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Abstract Let R be a commutative (Noetherian) local ring of prime characteristic p that is
F -pure. This paper is concerned with comparison of three finite sets of radical ideals of R,
one of which is only defined in the case when R is F -finite (that is, is finitely generated
when viewed as a module over itself via the Frobenius homomorphism). Two of the afore-
mentioned three sets have links to tight closure, via test ideals. Among the aims of the
paper are a proof that two of the sets are equal, and a proposal for a generalization of I. M.
Aberbach’s and F. Enescu’s splitting prime.
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1 Introduction

Throughout the paper, let (R,m) be a commutative (Noetherian) local ring of prime charac-
teristic p having maximal ideal m. In recent years, the study of R-modules with a Frobenius
action has assisted in the development of the theory of tight closure over R. An R-module
with a Frobenius action can be viewed as a left module over the Frobenius skew polynomial
ring over R, and such left modules will play a central role in this paper.

The Frobenius skew polynomial ring over R is described as follows. Throughout, f :
R −→ R denotes the Frobenius ring homomorphism, for which f (r) = rp for all r ∈ R.
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The Frobenius skew polynomial ring over R is the skew polynomial ring R[x, f ] associated
to R and f in the indeterminate x; as a left R-module, R[x, f ] is freely generated by (xi)i≥0,
and so consists of all polynomials

∑n
i=0rix

i , where n ≥ 0 and r0, . . . , rn ∈ R; however, its
multiplication is subject to the rule xr = f (r)x = rpx for all r ∈ R.

We can think of R[x, f ] as a positively-graded ring R[x, f ] = ⊕∞
n=0 R[x, f ]n, where

R[x, f ]n = Rxn for n ≥ 0. The graded annihilator of a left R[x, f ]-module H is the
largest graded two-sided ideal of R[x, f ] that annihilates H ; it is denoted by gr-annR[x,f ]H .

Let G be a left R[x, f ]-module that is x-torsion-free in the sense that xg = 0 for g ∈ G,
only when g = 0. Then gr-annR[x,f ]G = bR[x, f ], where b = (0 :R G) is a radical ideal.
See [11, Lemma 1.9]. We shall use I(G) (or IR(G)) to denote the set of R-annihilators of
the R[x, f ]-submodules of G; we shall refer to the members of I(G) as the G-special R-
ideals. For a graded two-sided ideal B of R[x, f ], we denote by annG(B) or annGB the
R[x, f ]-submodule of G consisting of all elements of G that are annihilated by B. Also,
we shall use A(G) to denote the set of special annihilator submodules of G, that is, the
set of R[x, f ]-submodules of G of the form annG(A), where A is a graded two-sided ideal
of R[x, f ]. In [11, §1], the present author showed that there is a sort of ‘Galois’ corre-
spondence between I(G) and A(G). In more detail, there is an order-reversing bijection,
� : A(G) −→ I(G) given by

� : N �−→ (
gr-annR[x,f ]N

) ∩ R = (0 :R N).

The inverse bijection, �−1 : I(G) −→ A(G), also order-reversing, is given by

�−1 : b �−→ annG (bR[x, f ])) .

We shall be mainly concerned in this paper with the situation where R is F -pure. We
remind the reader what this means. For j ∈ N (the set of positive integers) and an R-module
M , let M(j) denote M considered as a left R-module in the natural way and as a right R-
module via f j , the j th iterate of the Frobenius ring homomorphism. Then R is F-pure if,
for every R-module M , the natural map M −→ R(1) ⊗R M (which maps m ∈ M to 1 ⊗ m)
is injective.

Note that R(j) ∼= Rxj as (R,R)-bimodules. Let i ∈ N0, the set of non-negative integers.
When we endow Rxi and Rxj with their natural structures as (R,R)-bimodules (inher-
ited from their being graded components of R[x, f ]), there is an isomorphism of (left)

R-modules φ : Rxi+j ⊗R M
∼=−→ Rxi ⊗R (Rxj ⊗R M) for which φ(rxi+j ⊗ m) =

rxi ⊗ (xj ⊗ m) for all r ∈ R and m ∈ M . It follows that R is F -pure if and only if the left
R[x, f ]-module R[x, f ] ⊗R M is x-torsion-free for every R-module M . This means that,
when R is F -pure, there is a good supply of natural x-torsion-free left R[x, f ]-modules.

In fact, we shall use � (or �R when it is desirable to specify which ring is being con-
sidered) to denote the functor R[x, f ] ⊗R • from the category of R-modules (and all
R-homomorphisms) to the category of all N0-graded left R[x, f ]-modules (and all homo-
geneous R[x, f ]-homomorphisms). For an R-module M , we shall identify �(M) with⊕

n∈N0
Rxn⊗R M , and (usually) identify its 0th component R⊗R M with M , in the obvious

ways.
Let E be the injective envelope of the simple R-module R/m. We shall be concerned

with �(E), the N0-graded left R[x, f ]-module
⊕

n∈N0
Rxn ⊗R E. Assume now that R is

F -pure. In [12, Corollary 4.11], the present author proved that the set I(�(E)) is a finite
set of radical ideals of R; in [11, Theorem 3.6 and Corollary 3.7], he proved that I(�(E)) is
closed under taking primary (prime in this case) components; and in [14, Corollary 2.8], he
proved that the big test ideal τ̃ (R) of R (for tight closure) is equal to the smallest member
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of I(�(E)) that meets R◦, the complement in R of the union of the minimal prime ideals
of R.

Let a ∈ I(�(E)) (with a �= R), still in the F -pure case. The special annihilator submod-
ule ann�(E)(aR[x, f ]) of �(E) corresponding to a inherits a natural structure as a graded
left module over the Frobenius skew polynomial ring (R/a)[x, f ], and its 0th component is
contained in (0 :E a). As R/a-module, the latter is isomorphic to the injective envelope of
the simple R/a-module. Motivated by results in [14, §3] in the case where R is complete,
and by work of K. Schwede in [10, §5] in the F -finite case, we say that a is fully �(E)-
special if (it is �(E)-special and) its 0th component is exactly (0 :E a). The main result of
this paper is that a �(E)-special ideal of R is always fully �(E)-special provided that R is
an (F -pure) homomorphic image of an excellent regular local ring of characteristic p. When
R satisfies this condition, corollaries can be drawn from that main result: we shall establish
an analogue of [14, Theorem 3.1] and, in particular, show that R/a is F -pure whenever a is
a proper �(E)-special ideal of R.

Along the way, we shall show that, in the case where R is F -finite as well as F -pure,
the set I(�(E)) of �(E)-special ideals of R is equal to the set of uniformly F -compatible
ideals of R, introduced by K. Schwede in [10, §3]. An ideal b of R is said to be uniformly
F -compatible if, for every j > 0 and every φ ∈ HomR(R(j), R), we have φ(b(j)) ⊆ b.
In [10, Corollary 5.3 and Corollary 3.3], Schwede proved that there are only finitely many
uniformly F -compatible ideals of R and that they are all radical; in [10, Proposition 4.7
and Corollary 4.8], he proved that the set of uniformly F -compatible ideals is closed under
taking primary (prime in this case) components; in [10, Theorem 6.3], Schwede proved
that the big test ideal τ̃ (R) of R is equal to the smallest uniformly F -compatible ideal
of R that meets R◦; and in [10, Remark 4.4 and Proposition 4.7], he proved that there is
a unique largest proper uniformly F -compatible ideal of R, and that is prime and equal
to the splitting prime of R discovered and defined by I. M. Aberbach and F. Enescu
[1, §3].

Thus, in the F -finite F -pure case, the set of uniformly F -compatible ideals of R has
properties similar to some properties of I(�(E)). Are the two sets the same? We shall,
during the course of the paper, show that the answer is ‘yes’. It should be emphasized,
however, that Schwede only defined uniformly F -compatible ideals in the F -finite case,
whereas the majority of this paper is devoted to the study of fully �(E)-special ideals in the
(F -pure but) not necessarily F -finite case.

We shall use the notation of this Introduction throughout the remainder of the paper. In
particular, R will denote a local ring of prime characteristic p having maximal ideal m.
We shall sometimes use the notation (R,m) just to remind the reader that R is local. The
completion of R will be denoted by R̂. We shall only assume that R is reduced, or F -
pure, or F -finite, when there is an explicit statement to that effect; also E will continue to
denote ER(R/m). We continue to use N, respectively N0, to denote the set of all positive,
respectively non-negative, integers.

For j ∈ N0, the j th component of an N0-graded left R[x, f ]-module G will be denoted
by Gj .

2 Fully �(E)-Special Ideals

We remind the reader that we usually identify the 0th component of �(E) =⊕
n∈N0

Rxn ⊗R E with E in the obvious natural way. For an ideal a of R, we have, with
this convention, that the 0th component of ann�(E)(aR[x, f ]) is contained in (0 :E a).



182 R. Y. Sharp

Lemma 2.1 Assume that (R,m) is F -pure; let a be an ideal of R. Then the 0th component
(ann�(E)(aR[x, f ]))0 of ann�(E)(aR[x, f ]) contains (0 :E a) if and only if a is �(E)-
special and (ann�(E)(aR[x, f ]))0 = (0 :E a).

Proof Only the implication ‘⇒’ needs proof.
Assume that (0 :E a) ⊆ (ann�(E)(aR[x, f ]))0. Since ann�(E)(aR[x, f ]) is an R[x, f ]-

submodule of �(E), it follows that ann�(E)(aR[x, f ]) contains the image J of the map

�((0 :E a)) = R[x, f ] ⊗R (0 :E a) −→ R[x, f ] ⊗R E = �(E)

induced by inclusion. Let b be the radical ideal of R for which gr-annR[x,f ]J = bR[x, f ],
so that b = (0 :R J ). As J ⊆ ann�(E)(aR[x, f ]), we must have a ⊆ b. Furthermore, b
annihilates (0 :E a) ∼= HomR(R/a, E), and since an R-module and its Matlis dual have
the same annihilator, we also have b ⊆ a. Thus a = b is the R-annihilator of an R[x, f ]-
submodule of �(E), and so a ∈ I(�(E)).

Finally, note that an e ∈ (ann�(E)(aR[x, f ]))0 must be annihilated by a, and so lies in
(0 :E a).

Definition 2.2 Assume that (R,m) is F -pure; let a be an ideal of R. We say that a is fully
�(E)-special if the equivalent conditions of Lemma 2.1 are satisfied.

Thus a is fully �(E)-special if and only if (0 :E a) ⊆ (ann�(E)(aR[x, f ]))0, and then a

is �(E)-special and we have the equality (0 :E a) = (ann�(E)(aR[x, f ]))0.

To facilitate the presentation of some examples of �(E)-special ideals that are fully
�(E)-special, we review next the theory of S-tight closure, where S is a multiplicatively
closed subset of R. This theory was developed in [14]. The special case of the theory in
which S = R◦ is the ‘classical’ tight closure theory of M. Hochster and C. Huneke [2].

Reminders 2.3 Let H be a left R[x, f ]-module and let S be a multiplicatively closed subset
of R.

(i) We define the internal S-tight closure of zero in H, denoted by �S(H), to be the
R[x, f ]-submodule of H given by

�S(H) = {
h ∈ H : there exists s ∈ S with sxnh = 0 for all n � 0

}
.

When M is an R-module and we take the graded left R[x, f ]-module �(M) =
R[x, f ] ⊗R M for H , the R[x, f ]-submodule �S(�(M)) of �(M) is graded, and
we refer to its 0th component as the S-tight closure of 0 in M, or the tight closure with
respect to S of 0 in M, and denote it by 0∗,S

M . See [14, §1].
(ii) By [14, Example 1.3(ii)], we have, for an R-module M ,

�S(R[x, f ] ⊗R M) = 0∗,S
M ⊕ 0∗,S

Rx⊗RM ⊕ · · · ⊕ 0∗,S
Rxn⊗RM ⊕ · · · .

(iii) Recall that an S-test element for R is an element s ∈ S such that, for every R-module
M and every j ∈ N0, the element sxj annihilates 1 ⊗ m ∈ (�(M))0 for every
m ∈ 0∗,S

M . The ideal of R generated by all the S-test elements for R is called the S-test
ideal of R, and denoted by τS(R).
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Reminders 2.4 Suppose that (R,m) is F -pure. Let S be a multiplicatively closed subset
of R. Recall that the set I(�(E)) of �(E)-special R-ideals is finite; let bS,�(E) denote the
intersection of all the minimal members of the set

{p ∈ Spec(R) ∩ I(�(E)) : p ∩ S �= ∅} .

Thus bS,�(E) is the smallest member of I(�(E)) that meets S.

(i) By [14, Theorem 2.6], the set S ∩bS,�(E) is (non-empty and) equal to the set of S-test
elements for R.

(ii) Thus there exists an S-test element for R.
(iii) Furthermore, �S(�(E)) = ann�(E)(b

S,�(E)R[x, f ]) and (0 :R �S(�(E))) =
bS,�(E), by [14, Proposition 1.5].

(iv) By [14, Proposition 2.10(v)], we have bS,�(E) = (0 :R 0∗,S
E ).

Lemma 2.5 (Sharp [14, Corollary 2.8]) Suppose that (R,m) is F -pure. Let S be the
complement in R of the union of finitely many prime ideals.

Then the S-test ideal τS(R) is equal to bS,�(E), the smallest member of the finite set
I(�(E)) that meets S.

We shall also use the following result from [14].

Theorem 2.6 (Sharp [14, Theorem 2.12]) Suppose that (R,m) is F -pure. Let a ∈ I(�(E)).
Then there exists a multiplicatively closed subset S of R such that a is the S-test ideal of
R. Moreover, S can be taken to be the complement in R of the union of finitely many prime
ideals.

We are now able to give examples of fully �(E)-special ideals because the next result
shows that, when (R,m) is complete and F -pure, a �(E)-special ideal of R is automatically
fully �(E)-special.

Proposition 2.7 Suppose that (R,m) is complete and F -pure. Then every �(E)-special
ideal of R is fully �(E)-special.

Proof Let a be a �(E)-special ideal of R. If a = R, then

(0 :E a) = 0 ⊆ ann�(E)(aR[x, f ])
and a is fully �(E)-special. We therefore assume that a is proper.

By Theorem 2.6 and [14, Corollary 2.8], there exist finitely many prime ideals p1, . . . , pn

of R such that, if we set S := R\⋃n
i=1 pi , then a is the S-test ideal of R, that is a = τS(R) =

bS,�(E), where the notation is as in 2.3(iii) and 2.4. Therefore, by 2.3(ii) and 2.4(iii),

0∗,S
E ⊕ 0∗,S

Rx⊗RE ⊕ · · · ⊕ 0∗,S
Rxn⊗RE ⊕ · · · = �S(�(E))

= ann�(E)(b
S,�(E)R[x, f ]).

Now, we know that bS,�(E) = (0 :R 0∗,S
E ), by 2.4(iv). Since R is complete, it follows

from Matlis duality (see, for example, [15, p. 154]) that 0∗,S
E = (0 :E bS,�(E)). We have

thus shown that (0 :E a) = R ⊗R (0 :E a) ⊆ (ann�(E)(aR[x, f ]))0. Thus a is fully
�(E)-special.

Next, we develop some theory for fully �(E)-special ideals.
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Lemma 2.8 Suppose that (R,m) is F -pure, and let a be a fully �(E)-special ideal of R.
Then a is radical and every associated prime of a is also fully �(E)-special.

Proof We can assume that a is proper. Since a is �(E)-special, it must be radical. Let
a = p1 ∩ · · · ∩ pt be the minimal primary (prime in this case) decomposition of a, and let
i ∈ {1, . . . , t}.

Since a is fully �(E)-special, (0 :E a) ⊆ (ann�(E)(aR[x, f ]))0. Let e ∈ (0 :E pi ) and
let r ∈ pi . We show that rxn annihilates the element 1 ⊗ e of the 0th component of �(E).
There exists

a ∈
t⋂

j=1
j �=i

pj \ pi .

Now (0 :E pi ) = a(0 :E pi ), because multiplication by a provides a monomorphism of
R/pi into itself and E is injective. Therefore e = ae′ for some e′ ∈ (0 :E pi ). Therefore
rxn ⊗ e = rxn ⊗ ae′ = rapn

xn ⊗ e′ = 0 since rapn ∈ a and

(0 :E pi ) ⊆ (0 :E a) ⊆ ann�(E)(aR[x, f ]).
Therefore (0 :E pi ) ⊆ (ann�(E)(piR[x, f ]))0 and pi is fully �(E)-special.

Proposition 2.9 Suppose that (R,m) is F -pure. Let (aλ)λ∈� be a non-empty family of fully
�(E)-special ideals of R. Then

∑
λ∈�aλ is again fully �(E)-special.

Proof Set a := ∑
λ∈�aλ, and observe that aR[x, f ] = ∑

λ∈�(aλR[x, f ]). By assumption,
we have (0 :E aλ) ⊆ ann�(E)(aλR[x, f ]) for all λ ∈ �. It follows that

(0 :E a) =
(

0 :E
∑

λ∈�
aλ

)
=

⋂

λ∈�

(0 :E aλ)

⊆
⋂

λ∈�

(ann�(E)(aλR[x, f ]))0

=
(

ann�(E)

(∑

λ∈�
(aλR[x, f ])

))

0
= (ann�(E)(aR[x, f ]))0.

Therefore a := ∑
λ∈�aλ is fully �(E)-special.

Corollary 2.10 Suppose that (R,m) is F -pure. Then R has a unique largest fully �(E)-
special proper ideal, and this is prime.

Proof The zero ideal is fully �(E)-special, and so it follows from Proposition 2.9 that the
sum b of all the fully �(E)-special proper ideals of R is fully �(E)-special (and contained
in m), and so is the unique largest fully �(E)-special proper ideal of R. Also b must be
prime, since all the associated primes of b are fully �(E)-special, by Lemma 2.8.

In what follows, we shall have cause to pass between R and its completion. Note that if
R is F -pure, then so too is R̂, by Hochster and Roberts [3, Corollary 6.13]. The following
technical lemma will be helpful.

Lemma 2.11 (See [13, Lemma 4.3]) There is a unique way of extending the R-module
structure on E := ER(R/m) to an R̂-module structure. Recall that, as an R̂-module,
E ∼= ER̂(R̂/m̂).
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Since each element of �R(E) = R[x, f ] ⊗R E is annihilated by some power of m,
the left R[x, f ]-module structure on �R(E) can be extended in a unique way to a left
R̂[x, f ]-module structure.

The map β : �R(E) = R[x, f ] ⊗R E −→ R̂[x, f ] ⊗R̂ E = �R̂(E) for which

β(rxi ⊗ h) = rxi ⊗ h for all r ∈ R, i ∈ N0 and h ∈ E

is a homogeneous R̂[x, f ]-isomorphism.
Since each element of �R(E) is annihilated by some power of m, it follows that a subset

of �R(E) is an R[x, f ]-submodule if and only if it is an R̂[x, f ]-submodule. Consequently,

IR(�R(E)) = {
B ∩ R : B ∈ IR̂(�R̂(E))

}
.

Lemma 2.12 Suppose that (R,m) is F -pure, and let a be an ideal of R. Then aR̂ is a fully
�R̂(E)-special ideal of R̂ if and only if a is a fully �R(E)-special ideal of R.

Proof By Lemma 2.11, when we extend the left R[x, f ]-module structure on �R(E), in
the unique way possible, to a left R̂[x, f ]-module structure, E ∼= ER̂(R̂/m̂) as R̂-modules
and �R(E) ∼= �R̂(E) as left R̂[x, f ]-modules. The claim therefore follows from the facts
that

ann�R(E)(aR[x, f ]) = ann�R(E)((aR̂)R̂[x, f ])

and (0 :E a) = (0 :E aR̂).

3 The Case Where R Is an F -Pure Homomorphic Image of an Excellent Regular
Local Ring of Characteristic p

The main aim of this section is to prove that, when R is an F -pure homomorphic image of
an excellent regular local ring of characteristic p, every �(E)-special ideal of R is a fully
�(E)-special ideal. This will enable us to extend some results obtained in [14, §3] about an
F -pure complete local ring to an F -pure homomorphic image of an excellent regular local
ring of characteristic p. We begin the section with a lemma that is derived from a result of
G. Lyubeznik [5, Lemma 4.1].

Lemma 3.1 Let (S,M) be a complete regular local ring of characteristic p, and let B be a
proper, non-zero ideal of S. Denote ES(S/M) by ES , and let S[x, f ] denote the Frobenius
skew polynomial ring over S. Let n ∈ N.

Since S is regular, S(n) is faithfully flat over S, and we identify Sxn ⊗S (0 :ES
B) as

an S-submodule of Sxn ⊗S ES in the natural way. Let a1, . . . , ad be a regular system of

parameters for S. Consider the S-isomorphism δn : Sxn ⊗S ES

∼=−→ ES of [11, 4.2(iii)],
for which (with the notation used in the statement of that result)

δn

(

bxn ⊗
[

s

(a1 . . . ad)j

])

=
[

bspn

(a1 . . . ad)jp
n

]

for all b, s ∈ S and j ∈ N0.
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The isomorphism δn maps

(i) Sxn ⊗S (0 :ES
B) onto (0 :ES

B[pn]), and
(ii) B(Sxn ⊗S (0 :ES

B)) onto (0 :ES
(B[pn] : B)).

Proof (i) Use of the analogue of Lyubeznik [5, Lemma 4.1] for the functor Sxn ⊗S • shows
that the Matlis dual of Sxn⊗S(0 :ES

B) is S-isomorphic to Sxn⊗S(S/B) ∼= S/B[pn]. Since
each S-module has the same annihilator as its Matlis dual, we thus see that Sxn⊗S (0 :ES

B)

has annihilator B[pn]. As S is complete, T = (0 :ES
(0 :S T )) for each submodule T of ES ,

by Matlis duality (see, for example, [15, p. 154]). It therefore follows that

δn(Sxn ⊗S (0 :ES
B)) = (0 :ES

B[pn]).

(ii) Set N := Sxn ⊗S (0 :ES
B). Similar reasoning shows that

δn(BN) = (0 :ES
(0 :S BN)) = (0 :ES

((0 :S N) : B)) = (0 :ES
(B[pn] : B)).

Proposition 3.2 Suppose that R = S/A, where (S,M) is a regular local ring of character-
istic p, and A is a proper ideal of S. Assume also that R is F -pure. Let b be a proper ideal
of R; let B be the unique ideal of S that contains A and is such that B/A = b.

Then b is fully �(E)-special if and only if (A[pn] : A) ⊆ (B[pn] : B) for all n ∈ N.

Note In the F -finite case, this result is already known and due to K. Schwede [10, Proposi-
tion 3.11 and Lemma 5.1].

Proof If A = 0, then R is regular, so that its big test ideal is R itself (by [6, Theorem 8.8],
for example) and the only proper �(E)-special ideal of R is 0; also, (0[pn] : 0) = S, and
the only proper ideal B of S satisfying (0[pn] : 0) ⊆ (B[pn] : B) for all n ∈ N is the zero
ideal. Thus, the result is true when A = 0; we therefore assume for the remainder of this
proof that A �= 0.

Note that R̂ = Ŝ/AŜ is again F -pure and that Ŝ is an excellent complete regular local
ring of characteristic p, with maximal ideal MŜ.

We also note that b is a fully �R(E)-special ideal of R if and only if bR̂ is a fully �R̂(E)-
special ideal of R̂, by Lemma 2.12. Furthermore, by the faithful flatness of Ŝ over S, we
have, for n ∈ N,

((AŜ)[pn] : AŜ) = (A[pn] : A)Ŝ ⊆ (B[pn] : B)Ŝ = ((BŜ)[pn] : BŜ)

if and only if (A[pn] : A) ⊆ (B[pn] : B). Therefore, we can, and do, assume henceforth in
this proof that S is complete.

Let ES := ES(S/M). Now (0 :ES
A) = E := ER(R/m) and (0 :ES

B) = (0 :E b).
Note that b is fully �R(E)-special if and only if, for each n ∈ N and each r ∈ b, the element
rxn ∈ Rxn annihilates the R-submodule (0 :E b) of the 0th component E of �R(E).

Let n ∈ N. There is an exact sequence of (S, S)-bimodules

0 −→ ASxn ⊆−→ Sxn ν−→ Rxn −→ 0,

where ν(sxn) = (s + A)xn for all s ∈ S. The map

Sxn ⊗S (0 :ES
A) −→ Rxn ⊗S (0 :ES

A) = Rxn ⊗R (0 :ES
A) = Rxn ⊗R E

induced by ν therefore has kernel A(Sxn ⊗S (0 :ES
A)).
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It follows that b is fully �R(E)-special if and only if, for all n ∈ N, s ∈ B and g ∈
(0 :ES

B) = (0 :E b), the element sxn ⊗ g of Sxn ⊗S (0 :ES
A) lies in

A(Sxn ⊗S (0 :ES
A)).

In other words, b is fully �R(E)-special if and only if, for all n ∈ N, we have

B(Sxn ⊗S (0 :ES
B)) ⊆ A(Sxn ⊗S (0 :ES

A)).

(We are here identifying Sxn ⊗S (0 :ES
B) and Sxn ⊗S (0 :ES

A) with submodules of
Sxn ⊗S ES in the obvious ways, using the faithful flatness of S(n) over S.)

By [11, 4.2(iii)], we have Sxn ⊗S ES
∼= ES . Since S is complete, each submodule T of

ES satisfies T = (0 :ES
(0 :S T )). Set N := Sxn ⊗S ES . Thus

A(Sxn ⊗S (0 :ES
A)) = (0 :N (0 :S (A(Sxn ⊗S (0 :ES

A))))) = (0 :N (A[pn] : A)),

by Lemma 3.1. Similarly, B(Sxn ⊗S (0 :ES
B)) = (0 :N (B[pn] : B)). It follows that b is

fully �R(E)-special if and only if

(0 :N (B[pn] : B)) ⊆ (0 :N (A[pn] : A)) for all n ∈ N,

that is (since N ∼= ES), if and only if (A[pn] : A) ⊆ (B[pn] : B) for all n ∈ N.

Theorem 3.3 Suppose that R = S/A is a homomorphic image of an excellent regular local
ring (S,M) of characteristic p, modulo a proper ideal A. Assume that R is F -pure.

Then each �(E)-special ideal of R is fully �(E)-special.

Proof Once again, the claim is easy to prove if A = 0, and so we assume henceforth in this
proof that A �= 0.

Note that R̂ = Ŝ/AŜ is again F -pure and that Ŝ is an excellent complete regular local
ring of characteristic p, with maximal ideal MŜ.

Let b be a �(E)-special R-ideal with b �= R. Then b = c ∩ R for some �R̂(E)-special
R̂-ideal c. (We have used Lemma 2.11 here.) Let C be the unique ideal of Ŝ that contains
AŜ and is such that C/AŜ = c. By Proposition 2.7, the ideal c of R̂ is fully �R̂(E)-special,
and so, by Proposition 3.2, we have

(A[pn] : A)Ŝ = ((AŜ)[pn] : AŜ) ⊆ (C[pn] : C) for all n ∈ N.

Set C ∩ S := B, so that B/A = b.
Let n ∈ N and s ∈ (A[pn] : A). Therefore, s ∈ (C[pn] : C). It follows from G. Lyubeznik

and K. E. Smith [6, Lemma 6.6] that C[pn] ∩ S = (C ∩ S)[pn]. (Lyubeznik’s and Smith’s
proof of this result uses work of N. Radu [9, Corollary 5], which, in turn, uses D. Popescu’s
general Néron desingularization [7, 8].) We can now deduce that

s(C ∩ S) ⊆ sC ∩ S ⊆ C[pn] ∩ S = (C ∩ S)[pn],

so that s ∈ ((C ∩ S)[pn] : C ∩ S) = (B[pn] : B).
We have thus shown that (A[pn] : A) ⊆ (B[pn] : B) for all n ∈ N, so that b = B/A is

fully �(E)-special by Proposition 3.2.

In the case where R is an F -pure homomorphic image of an excellent regular local
ring of characteristic p, the characterization of I(�(E)) afforded by Proposition 3.2 and
Theorem 3.3 enables us to see that set behaves well under localization. As the ideals in
I(�(E)) are precisely those that can be expressed as intersections of finitely many prime
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members of I(�(E)), it is of interest to examine the behaviour of I(�(E)) ∩ Spec(R)

under localization. The next proposition, which is an extension of part of [12, Proposition
2.8], is in preparation for this investigation.

Proposition 3.4 Let S be a regular local ring of characteristic p, and let n ∈ N. Let
A,B1, . . . ,Bt ,C be ideals of S with 0 �= A �= S, and let A = Q1 ∩ . . . ∩ Qt be a minimal
primary decomposition of A.

(i) We have (B1 ∩ · · · ∩ Bt )
[pn] = B

[pn]
1 ∩ · · · ∩ B

[pn]
t .

(ii) If Q is a P-primary ideal of S, then Q[pn] is also P-primary.

(iii) The equation A[pn] = Q
[pn]
1 ∩ · · ·∩Q

[pn]
t provides a minimal primary decomposition

of A[pn].
(iv) We have (A : C)[pn] = (A[pn] : C[pn]) and (A[pn] : A) ⊆ (

(A : C)[pn] : (A : C)
)
.

(v) If P is an associated prime ideal of A, then (A[pn] : A) ⊆ (P[pn] : P).
(vi) Since 0 �= A �= S, we have (A[pn] : A) �= S. If P1 := √

Q1 is a minimal prime ideal
of A, then P1 is a minimal prime ideal of (A[pn] : A) and the unique P1-primary

component of (A[pn] : A) is (Q
[pn]
1 : Q1).

Proof Parts (i), (ii) and (iii) were essentially proved in [12, Proposition 2.8], while parts
(iv), (v) and (vi) can be proved by obvious modifications of the arguments used to prove the
corresponding parts of [12, Proposition 2.8].

Corollary 3.5 Suppose that R is F -pure and a homomorphic image of an excellent regular
local ring S of characteristic p modulo a proper ideal A. Let p ∈ Spec(R). Then

IRp
(�Rp

(ERp
(Rp/pRp))) ∩ Spec(Rp) = {

qRp : q ∈ I(�(E)) ∩ Spec(R) and q ⊆ p
}
.

Proof Note that, by M. Hochster and J. L. Roberts [3, Lemma 6.2], the localization
Rp is again F -pure. The claim is easy to prove when A = 0, and so we assume that
A �= 0.

For each lower case fraktur letter that denotes an ideal of R, let the corresponding upper
case fraktur letter denote the unique ideal of S that contains A and has quotient modulo A

equal to the specified ideal of R. For example, P denotes the unique ideal of S that contains
A and is such that P/A = p.

Note that Rp
∼= SP/ASP is again a homomorphic image of an excellent regular local

ring SP of characteristic p. Let q ∈ Spec(R) with q ⊆ p.
Suppose first that q ∈ I(�(E)) ∩ Spec(R). By Theorem 3.3, we see that q is fully

�(E)-special; use of Proposition 3.2 shows that (A[pn] : A) ⊆ (Q[pn] : Q) for all n ∈ N.
Therefore

((ASP)[pn] : ASP) ⊆ ((QSP)[pn] : QSP) for all n ∈ N.

Since the standard isomorphism SP/ASP
∼=−→ Rp maps QSP/ASP onto qRp, it follows

from Proposition 3.2 that qRp is fully �Rp
(ERp

(Rp/pRp))-special.
Conversely, suppose that qRp is �Rp

(ERp
(Rp/pRp))-special, so that, by Theorem 3.3,

it is fully �Rp
(ERp

(Rp/pRp))-special. By Proposition 3.2, this means that

((ASP)[pn] : ASP) ⊆ ((QSP)[pn] : QSP) for all n ∈ N.
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Let e and c denote extension and contraction of ideals under the natural ring homomorphism
S −→ SP. Contract the last displayed inclusion relations back to S to see that

(A[pn] : A) ⊆ (A[pn] : A)ec ⊆ (Q[pn] : Q)ec = (Q[pn] : Q) for all n ∈ N

because (Q[pn] : Q) is Q-primary (for all n ∈ N), by Proposition 3.4(vi). It follows from
Proposition 3.2 that Q/A = q is fully �(E)-special.

We can now recover a special case of a result of Lyubeznik and Smith.

Corollary 3.6 (G. Lyubeznik and K. E. Smith [6, Theorem 7.1]) Suppose that R is F -pure
and a homomorphic image of an excellent regular local ring S of characteristic p modulo
a proper ideal A. Let p ∈ Spec(R). Then the big test ideal of Rp is the extension to Rp of
the big test ideal of R. In symbols, τ̃ (Rp) = τ̃ (R)Rp.

Proof The big test ideal τ̃ (R) of R is equal to the intersection of the (finitely many) mem-
bers of I(�(E)) ∩ Spec(R) of positive height, and a similar statement holds for Rp. The
claim therefore follows from Corollary 3.5.

Some results were obtained in [14, Theorem 3.1] for an F -pure complete local ring of
characteristic p. We can now use Theorem 3.3 to establish analogous results for an F -pure
homomorphic image of an excellent regular local ring of characteristic p.

Theorem 3.7 Suppose (R,m) is F -pure and that every �(E)-special ideal of R is fully
�(E)-special. (For example, by Theorem 3.3, this would be the case if R were a homomor-
phic image of an excellent regular local ring of characteristic p.) Let c be a proper ideal
of R that is �(E)-special. In the light of Theorem 2.6, let p1, . . . , pw be prime ideals of R

for which the multiplicatively closed subset S = R \ ⋃w
i=1 pi of R satisfies c = τS(R). Set

J := �S(�(E)), a graded left R[x, f ]-module.

(i) We have J = 0∗,S
E ⊕ 0∗,S

Rx⊗RE ⊕ · · · ⊕ 0∗,S
Rxn⊗RE ⊕ · · · = ann�(E)(cR[x, f ]).

(ii) When we regard J as a graded left (R/c)[x, f ]-module in the natural way, it is x-
torsion-free and has IR/c(J ) = {g/c : g ∈ I(�(E)) : g ⊇ c}.

(iii) The 0th component J0 of J is (0 :E c); as R/c-module, this is isomorphic to
ER/c((R/c)/(m/c)).

(iv) The ring R/c is F -pure.
(v) We have I(�R/c(J0)) ⊆ IR/c(J ), so that

{
d : d is an ideal of R with d ⊇ c and d/c ∈ I(�R/c(J0))

} ⊆ I(�R(E)).

Proof Since the �(E)-special ideal c is fully �(E)-special, we have J0 = (0 :E c). Given
this observation, one can now use the arguments employed in the proof of [14, Theorem
3.1] to furnish a proof of this theorem.

The next corollary follows from Theorem 3.7 just as, in [14], Corollary 3.2 follows from
Theorem 3.1.

Corollary 3.8 Suppose that (R,m) is local, F -pure and that every �(E)-special ideal of
R is fully �(E)-special. (For example, by Theorem 3.3, this would be the case if R were
a homomorphic image of an excellent regular local ring of characteristic p.) Let c be a
proper ideal of R that is �(E)-special. Denote R/c by R, and note that R is F -pure, by
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Theorem 3.7(iv). Let T be a multiplicatively closed subset of R which is the complement
in R of the union of finitely many prime ideals. The finitistic T-test ideal τ fg,T (R) of R is
defined to be

⋂
L(0 :R 0∗,T

L ), where the intersection is taken over all finitely generated
R-modules L.

(i) If h denotes the unique ideal of R that contains c and is such that h/c = τ fg,T (R), the
finitistic T-test ideal of R, then h ∈ I(�(E)).

(ii) In particular, if h′ denotes the unique ideal of R that contains c and is such that
h′/c = τ(R), the test ideal of R, then h′ ∈ I(�(E)).

(iii) If g denotes the unique ideal of R that contains c and is such that g/c = τT (R), the
T-test ideal of R, then g ∈ I(�(E)).

(iv) In particular, if g′ denotes the unique ideal of R that contains c and is such that
g′/c = τ̃ (R), the big test ideal of R, then g′ ∈ I(�(E)).

Proof Straightforward modifications of the arguments given in the proof of [14, Corollary
3.2] will provide a proof for this.

Lemma 3.9 Assume that (R,m) is local, F -pure and a homomorphic image of an excellent
regular local ring of characteristic p.

(i) There is a strictly ascending chain 0 = τ0 ⊂ τ1 ⊂ · · · ⊂ τt ⊂ τt+1 = R of radical
ideals of R such that, for each i = 0, . . . , t , the reduced local ring R/τi is F -pure and
its test ideal is τi+1/τi . We call this the test ideal chain of R. All of τ0 = 0, τ1, · · · , τt ,
and all their associated primes, belong to I(�(E)).

(ii) There is a strictly ascending chain 0 = τ̃0 ⊂ τ̃1 ⊂ · · · ⊂ τ̃w ⊂ τ̃w+1 = R

of radical ideals in I(�(E)) such that, for each i = 0, . . . , w, the reduced local
ring R/τ̃i is F -pure and its big test ideal is τ̃i+1/τ̃i . We call this the big test ideal
chain of R. All of τ̃0 = 0, τ̃1, · · · , τ̃w , and all their associated primes, belong to
I(�(E)).

Note In the case when R is an (F -pure) homomorphic image of an F -finite regular local
ring, part (i) of this result is known and due to Janet Cowden Vassilev [16, §3].

Proof (i) Set τ1 := τ(R), and note that τ(R) ∈ I(�(E)). If τ1 �= R, apply Theorem 3.7
with the choice c = τ(R) = τ1. That shows that R/τ1 is F -pure. Now argue by induction
on dim R, noting that R/τ1 is a homomorphic image of an excellent regular local ring of
characteristic p. Use Theorem 3.7(v) to show that all of τ0, τ1, . . . , τt belong to I(�(E)).

(ii) This is proved similarly.

4 The F -Finite Case

In the F -finite case, the results above have strong connections with work of K. Schwede
in [10], and the purpose of this section is to explore some of those connections. The intro-
duction contains a description of certain properties of the set of all uniformly F -compatible
ideals in an F -finite, F -pure local ring R, and some of these are similar to properties of the
set of all fully �(E)-special ideals of R: we shall show in this section that, in this special
case, an ideal of R is uniformly F -compatible if and only if it is �(E)-special, and that this
is the case if and only if it is fully �(E)-special.
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Definition 4.1 Suppose that R is F -finite, let b be an ideal of R. Then b is said to be
uniformly F-compatible if, for every n > 0 and every φ ∈ HomR(R(n), R), we have
φ(b(n)) ⊆ b.

Proposition 4.2 (Schwede [10, Lemma 5.1]) Suppose that (R,m) is F -finite, let b

be an ideal of R. Then b is uniformly F -compatible if and only if (0 :E b) ⊆
(ann�(E)(bR[x, f ]))0.

Thus, when R is F -finite and F -pure, b is uniformly F -compatible if and only if it is fully
�(E)-special.

Proof Let n ∈ N and r ∈ R. Multiplication by r yields an R-homomorphism of R(n),
which, strictly speaking, we should denote by rIdR(n) . Also f n : R −→ R(n) is an

R-homomorphism. Thus we can consider the composition of R-homomorphisms R
f n

−→
R(n) r−→ R(n).

Application of the functor • ⊗R E yields a composition of R-homomorphisms

R ⊗R E −→ R(n) ⊗R E
r−→ R(n) ⊗R E,

where the ‘r’ over the second arrow is an abbreviation for rIdR(n) ⊗R E. But R(n) ∼= Rxn

as (R,R)-bimodules; furthermore, (0 :E b) ∼= HomR(R/b, E). It follows that (0 :E b) ⊆
(ann�(E)(bR[x, f ]))0 if and only if, for all n ∈ N and all r ∈ b, the composition

(0 :E b)
⊆−→ E

∼=−→ R ⊗R E −→ R(n) ⊗R E
r−→ R(n) ⊗R E

(in which the second map is the natural isomorphism) is zero.
Let M be an R-module. Recall that there is an R-homomorphism

ξM : M ⊗R E −→ HomR(HomR(M,R),E)

such that, for m ∈ M , e ∈ E and g ∈ HomR(M,R), we have (ξM(m ⊗ e)) (g) = g(m)e.
Furthermore, as M varies, the ξM constitute a natural transformation of functors; also ξM

is an isomorphism whenever M is finitely generated. We shall use D to denote the functor
HomR( • , E).

Since R(n) is a finitely generated R-module, (0 :E b) ⊆ (ann�(E)(bR[x, f ]))0 if and
only if, for all n ∈ N and all r ∈ b, the composition

D(R/b) → D(R)
∼=→ D(HomR(R,R)) → D(HomR(R(n), R))

r→ D(HomR(R(n), R))

is zero. (Here, the first map is induced from the natural epimorphism R −→ R/b, the
second map is the natural isomorphism, and the sequence from the middle term rightwards

is the result of application of the functor HomR(HomR( • , R), E) to the composition R
f n

−→
R(n) r−→ R(n) described at the beginning of the proof.)

Since D is a faithful functor (because E is an injective cogenerator for R), we can deduce
that (0 :E b) ⊆ (ann�(E)(bR[x, f ]))0 if and only if, for all n ∈ N and all r ∈ b, the
composition

HomR(R(n), R)
r−→ HomR(R(n), R) −→ HomR(R,R)

∼=−→ R −→ R/b

is zero, that is, if and only if b is uniformly F -compatible.
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Proposition 4.3 (Schwede [10]) Suppose that (R,m) is F -finite, and let a be an ideal of
R. Note that the completion R̂ of R is again F -finite.

(i) If a is a uniformly F -compatible ideal of R, then aR̂ is a uniformly F -compatible ideal
of R̂. See Schwede [10, Lemma 3.9].

(ii) If C is a uniformly F -compatible ideal of R̂, then C ∩ R is a uniformly F -compatible
ideal of R. See Schwede [10, Lemma 3.8].

Proof For a finitely generated R-module M , we identify M̂ with M ⊗R R̂ in the usual

way, and we note that there is a natural R̂-isomorphism ψM : HomR(M,R) ⊗R R̂
∼=−→

HomR̂(M ⊗R R̂, R ⊗R R̂) for which ψM(g ⊗ r̂) = r̂(g ⊗ IdR̂) for all g ∈ HomR(M,R)

and r̂ ∈ R̂. Let n ∈ N. Consideration of Cauchy sequences shows that M̂(n) = M̂(n). In
particular, R̂(n) = R̂(n) and â(n) = (̂a)(n) = (aR̂)(n).

There is an R̂-isomorphism γ : R(n)⊗R R̂
∼=−→ R̂(n) which maps a(n)⊗R R̂ onto (aR̂)(n).

Also, the natural R̂-isomorphism δ : R ⊗R R̂
∼=−→ R̂ maps a ⊗R R̂ onto aR̂.

(i) Let θ ∈ HomR̂(R(n) ⊗R R̂, R ⊗R R̂). By the above, there exist φ1, . . . , φt ∈
HomR(R(n), R) and r̂1, . . . , r̂t ∈ R̂ such that θ = r̂1(φ1 ⊗ IdR̂) + · · · + r̂t (φt ⊗ IdR̂). Since
φi(a

(n)) ⊆ a for all n ∈ N and i = 1, . . . , t , we see that θ(a(n) ⊗R R̂) ⊆ a ⊗R R̂ for all
n ∈ N. Use of the above-mentioned isomorphisms γ and δ now enables us to conclude that
aR̂ is a uniformly F -compatible ideal of R̂.

(ii) Let φ ∈ HomR(R(n), R), and set c := C ∩ R. Then

φ ⊗ IdR̂ ∈ HomR̂(R(n) ⊗R R̂, R ⊗R R̂)

and δ ◦ (φ ⊗ IdR̂) ◦ γ −1 maps C(n) into C, and therefore maps (cR̂)(n) into C. Therefore
δ ◦ (φ ⊗ IdR̂) maps c(n) ⊗R R̂ into C, so that φ(a) ∈ C∩ R = c for all a ∈ c(n). Therefore c

is a uniformly F -compatible ideal of R.

Theorem 4.4 Suppose that (R,m) is F -pure and F -finite. Then each �(E)-special ideal a
of R is automatically fully �(E)-special.

Proof Note that R̂ is also F -pure, by Hochster and Roberts [3, Corollary 6.13]. Also, R̂ is
F -finite, because the completion of the finitely generated R-module R(1) is R̂(1).

Thus, by definition, a is the R-annihilator of an R[x, f ]-submodule of �(E). It follows
from Lemma 2.11 that a = A ∩ R for some ideal A of R̂ that is the R̂-annihilator of an
R̂[x, f ]-submodule of �R̂(E). Thus A is �R̂(E)-special. It follows from Proposition 2.7
that A is a fully �R̂(E)-special ideal of R̂, and so is uniformly F -compatible, by Propo-
sition 4.2. Therefore, by Proposition 4.3(ii), the contraction A ∩ R = a is a uniformly
F -compatible ideal of R, and is therefore fully �(E)-special, by Proposition 4.2 again.

Corollary 4.5 Suppose that (R,m) is F -pure and F -finite; let a be an ideal of R. Then the
following statements are equivalent:

(i) a is uniformly F -compatible;
(ii) a is �(E)-special;

(iii) a is fully �(E)-special.

Proof This is now immediate from Proposition 4.2 and Theorem 4.4.

Question 4.6 Suppose that (R,m) is F -pure.
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We have seen that each �(E)-special ideal of R is fully �(E)-special if R is complete
(by Proposition 2.7) or if R is a homomorphic image of an excellent regular local ring of
characteristic p (by Theorem 3.3) or if R is F -finite (by Theorem 4.4).

Note that each complete local ring is excellent, and that each F -finite local ring of char-
acteristic p is excellent (by E. Kunz [4, Theorem 2.5]). The above results raise the following
question. If the F -pure local ring R is excellent, is it the case that every �(E)-special ideal
of R is fully �(E)-special?

5 A Generalization of Aberbach’s and Enescu’s Splitting Prime

Recall from [6, Remark 2.8 and Proposition 2.9] that G. Lyubeznik and K. E. Smith defined
(R,m) to be strongly F-regular (even in the case where R is not F -finite) precisely when
the zero submodule of E is tightly closed in E. See M. Hochster and C. Huneke [2, §8].

Theorem 5.1 Suppose that (R,m) is F -pure and that every �(E)-special ideal of R is fully
�(E)-special. (For example, by Theorem 3.3, this would be the case if R were a homomor-
phic image of an excellent regular local ring of characteristic p; it would also be the case
if R were F -finite, by Theorem 4.4.)

(i) There exists a unique largest �(E)-special proper ideal, c say, of R and this is prime.
Furthermore, R/c is strongly F -regular.

(ii) Let T be the R[x, f ]-submodule of �(E) generated by (0 :E m) ⊆ R ⊗R E. Then
gr-annR[x,f ]T = cR[x, f ].

Proof (i) By Corollary 2.10, there is a unique largest �(E)-special proper ideal c of R, and
this is prime. By Corollary 3.8(iv), the big test ideal of R/c is R/c itself, so that 1R/c is a
big test element for R/c. Therefore, the zero submodule of ER/c(R/m) is tightly closed in
ER/c(R/m), and so R/c is strongly F -regular.

(ii) Note that T is the image of the R[x, f ]-homomorphism

R[x, f ] ⊗R (0 :E m) −→ R[x, f ] ⊗R E = �(E)

induced by the inclusion map (0 :E m)
⊆−→ E. Let d be the �(E)-special ideal of R

for which gr-annR[x,f ]T = dR[x, f ]. Since d annihilates (0 :E m), we see that d is
proper. Suppose that there exists h ∈ I(�(E)) such that d ⊂ h ⊆ m. (The symbol ‘⊂’
is reserved to denote strict inclusion.) Thus, we have (0 :E m) ⊆ (0 :E h) ⊆ (0 :E d).
But we know that every �(E)-special ideal of R is fully �(E)-special, and therefore
(0 :E h) ⊆ (ann�(E)(hR[x, f ]))0. Since ann�(E)(hR[x, f ]) is an R[x, f ]-submodule of
�(E), it follows that

T ⊆ ann�(E)(hR[x, f ]) ⊆ ann�(E)(dR[x, f ]).
Now take graded annihilators: in view of the bijective correspondence between the sets
I(�(E)) and A(�(E)) alluded to in the Introduction, we have

dR[x, f ] = gr-annR[x,f ](ann�(E)(dR[x, f ]))
⊆ gr-annR[x,f ](ann�(E)(hR[x, f ])) = hR[x, f ]
⊆ gr-annR[x,f ]T = dR[x, f ].

Hence h = d and we have a contradiction.
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Thus d is a maximal member of the set of proper �(E)-special ideals of R; therefore
d = c.

Definition 5.2 (I. M. Aberbach and F. Enescu [1, Definition 3.2]) Suppose (R,m) is
F -finite and reduced. Let u be a generator for the socle (0 :E m) of E. Aberbach and Enescu
defined

P =
{
r ∈ R : r ⊗ u = 0 in R(n) ⊗R E for all n � 0

}
,

an ideal of R.

In [1, §3], Aberbach and Enescu showed that in the case where (R,m) is F -finite and
F -pure, and with the notation of 5.2, the ideal P is prime and is equal to the set of elements
c ∈ R for which, for all e ∈ N, the R-homomorphism φc,e : R −→ R1/pe

for which
φc,e(1) = c1/pe

does not split over R. Aberbach and Enescu call this P the splitting prime
for R. By [1, Theorem 4.8(i)], the ring R/P is strongly F -regular.

Proposition 5.3 Suppose that (R,m) is F -finite and F -pure. Let P be Aberbach’s and
Enescu’s splitting prime, as in 5.2. Let q be the unique largest �(E)-special proper ideal of
R, as in Theorem 5.1. Then P = q.

Proof Let u be a generator for the socle (0 :E m) of E. We can write

P = {
r ∈ R : rxn ⊗ u = 0 in Rxn ⊗R E for all n � 0

}
.

Now for a positive integer j and r ∈ R, if rxj ⊗ u = 0 in �(E), then

x(rxj−1 ⊗ u) = rpxj ⊗ u = 0,

so that rxj−1 ⊗ u = 0 because the left R[x, f ]-module �(E) is x-torsion-free. Therefore

P = {
r ∈ R : rxn ⊗ u = 0 in Rxn ⊗R E for all n ≥ 0

}
.

Let T be the R[x, f ]-submodule of �(E) generated by (0 :E m) ⊆ R ⊗R E. We thus see
that PR[x, f ] = gr-annR[x,f ]T , and this is qR[x, f ] by Theorem 5.1. Hence P = q.

Remark 5.4 Suppose that (R,m) is F -pure and a homomorphic image of an excellent reg-
ular local ring S of characteristic p modulo an ideal A. By Theorem 5.1(i), there exists a
unique largest �(E)-special proper ideal, q say, of R and this is prime. Let Q be the unique
ideal of S containing A for which Q/A = q.

(i) The results of this section suggest that q can be viewed as a generalization of Aber-
bach’s and Enescu’s splitting prime: for example, Proposition 5.3 shows that q is that
splitting prime in the case where R is, in addition, F -finite.

(ii) Note that R/q is strongly F -regular (in the sense of Lyubeznik and Smith mentioned
at the beginning of the section).

(iii) By Proposition 3.2, we have (A[pn] : A) ⊆ (Q[pn] : Q) for all n ∈ N. In the special
case in which S is F -finite, this result was obtained by Aberbach and Enescu [1,
Proposition 4.4].
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