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Abstract A generalized Cesàro-Musielak-Orlicz sequence space CesΦ(q) endowed with
the Amemiya norm is introduced. Criteria for the coordinatewise uniformly Kadec-Klee
property and the uniform Opial property of the space CesΦ(q) with respect to the Amemiya
norm are obtained.
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1 Introduction

The study of geometric properties of Banach spaces such as Kadec-Klee property, Opial
property, and their several generalizations play very important role in metric fixed point
theory. In particular, the Opial property of a Banach space has a great importance in the
fixed point theory, differential equation, and integral equations. On the other hand, the
Kadec-Klee property has several applications in Ergodic theory and many other branches
[23].

Recently, several authors are interested in studying the geometric properties of Cesàro,
Cesàro-Orlicz, and Musielak-Orlicz sequence spaces due to their several applications
in various branches of mathematical analysis. Some topological properties such as
order continuity, separability, completeness, and relations between norm and modular
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as well as some geometric properties such as the Fatou property, monotonicity, Kadec-Klee
property, uniform Opial property, rotundity, local rotundity, etc. are discussed in [2, 3, 6, 11,
20, 21]. Khan [13, 14] has introduced the Riesz-Musielak-Orlicz sequence space and studied
some geometric properties of it. Recently, Mongkolkeha and Kumam [16] studied (H)-
property and uniform Opial property for the generalized Cesàro sequence space Ces(p)(q).
Quite recently, Manna and Srivastava [15] introduced the generalized Cesàro-Musielak-
Orlicz sequence space Ces�(q), which include the well-known Cesàro [25], generalized
Cesàro [21, 22], Cesàro-Orlicz [2, 20], Cesàro-Musielak-Orlicz [26] sequence spaces, etc.
as in particular cases, and studied coordinatewise uniformly Kadec-Klee property and uni-
form Opial property for these spaces equipped with the Luxemberg norm. In this paper, we
continue our study by investigating these properties in generalized Cesàro-Musielak-Orlicz
sequence space with respect to the Amemiya norm.

Throughout this paper, we denote by N,R, and R
+ the set of natural numbers, of reals,

and of nonnegative reals, respectively. Let (X, ‖.‖) be a Banach space and l0 be the space
of all real sequences x = (x(i))∞i=1. Let S(X) and B(X) denote the unit sphere and closed
unit ball, respectively.

Let (E, ‖.‖E) be a real normed linear subspace of l0. E is said to be a normed sequence
lattice [12] if it satisfies the following two conditions:

(i) For any x ∈ E and y ∈ l0 such that |y(k)| ≤ |x(k)| for every k ∈ N, then y ∈ E and
‖y‖E ≤ ‖x‖E .

(ii) There exists a sequence x = (x(k))∞k=1 ∈ E such that x(k) > 0 for all k ∈ N.

A normed sequence lattice (E, ‖.‖E) with complete norm is called Banach sequence
lattice [12].

Note In many literatures, Banach sequence lattice E is also called Köthe sequence space
[2, 20].

An element x ∈ E is said to be order continuous if for any sequence (xl) ⊂ E+, where
xl = (xl(i))

∞
i=1, l ∈ N such that |x(i)| ≥ xl(i) ↘ 0, i.e., xl(i) decreases to zero as l → ∞

for each i ∈ N, implies that ‖xl‖E → 0. The set of all order-continuous elements in E is
denoted by Ea . A Banach sequence lattice E is said to be order continuous if Ea = E. It is
known that E is order continuous if and only if [2]

‖(0, 0, . . . , x(i + 1), x(i + 2), . . .)‖E → 0 as i → ∞ for any x ∈ E.

A sequence (xl) ⊂ X is said to be ε-separated sequence if the separation of the sequence
(xl), defined by sep(xl) = inf{‖xl − xm‖ : l 
= m} is > ε for some ε > 0 [9].

A Banach space X is said to have the Kadec-Klee property, denoted by (H), if each
weakly convergent sequence on the unit sphere is strongly convergent, i.e., convergent
in norm [10]. A Banach space X is said to possess coordinatewise Kadec-Klee property,
denoted by (Hc) [7], if x ∈ X and every sequence (xl) ⊂ X such that

‖xl‖ → ‖x‖ and xl(i) → x(i) for each i ∈ N, then ‖xl − x‖ → 0.

It is known that X ∈ (Hc) implies X ∈ (H), because the weak convergence in any Köthe
sequence space X implies the coordinatewise convergence (see also [7]). A Banach space
X has the coordinatewise uniformly Kadec-Klee property, denoted by (UKKc) [27], if for
every ε > 0 there exists a δ > 0 such that
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(xl) ⊂ B(X), sep(xl) ≥ ε, ‖xl‖ → ‖x‖ and xl(i) → x(i) for each i ∈ N, implies ‖x‖ ≤ 1 − δ.

It is well known that the property (UKKc) implies property (Hc).
A Banach space X is said to have the Opial property [24] if for every weakly null

sequence (xl) ⊂ X and every nonzero x ∈ X, we have

lim inf
l→∞ ‖xl‖ < lim inf

l→∞ ‖xl + x‖.
A Banach space X is said to have the uniform Opial property [24] if for each ε > 0 there

exists μ > 0 such that for any weakly null sequence (xl) in S(X) and x ∈ X with ‖x‖ ≥ ε,
the following inequality holds:

1 + μ ≤ lim inf
l→∞ ‖xl + x‖.

In any Banach space X the Opial property is important because it ensures that X has the
weak fixed point property [8]. Opial in [18] has shown that the space Lp[0, 2π ](p 
= 2, 1 <

p < ∞) does not have this property but the Lebesgue sequence space lp(1 < p < ∞) has.
For a real vector space X, a functional � : X → [0, ∞] is called a modular, if for

arbitrary x, y ∈ X, the following conditions hold:

(i) �(x) = 0 if and only if x = 0,
(ii) �(−x) = �(x),

(iii) �(αx + βy) ≤ �(x) + �(y) for α, β ≥ 0, α + β = 1.

If instead of (iii), there holds

(iii)′ �(αx +βy) ≤ α�(x)+β�(y) for α, β ≥ 0, α +β = 1, then the modular � is called
convex.

For any modular � on X, the modular space generated by the modular � is denoted by X�

and is defined as

X� = {x ∈ X : �(λx) → 0 as λ → 0+}.
It is shown by Orlicz [19] that the modular space X� is equivalent to the set X∗

� = {x ∈
X : �(λx) < ∞ for some λ > 0} in the case of convex modular �.

A sequence (xn) of elements of X� is called modular convergent to x ∈ X� if there exists
a λ > 0 such that �(λ(xn − x)) → as n → ∞.

In particular, in the case that � is a convex modular, X� becomes a normed linear space
with the norm ‖.‖� induced by the convex modular � defined by

‖x‖L
� = inf

{
r > 0 : �

(x

r

)
≤ 1

}
for x ∈ X�.

In the case of convex modular �, it is shown in [17] that the functional

‖x‖A
� = inf

k>0

1

k
{1 + �(kx)}

defines a norm on X� and the relation ‖x‖L
� ≤ ‖x‖A

� ≤ 2‖x‖L
� holds for every x ∈ X�. The

norms ‖x‖L
� and ‖x‖A

� defined on the modular space X� are called the Luxemberg norm
and the Amemiya norm, respectively (see [17]).

A map ϕ : R → [0, ∞] is said to be an Orlicz function if it is an even, convex, left
continuous on [0, ∞), ϕ(0) = 0, not identically zero, and ϕ(u) → ∞ as u → ∞. A
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sequence Φ = (ϕn)
∞
n=1 of Orlicz functions ϕn is called a Musielak-Orlicz function [17]. A

Musielak-Orlicz function Φ = (ϕn)
∞
n=1 is said to satisfy condition (∞1) if for each n ∈ N,

we have

(∞1) : lim
u→+∞

ϕn(u)

u
= +∞.

For any Musielak-Orlicz function Φ, the complementary function � = (ψn) of Φ is defined
in the sense of Young as

ψn(u) = sup
v≥0

{ |u|v − ϕn(v)} for all u ∈ R and n ∈ N.

Given any Musielak-Orlicz function Φ and x = (x(n))∞n=1 ∈ l0, a convex modular IΦ :
l0 → [0, ∞] is defined by

IΦ(x) =
∞∑

n=1

ϕn (|x(n)|)

and the linear space lΦ = {x ∈ l0 : IΦ(rx) < ∞ for some r > 0} is called a
Musielak-Orlicz sequence space. The sequence spaces (lΦ, ‖x‖L

IΦ
) and (lΦ, ‖x‖A

IΦ
) are

Banach spaces. The set of all k > 0 such that ‖x‖A
IΦ

= 1
k
(1 + IΦ(kx)) is attained for a fixed

x ∈ lAΦ is denoted by K(x). Moreover, it is known that for any x ∈ lAΦ , there exists a k > 0

such that ‖x‖A
IΦ

= 1
k
(1 + IΦ(kx)) whenever ϕn(u)

u
→ ∞ as u → ∞ for each n ∈ N (see

[5]). For the details about Musielak-Orlicz sequence spaces and their geometric properties,
we refer to [1, 3, 11, 17].

A Musielak-Orlicz function Φ satisfies the δ0
2-condition, denoted by Φ ∈ δ0

2, if there are
positive constants a, K , a natural number m, and a sequence (cn)

∞
n=1 of positive numbers

such that (cn)
∞
n=m ∈ l1 and the inequality

ϕn(2u) ≤ Kϕn(u) + cn (1)

holds for every n ∈ N and u ∈ R whenever ϕn(u) ≤ a. If a Musielak-Orlicz function Φ

satisfies δ0
2-condition with m = 1, then Φ is said to satisfy δ2-condition [17].

A Musielak-Orlicz function Φ = (ϕn)
∞
n=1 is said to vanish only at zero, which is denoted

by Φ > 0 if ϕn(u) > 0 for any n ∈ N and u > 0.

2 Class CesΦ(q)

Let x ∈ l0 and Φ = (ϕn)
∞
n=1 be a Musielak-Orlicz function. Let q = (qn)

∞
n=1, qn ≥ 1 ∀ n ∈

N be a sequence of real numbers such that Qn = ∑n
k=1 qk . The sequence space CesΦ(q),

being studied in [15] and is defined as follows:

CesΦ(q) = {x ∈ l0 : Rqx ∈ lΦ} = {x ∈ l0 : σΦ(rx) < ∞ for some r > 0},
where σΦ(x) = IΦ(Rqx) = ∑∞

n=1 ϕn(
1

Qn

∑n
k=1 qk|x(k)|) and Rq is a generalized Cesàro

means map on l0 defined as

Rqx = (Rqx(n))∞n=1, with Rqx(n) = 1

Qn

n∑
k=1

qk|x(k)| for each n = 1, 2, . . .

Clearly, CesΦ(q) is a linear space and also becomes a normed linear space under the
norms ‖x‖L

σΦ
= ‖Rqx‖L

IΦ
and ‖x‖A

σΦ
= ‖Rqx‖A

IΦ
introduced with the help of the norms
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on lΦ . The space CesΦ(q) will be called generalized Cesàro-Musielak-Orlicz sequence
space. For simplifying notation, we write ‖x‖L

Φ and ‖x‖A
Φ instead of ‖x‖L

σΦ
and ‖x‖A

σΦ
,

respectively.
The class CesΦ(q) includes the following classes in particular cases:

(i) For qn = 1, n = 1, 2, . . ., the CesΦ(q) reduces to Cesàro-Musielak-Orlicz sequence
space cesΦ studied by Wangkeeree [26], where

cesΦ =
{

x ∈ l0 :
∞∑

n=1

ϕn

(
r

n

n∑
k=1

|x(k)|
)

< ∞ for some r > 0

}
.

(ii) For ϕn = ϕ for any n, the space cesΦ becomes the well-known Cesàro-Orlicz
sequence space cesϕ , studied recently by Petrot and Suantai [20], Foralewski et al.
[6], and Cui et al. [2].

(iii) For ϕn(x) = |x|pn, pn ≥ 1 for all n, the space CesΦ(q) reduces to the sequence
space Ces(p)(q) studied by Mongkolkeha et al. [16], and for ϕn(x) = |x|pn with
pn = p ≥ 1 for all n, then CesΦ(q) reduces to the sequence space Cesp(q) studied
by Khan [13].

Notation For any x ∈ l0 and i ∈ N, we shall use the following notations throughout the
paper:

x|i = (x(1), x(2), x(3), . . . , x(i), 0, 0, . . .), called the truncation of x at i,

x|N−i = (0, 0, 0, . . . , 0, x(i + 1), x(i + 2), . . .),

x|I = {x ∈ l0 : x(i) 
= 0 for all i ∈ I ⊆ N and x(i) = 0 for all i ∈ N \ I } and

supp x = {i ∈ N : x(i) 
= 0}.

For simplifying notation, we write CesA
Φ(q) = (CesΦ(q), ‖.‖A

Φ).

3 Main results

We assume throughout that the sequence space CesA
Φ(q) is nontrivial, i.e., CesA

Φ(q) 
= {0}.
It is easy to observe that the space CesA

Φ(q) belongs to the class of normed sequence lattice.

Theorem 1 The space CesAΦ(q) = (CesΦ(q), ‖.‖A
Φ) is a Banach space.

Proof It is shown in [15, Theorem 1 (i)] that CesL
Φ(q) = (CesΦ(q), ‖.‖L

Φ) is a Banach
space. But the norms ‖.‖L

Φ and ‖.‖A
Φ are equivalent, so the proof follows easily.

Theorem 2 Let (CesA
Φ(q))a = {x ∈ CesA

Φ(q) : σΦ(rx) < ∞, for all r > 0}. Then the
following statements are true:

(i) (CesA
Φ(q))a is a closed subspace of CesA

Φ(q),
(ii) (CesA

Φ(q))a ⊆ {x ∈ CesA
Φ(q) : ‖x − x|j‖A

Φ → 0},
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(iii) if Φ is a Musielak-Orlicz function satisfying the condition δ2 then (CesA
Φ(q))a =

CesA
Φ(q).

Proof (i) Clearly (CesA
Φ(q))a is a subspace of CesA

Φ(q). It is required to show that

(CesA
Φ(q))a is closed in CesA

Φ(q). For this, let x ∈ (CesA
Φ(q))a , the closure of

(CesA
Φ(q))a . So there exists xi = (xi(k))∞k=1 ∈ (CesA

Φ(q))a for each i ∈ N such that
‖x − xi‖A

Φ → 0 as i → ∞. We prove that x ∈ (CesA
Φ(q))a . By the equivalence def-

inition of norm and modular convergence, we have σΦ(r(x − xi)) → 0 as i → ∞
for all r > 0. So for all r > 0, there exists J ∈ N such that σΦ(2r(x − xJ )) < 1.
Since xJ ∈ (CesA

Φ(q))a , so we have σΦ(2rxJ ) < ∞ for all r > 0. Now, consider

∞∑
n=1

ϕn

(
r

Qn

n∑
k=1

qk|x(k)|
)

≤
∞∑

n=1

ϕn

(
r

2Qn

n∑
k=1

(2qk|x(k) − xJ (k)|)

+ r

2Qn

n∑
k=1

2qk|xJ (k)|
)

≤ 1

2
σΦ(2r(x − xJ )) + 1

2
σΦ(2rxJ ) < ∞.

Since r is arbitrary, so we have x ∈ (CesA
Φ(q))a .

(ii) Let A = {x ∈ CesA
Φ(q) : ‖x − x|j‖A

Φ → 0}, x ∈ (CesA
Φ(q))a and ε > 0. Since

x ∈ (CesA
Φ(q))a , so there exists j0 ∈ N such that

σΦ

(
x − x|j

ε

)
=

∞∑
n=j+1

ϕn

⎛
⎝ 1

εQn

n∑
k=j+1

|qkx(k)|
⎞
⎠ < ε

for all j > j0. Hence, by the definition of norm ‖.‖A
Φ , we have

∥∥x − x|j
∥∥A

Φ
≤ ε

(
1 + σΦ

(
x − x|j

ε

))
< ε(1 + ε)

for all j > j0. Since ε is arbitrary, we have ‖x − x|j‖A
Φ → 0 as j → ∞. So x ∈ A.

(iii) We show only the inclusion CesA
Φ(q) ⊂ (CesA

Φ(q))a because the other inclusion
is always true. Let x ∈ CesA

Φ(q). Then for some t > 0, σΦ(tx) < ∞, i.e.,∑∞
n=1 ϕn(

t
Qn

∑n
k=1 qk|x(k)|) < ∞. We show that for any r > 0

∞∑
n=1

ϕn

(
r

Qn

n∑
k=1

|qkx(k)|
)

< ∞

holds. If r ∈ [0, t], t is fixed, then it follows easily because

∞∑
n=1

ϕn

(
r

Qn

n∑
k=1

qk|x(k)|
)

≤
∞∑

n=1

ϕn

(
t

Qn

n∑
k=1

qk|x(k)|
)

< ∞.

Now choose r > t . Since x ∈ CesA
Φ(q), i.e., for some t > 0, σΦ(tx) < ∞, there exists

a finite positive constant a such that

∞∑
n=1

ϕn

(
t

Qn

n∑
k=1

qk|x(k)|
)

≤ a.
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Therefore for each n ≥ 1, we have

ϕn

(
t

Qn

n∑
k=1

qk|x(k)|
)

≤ a.

Since Φ = (ϕn)
∞
n=1 satisfies the δ2-condition, so by definition there are positive constants

a and K and a sequence (cn)
∞
n=1 of positive numbers such that (cn)

∞
n=1 ∈ l1 and the

inequality

ϕn(2u) ≤ Kϕn(u) + cn

holds for every n ∈ N and u ∈ R whenever ϕn(u) ≤ a. Let u = t
Qn

∑n
k=1 qk|x(k)|,K > 0

be a constant and a be chosen as above. Since r > t , there exists l ∈ N such that r ≤ 2l t .
Now applying the δ2-condition for all n ≥ 1, we have

ϕn

(
r

Qn

n∑
k=1

qk|x(k)|
)

≤ ϕn

(
2l t

Qn

n∑
k=1

qk|x(k)|
)

+ cn

≤ Klϕn

(
t

Qn

n∑
k=1

qk|x(k)|
)

+
(

l−1∑
i=0

Ki

)
cn.

Taking summation in both sides over n ≥ 1, we obtain

∞∑
n=1

ϕn

(
r

Qn

n∑
k=1

qk|x(k)|
)

≤ Kl
∞∑

n=1

ϕn

(
t

Qn

n∑
k=1

qk|x(k)|
)

+
(

l−1∑
i=0

Ki

) ∞∑
n=1

cn < ∞.

Hence, x ∈ (CesA
Φ(q))a .

We will assume in the rest of the paper that the Musielak-Orlicz function Φ = (ϕn)
∞
n=1

with ϕn(u) < ∞ for each n ∈ N, u ∈ R. The following lemmas are useful to prove our
result.

Lemma 1 Suppose Φ ∈ δ2 and Φ > 0. Then for any (xl) ⊂ CesAΦ(q), where xl =
(xl(i))

∞
i=1, l ∈ N, ‖xl‖A

Φ → 0 if and only if σΦ(xl) → 0.

Proof See [7, 11].

It is noted that, for a fixed x ∈ CesA
Φ(q), the set K(x) defined earlier (see Section 1) has

the form K(x) = {k > 0 : 1
k
(1 + σΦ(kx)) = ‖x‖A

Φ}.

Lemma 2 Let x ∈ CesAΦ(q) be given and x 
= 0. If K(x) = ∅, then ‖x‖A
Φ =∑∞

n=1 λnR
qx(n), where λn = limu→∞ ϕn(u)

u
and Rqx(n) = 1

Qn

∑n
i=1 qi |x(i)|, n ∈ N.

Proof Let f (k) = 1
k
(1 + σΦ(kx)), where σΦ(x) = ∑∞

n=1 ϕn(
1

Qn

∑n
i=1 qi |x(i)|) =∑∞

n=1 ϕn(R
qx(n)). Since f (k) is continuous and K(x) = ∅, so we have ‖x‖A

Φ =
limk→∞ f (k) = limk→∞ σΦ(kx)

k
. Then λn = limu→∞ ϕn(u)

u
is finite for all n ∈ supp x. If

not, there exists a n0 ∈ supp x such that
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‖x‖A
Φ = lim

k→∞
σΦ(kx)

k
≥ lim

k→∞
ϕn0(kRqx(n0))

kRqx(n0)
Rqx(n0) = ∞.

So we have

‖x‖A
Φ = lim

k→∞
σΦ(kx)

k
= lim

k→∞

∞∑
n=1

ϕn(kRqx(n))

kRqx(n)
Rqx(n) =

∞∑
n=1

λnR
qx(n).

Lemma 3 Let x ∈ CesA
Φ(q) be given and x 
= 0. If Φ = (ϕn)

∞
n=1 is a Musielak-Orlicz

function satisfying condition (∞1), then K(x) 
= ∅.

Proof Suppose on contrary that K(x) = ∅. Then by Lemma 2, we obtain lim
u→∞

ϕn(u)
u

<

∞ for each n ∈ supp x, a contradiction to the assumption that Φ satisfies the condition
(∞1).

Theorem 3 The sequence space CesA
Φ(q) has the UKKc-property whenever Φ = (ϕn)

∞
n=1

satisfying condition (∞1),Φ ∈ δ2, i.e., (1) and Φ > 0.

Proof Let ε > 0 be given, (xl) ⊂ B(CesA
Φ(q)), x ∈ CesA

Φ(q), ‖xl‖A
Φ → ‖x‖A

Φ, xl(i) →
x(i) for each i ∈ N and sep(xl) ≥ ε. We prove that ‖x‖A

Φ ≤ 1 − δ. It trivially holds when
x = 0. Let us assume that x 
= 0. Then using Lemma 3, we have K(x) 
= ∅, i.e., for each
x ∈ CesA

Φ(q), there exists a kl ∈ R+ such that ‖x‖A
Φ = 1

kl
(1 + σΦ(klx)). Since xl → x

in CesA
Φ(q) weakly, it implies xl(i) → x(i) for each i ∈ N, so we may select a finite

set I = {1, 2, 3, . . . , N − 1} for which xl → x uniformly. So, there exists lN ∈ N such
that

‖(xl − xm)|I‖A
Φ ≤ ε

2
for all l, m ≥ lN . (2)

Since sep(xl) ≥ ε, we have ‖xl − xm‖A
Φ ≥ ε for l 
= m by definition. This, together with

(2), implies that ‖(xl − xm)|N−I‖A
Φ ≥ ε

2 for l 
= m and l, m ≥ lN . Hence, for each N ∈ N,
there exists a lN such that ‖xlN |N−I‖A

Φ ≥ ε
4 . Without loss of generality, we may assume that

‖xl |N−I‖A
Φ ≥ ε

4 for all l, N ∈ N. Therefore, by Lemma 1, there exists δ1 ∈ (0, ε) such that
σΦ(xl |N−I ) ≥ δ1.

Since x ∈ CesA
Φ(q) implies that ‖x − x|I‖A

Φ → 0 for sufficiently large N , there exists a
δ1
2 > 0 such that ‖x|I‖A

Φ > ‖x‖A
Φ − δ1

2 . Also, since xl(i) → x(i) for each i and ‖xl‖A
Φ →

‖x‖A
Φ , there exists N0 ∈ N such that

‖xl |I‖A
Φ > ‖x‖A

Φ − δ1

2
for l > N0.

Since ‖xl‖A
Φ ≤ 1 implies kl ≥ 1 for all l ∈ N, so by the convexity of ϕn and the inequality

ϕn(u + v) ≥ ϕn(u) + ϕn(v) for all u, v ∈ R
+ for each n ∈ N, we have
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1 ≥ ‖xl‖A
Φ

= 1

kl

⎛
⎝1 +

N−1∑
n=1

ϕn

⎛
⎝ kl

Qn

n∑
j=1

qj |xl(j)|
⎞
⎠ +

∞∑
n=N

ϕn

⎛
⎝ kl

Qn

n∑
j=1

qj |xl(j)|
⎞
⎠

⎞
⎠

= 1

kl

⎛
⎝1 +

N−1∑
n=1

ϕn

⎛
⎝ kl

Qn

n∑
j=1

qj |xl(j)|
⎞
⎠

⎞
⎠ + 1

kl

⎛
⎝

∞∑
n=N

ϕn

⎛
⎝ kl

Qn

N−1∑
j=1

qj |xl(j)|

+ kl

Qn

n∑
j=N

qj |xl(j)|
⎞
⎠

⎞
⎠

≥ 1

kl

⎛
⎝1 +

N−1∑
n=1

ϕn

⎛
⎝ kl

Qn

n∑
j=1

qj |xl(j)|
⎞
⎠

⎞
⎠ + 1

kl

∞∑
n=N

ϕn

⎛
⎝ kl

Qn

N−1∑
j=1

qj |xl(j)|
⎞
⎠

+ 1

kl

∞∑
n=N

ϕn

⎛
⎝ kl

Qn

n∑
j=N

qj |xl(j)|
⎞
⎠

= 1

kl

(1 + σΦ (klxl |I )) + 1

kl

∞∑
n=N

ϕn

⎛
⎝ kl

Qn

n∑
j=N

qj |xl(j)|
⎞
⎠

≥ 1

kl

(1 + σΦ (klxl |I )) +
∞∑

n=N

ϕn

⎛
⎝ 1

Qn

n∑
j=N

qj |xl(j)|
⎞
⎠ (since kl ≥ 1)

≥ ‖xl |I‖A
Φ + σΦ (xl |N−I )

> ‖x‖A
Φ − δ1

2
+ δ1 = ‖x‖A

Φ + δ1

2
for l > N0.

Therefore, ‖x‖A
Φ ≤ 1 − δ1

2 . Thus, CesA
Φ(q) has the coordinatewise uniform Kadec-Klee

property.

Corollary 1 (i) If ϕn = ϕ for all n ∈ N, qn = 1 for n ∈ N and ϕ ∈ δ2, then the
Cesàro-Orlicz sequence space cesA

ϕ [20] has the (UKKc).

(ii) If ϕn(u) = |u|pn for all u ∈ R, 1 < pn < ∞ ∀n then CesA
p (q) has the (UKKc).

Theorem 4 Let Φ > 0 be a Musielak-Orlicz function satisfying conditions (∞1) and δ2,
i.e., (1). Then, CesA

Φ(q) has the uniform Opial property.

Proof Take any ε > 0 and x ∈ CesA
Φ(q) with ‖x‖A

Φ ≥ ε. Let (xl) ⊂ S(CesA
Φ(q)) be any

weakly null sequence. We show that for every ε > 0, there is a μ > 0 such that

lim inf
l→∞ ‖xl + x‖A

Φ ≥ 1 + μ

for each x ∈ CesA
Φ(q). Since Φ ∈ δ2 and Φ > 0, so by Lemma 1, there is a δ ∈ (0, 4

5 )

independent of x such that σΦ(x
2 ) ≥ δ. Since Φ ∈ δ2 implies CesA

Φ(q) = (CesA
Φ(q))a by
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Theorem 2 (iii), we have ‖x − x|n‖A
Φ → 0 as n → ∞ (by Theorem 2(ii)). Therefore, for a

given δ > 0, there exists a natural number n0 ∈ N such that

∥∥x − x|n0

∥∥A

Φ
= ∥∥x|N−n0

∥∥A

Φ
<

δ

8

and

∞∑
n=n0+1

ϕn

⎛
⎝ 1

2Qn

n∑
j=1

qj |x(j)|
⎞
⎠ <

δ

8
.

Since σΦ(x
2 ) ≥ δ, it follows that

δ ≤
n0∑

n=1

ϕn

⎛
⎝ 1

2Qn

n∑
j=1

qj |x(j)|
⎞
⎠ +

∞∑
n=n0+1

ϕn

⎛
⎝ 1

2Qn

n∑
j=1

qj |x(j)|
⎞
⎠

<

n0∑
n=1

ϕn

⎛
⎝ 1

2Qn

n∑
j=1

qj |x(j)|
⎞
⎠ + δ

8
.

This gives
∑n0

n=1 ϕn(
1

2Qn

∑n
j=1 qj |x(j)|) > 7δ

8 . Since xl → 0 weakly, it implies xl(i) → 0
as l → ∞ for each i, so we have σΦ(xl |n0) → 0 as l → ∞. Hence, by Lemma 1, there

exists a natural number l0 such that
∥∥xl |n0

∥∥A

Φ
< δ

8 for all l ≥ l0. This, together with (xl) ⊂
S(CesA

Φ(q)), i.e., ‖xl‖A
Φ = 1, implies that

∥∥xl |N−n0

∥∥A

Φ
> 1 − δ

8
for all l ≥ l0. (3)

Now, for all l ≥ l0, we have

‖xl + x‖A
Φ = ∥∥(xl + x)|n0 + (xl + x)|N−n0

∥∥A

Φ

≥ ∥∥(xl + x)|n0 + xl |N−n0

∥∥A

Φ
− δ

8

≥ ∥∥x|n0 + xl |N−n0

∥∥A

Φ
− δ

8
− δ

8
= ∥∥x|n0 + xl |N−n0

∥∥A

Φ
− δ

4
.

Since Φ satisfies condition (∞1), so by Lemma 3, there exists kl > 0 such that for l ≥ l0,
we have

∥∥x|n0 + xl |N−n0

∥∥A

Φ
= 1

kl

(
1 + σΦ

(
kl

(
x|n0 + xl |N−n0

)))
.

Now, using the fact that σΦ(u + v) ≥ σΦ(u) + σΦ(v), whenever supp u ∩ supp v = ∅, we
have

‖xl + x‖A
Φ ≥ 1

kl

+ 1

kl

σΦ

(
klx|n0

) + 1

kl

σΦ

(
klxl |N−n0

) − δ

4

≥ ∥∥xl |N−n0

∥∥A

Φ
+ 1

kl

σΦ

(
klx|n0

) − δ

4
. (4)

Without loss of generality, we may assume that kl ≥ 1
2 for all l because if kl < 1

2 , then
we have ‖xl + x‖A

Φ > 2 − δ
4 > 1 + δ. Using the convexity of Φ, we have σΦ(klx|n0) ≥
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2klσΦ( 1
2x|n0). Now using (3), from (4), we have

‖xl + x‖A
Φ ≥ ∥∥xl |N−n0

∥∥A

Φ
+ 2σΦ

(
1

2
x|n0

)
− δ

4

>
∥∥xl |N−n0

∥∥A

Φ
+ 2

n0∑
n=1

ϕn

⎛
⎝ 1

2Qn

n∑
j=1

qj |x(j)|
⎞
⎠ − δ

4

≥ 1 − δ

8
+ 2.

7δ

8
− δ

4
= 1 + 11δ

8
.

which implies that lim infn→∞ ‖xl +x‖A
Φ ≥ 1+μ, where μ depends upon δ. This completes

the proof.

Corollary 2 (i) Let qn = 1, n = 1, 2, . . . and ϕn(u) = |u|pn for all u ∈ R, 1 < pn <

∞ ∀n. Then, Φ ∈ δ2 if and only if lim supn→∞ pn < ∞. Therefore, cesA
(p) [21] has

the uniform Opial property.
(ii) If ϕn = ϕ ∀n, qn = 1 for n = 1, 2, . . . and ϕ ∈ δ2, then the Cesàro-Orlicz sequence

space cesA
ϕ [20] has the uniform Opial property.
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spaces. Internat. J. Math. Math. Sci. 2004(2), 91–97 (2004)
23. Prus, S.: Geometrical background of metric fixed point theory. In: Kirk, W.A., Sims, B. (eds.) Handbook

of metric fixed point theory, pp. 93–132. Kluwer Academic, Dordrecht (2001)
24. Prus, S.: Banach spaces with uniform Opial property. Nonlinear Anal. Theory Appl. 18(8), 697–704

(1992)
25. Shiue, J.S.: Cesàro sequence spaces. Tamkang J. Math. 1, 19–25 (1970)
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