of characteristic p. Am. J. Math. 98, 999–1013 (1976)
- Lyubeznik, G.: F-modules: applications to local cohomology and D-modules in characteristic p > 0. J. Reine Angew. Math. 491, 65–130 (1997)
- Lyubeznik, G., Smith, K.E.: On the commutation of the test ideal with localization and completion. Trans. Am. Math. Soc. 353, 3149–3180 (2001)
- 7. Popescu, D.: General Néron desingularization. Nagoya Math. J. 100, 97-126 (1985)
- 8. Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104, 85–115 (1986)
- 9. Radu, N.: Une classe d'anneaux Noétheriens. Rev. Roum. Math. Pures Appl. 37, 79-82 (1992)
- 10. Schwede, K.: Centers of F-purity. Math. Z. 265, 687-714 (2010)
- Sharp, R.Y.: Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure. Trans. Am. Math. Soc. 359, 4237–4258 (2007)
- Sharp, R.Y.: An excellent F-pure ring of prime characteristic has a big tight closure test element. Trans. Am. Math. Soc. 362, 5455–5481 (2010)
- Sharp, R.Y.: Big tight closure test elements for some non-reduced excellent rings. J. Algebra 349, 284– 316 (2012)
- Sharp, R.Y.: Tight closure with respect to a multiplicatively closed subset of an *F*-pure local ring. J. Pure Appl. Algebra 219, 672–685 (2015)
- Sharpe, D.W., Vámos, P.: Injective modules. Cambridge Tracts in Mathematics and Mathematical Physics 62. Cambridge University Press, Cambridge (1972)
- Vassilev, J.C.: Test ideals in quotients of F-finite regular local rings. Trans. Am. Math. Soc. 350, 4041– 4051 (1998)