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Abstract In a recent work (Kaiser et al., J. Comb. Theory Ser. A 123, 239–251, 2014),
Kaiser et al. provide a family of critically 3-chromatic graphs whose expansions do not
result in critically 4-chromatic graphs and, thus, give counterexamples to a conjecture of
Francisco et al. (Discrete Math. 310, 2176–2182, 2010). The cover ideal of the smallest
member of this family also gives a counterexample to the persistence and non-increasing
depth properties. In this paper, we show that the cover ideals of all members of their family
of graphs indeed fail to have the persistence and non-increasing depth properties.
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Cover ideals · Critical graphs
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1 Introduction

Let k be a field and let R = k[x1, . . . , xn] be a polynomial ring over k. Let I ⊆ R be
a homogeneous ideal. It is known by Brodmann [3] that the set of associated primes of
I s stabilizes for large s, that is, Ass(R/I s) = Ass(R/I s+1) for all s � 0. However, the
behavior of these sets can be very strange for small values of s. The ideal I is said to have
the persistence property if

Ass(R/I s) ⊆ Ass(R/I s+1) ∀ s ≥ 1.
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It is also known by Brodmann [4] that depth(R/I s) takes a constant value for large s. The
behavior of depth(R/I s), for small values of s, can also be very complicated. The ideal I is
said to have non-increasing depth if

depth(R/I s) ≥ depth(R/I s+1) ∀ s ≥ 1.

Associated primes and depth of powers of ideals have been extensively investigated in the
literature (cf. [1, 6–8, 10, 11, 13–15, 17, 19–21]). Even for monomial ideals, it is difficult to
classify which ideals possess the persistence property or non-increasing depth. In this case,
when I is a monomial ideal, the two properties are related by the fact that I possesses the
persistence property if all monomial localizations of I have non-increasing depth. Herzog
and Hibi [11] gave an example where m = (x1, . . . , xn) ∈ Ass(R/I s) for small even
integers s (whence depth(R/I s) = 0) and m �∈ Ass(R/I s) for small odd integers s (whence
depth(R/I s) > 0). Squarefree monomial ideals behave considerably better than monomial
ideals in general, and many classes of squarefree monomial ideals were shown to have
the persistence property. For instance, edge ideals of graphs ([17]), cover ideals of perfect
graphs, cover ideals of cliques, odd holes and odd antiholes [7], and polymatroidal ideals
[14]. A large class of squarefree monomial ideals with constant depth was constructed in
[15].

In an attempt to tackle the persistence property, at least in identifying a large class of
squarefree monomial ideals having the persistence property, the first author, together with
Francisco and Van Tuyl in [7], made a graph theoretic conjecture about expansion of crit-
ically s-chromatic graphs and proved that this conjecture implies the persistence property
for the cover ideals of graphs. The converse a priori is not known to be true. Recently,
Kaiser et al. [16] gave a family of counterexamples to this graph theoretic conjecture. Com-
putational experiment showed that the first member of their family of graphs also gave a
counterexample to the persistence property and non-increasing depth for squarefree mono-
mial ideals. In fact, this is the only graph with at most 20 vertices whose cover ideal fails the
persistence property [22]. The goal of this paper is to prove that all members of this fam-
ily indeed give counterexamples to the persistence property. As a consequence, they also
provide counterexamples to non-increasing depth property.

Let us now describe more specifically our problem and results. Let G = (V ,E) be a
simple graph with vertex set V = {x1, . . . , xn} and edge set E. The expansion of G at a
vertex x ∈ V is obtained from G by adding a new vertex y, an edge {x, y}, and edges {y, z}
whenever {x, z} is an edge in G. For a subset W ⊆ V , the expansion of G at W , denoted by
G[W ], is obtained by expanding successively at the vertices in W . The first author, together
with Francisco and Van Tuyl in [7], made the following conjecture.

Conjecture 1.1 Let G be a critically s-chromatic graph. Then, there exists a subset W of
the vertices such that G[W ] is critically (s + 1)-chromatic.

The cover ideal of G = (V ,E) is defined to be

J (G) =
⋂

{x,y}∈E

(x, y).

It was also shown in [7] that if Conjecture 1.1 holds, then the persistence property holds for
the cover ideal of any graph. The converse is not known to be true.

A family of counterexamples to Conjecture 1.1 was given by Kaiser et al. [16] as follows.
Let K3 denote the complete graph on 3 vertices, and let Pq , for q ≥ 4, denote a path of
length q − 1. The graph Hq = K3 � Pq is formed by taking q copies of K3 with vertices
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{xi,0, xi,1, xi,2}, i = 1, . . . , q, connecting xi,j and xi+1,j for i = 1, . . . , q −1 to get 3 paths
of length q − 1 and finally connecting x1,j and xq,2−j for j = 0, 1, 2 (see Fig. 1). These
graphs were originally constructed by Gallai [9]. One of the interesting properties of Hqs is
that they embed in the Klein bottle as quadrangulations (see [16]).

It was pointed out in [16] that when q = 4, the cover ideal J = J (H4) fails the persis-
tence property and non-increasing depth. In particular, if m is the maximal homogeneous
ideal, then m ∈ Ass(R/J 3) but m �∈ Ass(R/J 4). The main result of this paper is to show
that this phenomenon occurs for all q ≥ 4.

Theorem 1.2 Let Hq be the graph constructed as before. Let J = J (Hq) and let m be the
maximal homogeneous ideal in the polynomial ring R = k[xi,j | i = 1, . . . , q, j = 0, 1, 2].
Then, m ∈ Ass(R/J 3) and m �∈ Ass(R/J 4). As a consequence, J fails to have
non-increasing depth.

2 Preliminaries

In this section, we collect notation and terminology used in the paper. We follow standard
texts in the research area [2, 5, 12, 18].

Let k be a field, let R = k[x1, . . . , xn], and let m = (x1, . . . , xn). Throughout the
paper, we shall identify the variables of R with distinct vertices V = {x1, . . . , xn}. A graph
G = (V ,E) consists of V and a set E of edges connecting pairs of vertices. We shall
restrict our attention to simple graphs, i.e., graphs without loops nor multiple edges.

Definition 2.1 Let G be a simple graph.

(1) The chromatic number of a graph G, denoted by χ(G), is the least number of colors
to assign to the vertices so that adjacent vertices get different colors.

(2) The graph G is said to be critically s-chromatic if χ(G) = s, and for any vertex x in
G,χ(G\x) < s.

Critically s-chromatic graphs are also known as s-vertex critical graphs. We choose to use
the terminology of critically s-chromatic graphs to be consistent with [7], where Conjecture
1.1 was stated.

Fig. 1 The graph Hq = K3 � Pq
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A collection of vertices W ⊆ V in G = (V ,E) is called a vertex cover if for any edge
e ∈ E,W ∩ e �= ∅. A vertex cover is called minimal if no proper subset of it is also a vertex
cover.

There are various ways to associate squarefree monomial ideals to simple graphs. In this
paper, the correspondence that we explore is the cover ideal construction.

Definition 2.2 Let G = (V ,E) be a simple graph. The cover ideal of G is defined to be

J (G) =
⋂

{x,y}∈E

(x, y).

The term cover ideal comes from the fact that minimal generators of J (G) correspond
to minimal vertex covers in G. This cover ideal construction gives a one-to-one corre-
spondence between simple graphs and unmixed, codimension two squarefree monomial
ideals (this construction extends to hypergraphs to give a one-to-one correspondence to all
squarefree monomial ideals).

Definition 2.3 Let I ⊆ R be an ideal. A prime ideal P is said to be an associated prime of
I if there exists an element c ∈ R such that P = I : c. The set of all associated primes of I

is denoted by Ass(R/I).

Definition 2.4 Let M be a finitely generated R-module.

(1) A sequence of elements x1, . . . , xt ∈ R is called an M-regular sequence if
M �= (x1, . . . , xt )M and xi is not a zero divisor of M/(x1, . . . , xi−1)M for all
i = 1, . . . , t .

(2) The depth of M , denoted by depth(M), is the largest length of an M-regular sequence
in R.

Remark 2.5 It is an easy exercise to see that for an ideal I ⊆ R, depth(R/I) > 0 if and
only if m �∈ Ass(R/I).

Remark 2.6 The construction of the graph Hq can be generalized to a pair consisting of a
path and a complete graph of any size. Indeed, let Pq be a path of length q −1 and let Kp be
the complete graph of size p. We can then construct the graph Hp,q = Kp � Pq by taking
q copies of Kp with vertices {xi,0, . . . , xi,p−1}, i = 1, . . . , q, connecting xi,j to xi+1,j for
i = 1, . . . , q − 1 to get p paths of length q − 1, and finally connecting x1,j to xq,p−1−j for
j = 0, . . . , p − 1. In this construction, Hq = H3,q .

3 Proof of the Main Result

This section is devoted to the proof of our main result, Theorem 1.2. This theorem will be
proved as a combination of Propositions 3.1 and 3.2 and Corollary 3.8. For simplicity of
terminology, we call the complete graph K3 on {xi,0, xi,1, xi,2} the ith triangle in Hq . We
shall also abuse notation in identifying vertices of Hq and corresponding variables in R.

Proposition 3.1 Let Hq be the graph constructed as in the introduction. Let J = J (Hq)

and let m be the maximal homogeneous ideal in R = k[xi,j | i = 1, . . . , q, j = 0, 1, 2].
Then, m ∈ Ass(R/J 3).
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Proof It was shown in [16, Proposition 9] that Hq is critically 4-chromatic. Thus, it follows
from [6, Corollary 4.5] that m ∈ Ass(R/J 3).

Proposition 3.2 Let Hq be the graph constructed as in the introduction. Let J = J (Hq)

and let m be the maximal homogeneous ideal in R = k[xi,j | i = 1, . . . , q, j = 0, 1, 2].
Then, m �∈ Ass(R/J 4).

Proof Suppose, by contradiction, that m ∈ Ass(R/J 4). That is, there exists a monomial
T in R such that T �∈ J 4 and J 4 : T = m. Since the generators of J are squarefree, the
powers of each variable in minimal generators of J 4 are at most 4. This implies that the
power of each variable in T is at most 3, i.e., T divides (

∏
i,j xi,j )

3. We shall now make a
few observations to reduce the number of cases that we need to consider later.

Observation 3.3 M = (
∏

i,j xi,j )
3 ∈ J 4. Indeed, we can write M = M1M2M3M4N as

follows.

(1) If q is odd, then choose N = ∏q

i=1 xi,0 and

M1 =
⎛

⎝
∏

i<q odd

xi,0xi,1

⎞

⎠
(

∏

i even

xi,1xi,2

)
(xq,0xq,2)

M2 =
⎛

⎝
∏

i<q odd

xi,0xi,2

⎞

⎠
(

∏

i even

xi,1xi,2

)
(xq,0xq,1)

M3 =
⎛

⎝
∏

i<q odd

xi,1xi,2

⎞

⎠
(

∏

i even

xi,0xi,1

)
(xq,1xq,2)

M4 =
⎛

⎝
∏

i<q odd

xi,1xi,2

⎞

⎠
(

∏

i even

xi,0xi,2

)
(xq,1xq,2).

(2) If q is even, then choose N = ∏q

i=1 xi,1 and

M1 =
(

∏

i odd

xi,0xi,2

) (
∏

i even

xi,0xi,1

)

M2 =
(

∏

i odd

xi,0xi,2

) (
∏

i even

xi,1xi,2

)

M3 =
(

∏

i odd

xi,0xi,1

) (
∏

i even

xi,0xi,2

)

M4 =
(

∏

i odd

xi,1xi,2

) (
∏

i even

xi,0xi,2

)
.

It is an easy exercise to verify that M1, . . . , M4 are vertex covers of Hq . Thus, M ∈ J 4.
This observation allows us to assume that T strictly divides M .

Observation 3.4 For each i = 1, . . . , q, the total power of xi,0, xi,1 and xi,2 in T is at least
8. Indeed, take k �= i, then since J 4 : T = m, we must have T xk,0 ∈ J 4. It then follows
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from the fact that generators of J correspond to vertex covers of Hq that T xk,0 can be
written as the product of 4 vertex covers of Hq . Notice also that to cover the triangle with
vertices {xi,0, xi,1, xi,2}, each vertex cover needs at least two of those 3 vertices. Thus, 4
vertex covers contain in total at least 8 copies of those vertices. This observation and the fact
that T divides M allow us to conclude that for each i = 1, . . . , q, either all three vertices
{xi,0, xi,1, xi,2} appear in T each with power exactly 3 or two of them appear in T with
power 3 and the third one appears in T with power of exactly 2. For simplicity of language,
we shall call the total power of {xi,0, xi,1, xi,2} in T the power of the ith triangle in T .

Observation 3.5 Suppose that the power of the ith triangle in T is at least 8, and we already
impose the conditions that 3 among the Mis each has to contain a specific (but distinct)
variable in the ith triangle. Then, we can always distribute the remaining variables of the ith
triangle from T into the Mis so that each of them indeed covers the edges of the ith triangle.
To see this, without loss of generality, we may assume that the 3 imposed conditions are
xi,0 | M1, xi,1 | M2 and xi,2 | M3 and assume that xi,1 and xi,2 appear in T with powers
at least 3. This implies that xi,0 appears in T with power at least 2, and we can distribute the
variables of the ith triangle in T into the Mis as follows:

xi,0xi,1| M1

xi,1xi,2| M2

xi,1xi,2| M3

xi,0xi,2| M4 .

Observation 3.6 Re-indexing the vertices of Hq as follows: label xq,0 by x1,2, label xq,1 by
x1,1, label xq,2 by x1,0 (notice that we have switched the second indices 0 and 2 in the q

triangle and bring it to be the first triangle), and then label xi,j by xi+1,j for all 1 ≤ i ≤ q−1
and j = 0, 1, 2 (i.e., shifting the rest of the triangles one place to the right). We then obtain
an isomorphic copy of Hq where the old qth triangle becomes the first one. This process
can be repeated. Thus, coupled with Observation 3.3, we can assume that the power of the
first triangle in T is exactly 8. Without loss of generality, we may further assume that x1,0
appears in T with power 2, while x1,1 and x1,2 appear in T with powers 3.

Observation 3.7 Fix an index i < q − 1 where the power of the ith triangle in T is exactly
8 and assume that xi,0 appears in T with power 2 (and so, xi,1 and xi,2 appear in T both
with power 3). Since J 4 : T = m, in particular, we have T xq,0 ∈ J 4. That is, we can write
T xq,0 = M1M2M3M4 as the product of 4 elements in J , i.e., 4 vertex covers of Hq . To
distribute x2

i,0x
3
i,1x

3
i,2 into 4 vertex covers, there is only one possibility (up to permutation of

the indices of the vertex covers), which is:

xi,0xi,1| M1

xi,0xi,2| M2

xi,1xi,2| M3

xi,1xi,2| M4.

This distribution of the vertices of the ith triangle will impose specific conditions on how
the vertices of the (i + 1)st triangle can be distributed into the 4 vertex covers. Particularly,
we must have that xi+1,2 | M1, xi+1,1 | M2, and xi+1,0 divides both M3 and M4.
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If the power of the (i + 1)st triangle in T is 9, then we can distribute vertices in the
(i + 1)st triangle into the Mis as follows:

xi,0xi,1 xi+1,1xi+1,2| M1

xi,0xi,2 xi+1,1xi+1,2| M2

xi,1xi,2 xi+1,0xi+1,1| M3

xi,1xi,2 xi+1,0xi+1,2| M4,

where the extra copy of xi+1,0 could be assigned to either M1 or M2. Now, the only condi-
tions imposed on the (i+2)nd triangle are xi+2,2 | M3, xi+2,1 | M4 and either xi+2,0 | M2
or xi+2,0 | M1. It follows from Observation 3.5 that the variables of the (i + 2)nd triangle
in T can be distributed into the Mis, and we can think of the (i + 2)nd triangle as our new
starting point (if i + 2 < q).

If, on the other hand, the power of the (i + 1)st triangle in T is 8, then we obtain the
following possibilities depending on which variable in the (i + 1)st triangle appears in T

with power 2.

(1) If the power of xi+1,0 in T is 2 then (up to permuting M3 and M4), we have

xi,0xi,1 xi+1,1xi+1,2| M1

xi,0xi,2 xi+1,1xi+1,2| M2

xi,1xi,2 xi+1,0xi+1,1| M3

xi,1xi,2 xi+1,0xi+1,2| M4.

(2) If the power of xi+1,1 in T is 2, then we must be in either of the following cases:

xi,0xi,1 xi+1,0xi+1,2| M1

xi,0xi,2 xi+1,1xi+1,2| M2

xi,1xi,2 xi+1,0xi+1,1| M3

xi,1xi,2 xi+1,0xi+1,2| M4;
or

xi,0xi,1 xi+1,1xi+1,2| M1

xi,0xi,2 xi+1,0xi+1,1| M2

xi,1xi,2 xi+1,0xi+1,2| M3

xi,1xi,2 xi+1,0xi+1,3| M4.

(3) If the power of xi+1,2 in T is 2, then we must be in either of the following cases:

xi,0xi,1 xi+1,0xi+1,2| M1

xi,0xi,2 xi+1,1xi+1,2| M2

xi,1xi,2 xi+1,0xi+1,1| M3

xi,1xi,2 xi+1,0xi+1,1| M4;
or

xi,0xi,1 xi+1,1xi+1,2| M1

xi,0xi,2 xi+1,0xi+1,1| M2

xi,1xi,2 xi+1,0xi+1,1| M3

xi,1xi,2 xi+1,0xi+1,2| M4.
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The upshot of this observation is that we can successively distribute T and T xq,0 (without
the use of the extra variable xq,0) into 4 vertex covers up to the (q −1)st triangle in the same
way. At each step, moving from the ith triangle to the (i + 1)st triangle, we might end up
with a number of different choices. Moreover, if the power of the (i + 1)st triangle in T is
9, then we can distribute the vertices in the ith and the (i + 1)st triangles and consider the
(i + 2)nd triangle as our new starting point to repeat the process. The difference, and what
makes T �∈ J 4 but T xq,0 ∈ J 4, occurs when we need to cover the qth triangle and edges
connecting the qth and the 1st triangles (i.e., moving from the (q − 1)st triangle to the last
triangle).

By making use of Observation 3.7, we can successively distribute the variables appearing
in T into the Mis in the same way as that of T xq,0 such that along the process, Mis cover
edges in the first (q−1) triangles. It remains to consider how the variables in the qth triangle
are distributed. We shall show that a contradiction, either that T ∈ J 4 or that J 4 : T �= m,
is always resulted in.

Notice that when the power of the (q −1)st triangle in T is 9, in our distribution process,
a power 8 of this triangle is distributed to the Mis, and there is possibly an extra copy of
a variable left. This possible extra variable can then be assigned to one of the Mis. Our
argument will complete by exhausting cases depending on how the vertices in the (q − 1)st
triangle are distributed among the Mis and which vertex is possibly treated as the extra one.

There are three choices for the possible extra vertex. For each choice of the possible
extra vertex, the cases are considered depending on how the other two copies of this vertex
are distributed among four vertex covers Mis. Observe that if the possible extra vertex is
xq−1,t (where t = 0, 1 or 2, and we identify xi,t with xi,t+3), then there are six cases to
consider by assigning xq−1,t to two out of the four vertex covers Mis. For example, if xq−1,t

is assigned to M1 and M2, then there would be two possibilities depending on how xq−1,t+1
and xq−1,t+2 are distributed. These possibilities are described by conditions:

x1,0x1,1 . . . . . . xq−1,t xq−1,t+1 | M1

x1,0x1,2 . . . . . . xq−1,t xq−1,t+2 | M2

x1,1x1,2 . . . . . . xq−1,t+1xq−1,t+2 | M3

x1,1x1,2 . . . . . . xq−1,t+1xq−1,t+2 | M4,

or

x1,0x1,1 . . . . . . xq−1,t xq−1,t+2 | M1

x1,0x1,2 . . . . . . xq−1,t xq−1,t+1 | M2

x1,1x1,2 . . . . . . xq−1,t+1xq−1,t+2 | M3

x1,1x1,2 . . . . . . xq−1,t+1xq−1,t+2 | M4.

This case-by-case analysis is quite tedious, but the 18 cases are mostly similar. Thus, we
will go through the argument carefully for one case and leave it to the interested reader to
check the details of the remaining cases.
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Consider the case where xq−1,0 is the possible extra vertex, and the other two copies of
xq−1,0 are in M1 and M2. There are two possibilities depending on how xq−1,1 and xq−1,2
were distributed:

x1,0x1,1 . . . . . . xq−1,0xq−1,1| M1

x1,0x1,2 . . . . . . xq−1,0xq−1,2| M2

x1,1x1,2 . . . . . . xq−1,1xq−1,2| M3

x1,1x1,2 . . . . . . xq−1,1xq−1,2| M4 ,

or

x1,0x1,1 . . . . . . xq−1,0xq−1,2| M1

x1,0x1,2 . . . . . . xq−1,0xq−1,1| M2

x1,1x1,2 . . . . . . xq−1,1xq−1,2| M3

x1,1x1,2 . . . . . . xq−1,1xq−1,2| M4.

If it is the first possibility that occurs, and there is in fact no extra copy of xq−1,0 (i.e.,
the power of the (q − 1)st triangle in T was exactly 8), then this impose the following
conditions on the qth triangle: xq,0xq,2 | M1,M3,M4 and xq,1 | M2. This implies that the
product of the Mis will use four copies of either xq,0 or xq,2. Thus, T xq,1 �∈ J 4. If it is the
first possibility, but there is an extra copy of xq,0 left, then we can distribute this extra copy
of xq,0 to either M3 or M4, say M4. In this case, the conditions imposed on the qth triangle
are: xq,0xq,2 | M1 and M3, xq,1 | M2, and xq,2 | M4. Thus, to cover the edges of the qth
triangle, we must have

xq,0xq,2| M1

xq,0xq,1| M2

xq,0xq,2| M3

xq,1xq,2| M4.

It follows that if T contains three copies of xq,0 and xq,2, then this distribution shows that
T ∈ J 4. Otherwise, if T contains, for instance, only two copies of xq,0, then since the
product of four vertex covers, as shown, must contain at least three copies of xq,0, we have
T xq,1 �∈ J 4.

If it is the second possibility and there is no extra copy of xq−1,0, then conditions imposed
on the qth triangle are: xq,0xq,1 | M1, xq,1xq,2 | M2, xq,0xq,2 | M3 and M4. Thus, the
product of the four vertex covers contains at least three copies of xq,0 and xq,2. If T has at
least three copies of xq,0 and xq,2, then T ∈ J 4. Otherwise, T xq,1 �∈ J 4. If it is the second
possibility and there is an extra copy of xq−1,0, then we can distribute this extra copy of
xq,0 to either M3 or M4, say M4. In this case, the conditions imposed on the qth triangle
are: xq,0xq,1 | M1, xq,1xq,2 | M2, xq,0xq,2 | M3, and xq,2 | M4. Thus, if T contains at
least three copies of xq,2, then by distributing either xq,0 or xq,1 to M4, we get that T ∈ J 4.
Otherwise, T xq,0 �∈ J 4.

For the remaining cases, it can be seen that covering the edges of the qth triangle and
edges connecting to the first and the (q − 1)st triangles will impose a number of conditions
on how vertices of the qth triangle in T can be distributed to the four vertex covers Mis.
These conditions will fall into one of the following situations:

(1) The conditions do not require
∏4

i=1 Mi to contain any vertex of the qth triangle with
power more than 2. In this case, we can always distribute the vertices of the qth powers
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in T into the four vertex covers Mis in a way to satisfy these conditions. We thus have
T ∈ J 4.

(2) The conditions require
∏4

i=1 Mi to contain one or two vertices of the qth triangle with
powers at least 3. If T indeed does contain those vertices with powers at least 3, then
we can also distribute the vertices of the qth triangle in T into the four vertex covers
Mi to comply with those condition; we then have T ∈ J 4. If, otherwise, T does not
contain those one or two vertices with powers at least 3, then the product of T with the
third vertex will not be in J 4.

(3) The conditions require
∏4

i=1 Mi to contain a vertex of the qth triangle with power at
least 4. In this case, the product of T and another vertex of the qth triangle will not be
in J 4.

Corollary 3.8 Let Hq be the graph constructed as in the introduction. Let J = J (Hq) ⊆
R = k[xi,j | i = 1, . . . , q, j = 0, 1, 2]. Then, J fails to have non-increasing depth.

Proof The conclusion is a direct consequence of Remark 2.5 and Propositions 3.1 and
3.2.

4 Other Constructions

Natural generalizations of the graphs Hqs are those of Hp,qs as constructed in Remark
2.6. We end the paper by showing that those graphs Hp,q do not give counterexamples to
Conjecture 1.1. In fact, we shall show that Hp,q for p > 3 are not critical graphs.

Theorem 4.1 Let p, q ≥ 4 and let Hp,q be constructed as in Remark 2.6. Then,
χ(Hp,q) = p, but Hp,q is not critical p-chromatic.

Proof Clearly, any graph containing a complete subgraph of size p has the chromatic num-
ber at least p. Thus, it suffices to show that Hp,q can be colored using p colors (and since
Hp,q contains more than one copies of Kp, this will also imply that Hp,q is not critical
p-chromatic). Indeed, we can assign p colors to the vertices of Hp,q as follows. We shall
identify colors congruent modulo p.

Case 1 p is even and q is odd.

Fig. 2 A 4-coloring for H4,q when q is odd



Persistence Property and Non-increasing Depth 135

Fig. 3 A 4-coloring for H4,q when q is even

For 1 ≤ i ≤ q and i is odd, assign to xi,j color j for all j = 0, . . . , p − 1. For 1 ≤ i ≤ q

and i is even, assign to xi,j color j + 1 for j = 0, . . . , p − 1. It is easy to see that the
vertices on each copy of Kp get different colors. Also, on the ith and (i +1)st copies of Kp ,
since the parity of i and i + 1 are different, adjacent vertices xi,j and xi+1,j get different
colors. Finally, on the first and the last copies of Kp , adjacent vertices are x1,j of color j

and xq,p−1−j of color p − 1 − j . Since p is even j �= p − 1 − j for any j . Figure 2 gives
the assigned 4-coloring for H4,q in this case.

Case 2 p and q are both even.

For 1 ≤ i ≤ q and i is odd, assign to xi,j color j for all j = 0, . . . , p − 1. For 1 ≤ i ≤ q

and i is even, assign to xi,j the color p + 1 − j . Again, the vertices on each copy of Kp get
different colors. Also, since p is even j �= p+1−j , adjacent vertices on consecutive copies
of Kp also get different colors. On the first and the last copies of Kp, adjacent vertices are
x1,j of color j and xq,p−1−j of color j +2, and we have j �≡ j +2 (mod p). Figure 3 gives
the assigned 4-coloring for H4,q in this case.

Case 3 p is odd and q is even.

For 1 ≤ i ≤ q and i is odd, assign to xi,j color j for all j = 0, . . . , p − 1. For 1 ≤ i ≤ q

and i is even, we assign the colors to xi,j s as follows: first, we assign to xi,j color p − j

for j = 0, . . . , p − 1 and then we switch the colors of xi,0 and x
i,

p+1
2

(i.e., the vertex xi,0

now has color p−1
2 and the vertex x

i,
p+1

2
now has color 0). Again, the vertices on each copy

Fig. 4 A 5-coloring for H5,q when q is even
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Fig. 5 A 5-coloring for H5,q when q is odd

of Kp get different colors. On consecutive copies of Kp , since j �≡ p − j (mod p) unless
j = 0, together with the color switching between xi,0 and x

i,
p+1

2
, it can be seen that adjacent

vertices get different colors. On the first and the last copies of Kp, adjacent vertices are

x1,j of color j and xq,p−1−j of colors j + 1 �≡ j , except when j = p − 1 or j = p−3
2 .

Finally, x1,p−1 and xq,0 are adjacent and of colors p−1 �≡ p−1
2 , while x1,

p−3
2

and x
q,

p+1
2

are

adjacent and of colors p−3
2 �≡ 0 (this is where we make use of the hypothesis that p ≥ 4).

Figure 4 gives the assigned 5-coloring for H5,q in this case.

Case 4 p and q are both odd.

For 1 ≤ i < q − 1 and i is odd, assign to xi,j color j for all j = 0, . . . , p − 1. For
1 ≤ i ≤ q − 1 and i is even, assign to xi,j color j − 1 for all j = 0, . . . , p − 1. Finally, we
assign the colors to xq,j s as follows: first, we assign to xq,j color p−j , for j = 0, . . . , p−1

and then we switch the colors of xq,0 and x
q,

p+1
2

(i.e., the vertex xq,0 now has color p−1
2

and the vertex x
q,

p+1
2

now has color 0). Clearly, vertices on each copy of Kp get different

colors, and adjacent vertices on consecutive copies of Kp (except the last one) get different
colors. On the (q −1)st and the qth copies of Kp, adjacent vertices are xq−1,j of color j −1

and xq,j of color p − j , except exactly when j = 0 or j = p+1
2 due to the color switch. It

can be seen that j − 1 �≡ p − j for all j �= p+1
2 . When j = p+1

2 , the colors of x
q−1,

p+1
2

and

x
q,

p+1
2

are p−1
2 �≡ 0. For adjacent vertices between the qth and the first copies of Kp, the

argument follows from the last part of that of case 3 (and again, we shall need the condition
that p ≥ 4). Figure 5 gives the assigned 5-coloring for H5,q in this case.
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7. Francisco, C.A., Hà, H.T., Van Tuyl, A.: A conjecture on critical graphs and connections to the
persistence of associated primes. Discrete Math. 310, 2176–2182 (2010)
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