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Abstract The set of the first Hilbert coefficients of parameter ideals relative to a module—
its Chern coefficients—over a local Noetherian ring codes for considerable information
about its structure–noteworthy properties such as that of Cohen-Macaulayness, Buchs-
baumness, and of having finitely generated local cohomology. The authors have previously
studied the ring case. By developing a robust setting to treat these coefficients for unmixed
rings and modules, the case of modules is analyzed in a more transparent manner. Another
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series of integers arise from partial Euler characteristics and are shown to carry similar
properties of the module. The technology of homological degree theory is also introduced
in order to derive bounds for these two sets of numbers.

Keywords Hilbert function · Hilbert coefficient · Parameter ideal · Local cohomology ·
Euler characteristic · Cohen-Macaulay module · Vasconcelos module · Generalized
Cohen-Macaulay module · Buchsbaum module
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1 Introduction

Let R be a Noetherian local ring with maximal ideal m and let I be an m-primary ideal.
There is a great deal of interest on the set of I -good filtrations of R. More concretely, on
the set of multiplicative, decreasing filtrations

A = {In | I0 = R, In+1 = IIn, n � 0}

of R ideals which are integral over the I -adic filtration, conveniently coded in the
corresponding Rees algebra and its associated graded ring

R(A) =
∑

n≥0

Int
n, grA(R) =

∑

n≥0

In/In+1.

Our focus here is on a set of filtrations both broader and more narrowly defined. Let M

be a finitely generated R-module. The Hilbert polynomial of the associated graded module

grI (M) =
⊕

n≥0

InM/In+1M,

more precisely the values of the length λ(M/In+1M) of M/In+1M for large n can be
assembled as

PM(n) =
r∑

i=0

(−1)iei(I,M)

(
n + r − i

r − i

)
,

where r = dimR M > 0. In most of our discussion, either I or M is fixed, and by simplicity,
we set ei(I,M) = ei(M) or ei(I,M) = ei(I ) accordingly. Occasionally, the first Hilbert
coefficient e1(I,M) is referred to as the Chern coefficient of I relative to M ([32]).

The authors have examined ([8, 9, 13, 32]) how the values of e1(Q, R) codes for
structural information about the ring R itself. More explicitly, one defines the set

Λ(M) = {e1(Q,M) | Q is a parameter ideal for M}
and examines what its structure expresses about M . In case M = R, this set was analyzed
for the following extremal properties:

(a) 0 ∈ Λ(R).

(b) Λ(R) contains a single element.
(c) Λ(R) is bounded.
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The task of determining the elements of Λ(M) has turned out to be rather daunting.
More amenable has been the approach to obtain specialized bounds using cohomological
techniques. An unresolved issue has been to describe the character of the set Λ(M), in
particular the role of its extrema and the gap structure of the set itself.

The other invariant of the module M in our investigation is the following. Let Q =
(x1, x2, . . . , xr ) be a parameter ideal for M . We denote by Hi (Q;M) (i ∈ Z) the ith homol-
ogy module of the Koszul complex K•(Q;M) generated by the system x = {x1, x2, . . . , xr }
of parameters of M . We put

χ1(Q;M) =
∑

i≥1

(−1)i−1λR(Hi (Q; M))

and call it the first Euler characteristic of M relative to Q; hence,

χ1(Q;M) = λR(M/QM) − e0(Q,M)

by a classical result of Serre (see [1, 26]).
In analogy to Λ(M), one defines the set

Ξ(M) = {χ1(Q;M) | Q is a parameter ideal for M}
and examines again what its structure expresses about M . Most of the properties of this set
can be assembled from a diverse literature, particularly from [26, Appendix II]. The outcome
is a listing that mirrors, step-by-step, all the properties of the set Λ(M) that we study.

We shall now describe more precisely our results. Section 2 starts with a review of
some elementary computation rules for e1(Q,M) under hyperplane sections, more properly
modulo superficial elements. Since part of our goal is to extend to modules our previous
results on rings, given the ubiquity of the unmixedness hypothesis, we develop a fresh set-
ting to treat the module case. It made for more transparent proofs. These are carried out in
Sections 3–5.

Section 6 introduces homological degree techniques to obtain special bounds for the set
Λ(M). The treatment here is more general and sharper than in [32]. Thus, in Corollary 6.7,
it is proved that the set

ΛQ(M) = {e1(q,M) : q is a parameter ideal for M with the same integral closure

as that of Q}
is finite. In Section 7, we treat the sets Ξ(M) and ΞQ(M), focusing on the properties that
have analogs in Λ(M) (see Table 1). In particular, we prove that Euler characteristics can be
uniformly bounded by homological degrees (Theorem 7.2). We also consider the numerical
function, which we call the Hilbert characteristic of M with respect to Q = (x):

h(x;M) =
r∑

i=0

(−1)iei(Q,M).

If the system x = {x1, x2, . . . , xr } of parameters of M forms a d–sequence for M , h(x;M)

has some properties of a homological degree. They are enough to bound the Betti numbers
βi(M) in terms of βi(R/m), a well-known property of cohomological degrees. Finally, in
Section 8, we recast in the context of Buchsbaum-Rim coefficients several questions treated
in this paper.

A street view of our results for the convenience of the reader is given in the following
table. Let R be a Noetherian local ring with infinite residue class field and M , a finitely
generated R-module with r = dimR M ≥ 2. Let P(M) be the collection of systems
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Table 1 Properties of a finitely generated module M carried by the values of either function

Xf(M) ⊆ [0,∞) M [19] [26, Appendix II]

0 ∈ Xf(M) M Cohen-Macaulay Theorem 3.1∗ [26, Appendix II]

|Xf(M)| < ∞ M generalized Cohen-Macaulay Theorem 4.5∗ [6]

|Xf(M)| = 1 M Buchsbaum Theorem 5.4∗ [28]

|{f(x) | Q̄ = �(x)}| < ∞ Q Corollary 6.7 Corollary 7.3

An adorned reference [XY]∗ requires that the module M be unmixed. The third and fourth columns refer to
the functions f1(x) and f2(x), respectively

x = {x1, x2, . . . , xr } of parameters of M . In [8] and in this paper, the authors study
multiplicity derived numerical functions

f : P(M) −→ N

on emphasis on the nature of its range

Xf(M) = {f(x) | x ∈ P(M)}.

For the two functions e1(x,M) and χ1(x;M), more properly f1(x) = −e1(x,M) and
f2(x) = χ1(x; M), respectively, identical assertions about the character of Xf(M) are
expressed in the above grid.

2 Preliminaries

Throughout this section, let R be a Noetherian local ring with maximal ideal m and let M

be a finitely generated R–module. For basic terminology and properties of Noetherian rings
and Cohen–Macaulay rings and modules, we make use of [3] and [20]. For convenience of
exposition, we treat briefly the role of hyperplane sections in Hilbert functions and examine
unmixed modules. We add further clarifications when we define homological degrees.

2.1 Hyperplane Sections and Hilbert Polynomials

We need rules to compute these coefficients. Typically, they involve the so-called superficial
elements or filter regular elements. We keep the terminology of generic hyperplane section,
even when dealing with Samuel’s multiplicity with respect to an m–primary ideal I and
its Hilbert coefficients ei(M) = ei(I,M). Hopefully, this usage will not lead to undue
confusion. We say that h ∈ I is a parameter for M if dimR M/hM < dimR M .

Let us begin with the following.

Lemma 2.1 Let (R,m) be a Noetherian local ring, I an m–primary ideal of R, and M a
finitely generated R–module. Let h ∈ I and suppose that λ(0 :M h) < ∞. Then, we have
the following.

(a) h is a parameter for M , if dimR M > 0.
(b) λ(0 :M h) ≤ λ(H0

m(M/hM)).
(c) [24, (1.5)] If dimR M > 1 and M/hM is Cohen–Macaulay, then M is Cohen–

Macaulay.
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Proof Suppose that dimR M > 0 and let p ∈ SuppRM with dim R/p = dimR M . Then,

(0) :Mp

h

1
= (0)

since p �= m. As dimRp
Mp = 0, we get h �∈ p. Hence, h is a parameter for M if

dimR M > 0.
We look at the exact sequence

0 → (0) :M h → H0
m(M)

h→ H0
m(M)

ϕ→ H0
m(M/hM) → H1

m(M)
h→ H1

m(M)

→ H1
m(M/hM) → · · ·

of local cohomology modules derived from the exact sequence

0 → (0) :M h → M
h→ M → M/hM → 0

of R–modules. We then have

λ ((0) :M h) = λ(Imϕ) = λ
(

H0
m(M/hM)

)
− λ

(
(0) :H1

m(M) h
)

≤ λ
(

H0
m(M/hM)

)
.

Therefore, if dimR M > 1 and M/hM is Cohen–Macaulay, then h is M–regular and hence
M is Cohen–Macaulay as well.

We will make repeated use of [21, (22.6)] and [19, Section 3] (see also [23] and [24] for
a more general version of these results).

Proposition 2.2 Let (R,m) be a Noetherian local ring, I an m–primary ideal of R, and
M a finitely generated R–module with r = dimR M > 0. Let h ∈ I and assume that h is
superficial for M with respect to I (in particular h ∈ I \ mI ).

(a) The Hilbert coefficients of M and M/hM satisfy

ei(M) = ei(M/hM) for 0 ≤ i < r − 1 and

er−1(M) = er−1(M/hM) + (−1)rλ(0 :M h).

(b) Let 0 → A → B → C → 0 be an exact sequence of finitely generated R–modules. If
t = dimR A < s = dimR B, then ei(B) = ei(C) for 0 ≤ i < s − t . In particular, if
t = 0 and s ≥ 2, then e1(B) = e1(C).

(c) If M is a module of dimension 1 and I is a parameter ideal for M , then

e1(M) = −λ(H0
m(M)).

(d) If M is a module of dimension 2 and I is a parameter ideal for M , then

e1(M) = e1(M/hM) + λ(0 :M h) = −λ
(

H0
m(M/hM)

)
+ λ(0 :M h)

= −λ
(
(0) :H1

m(M) h
)

.

Proof See Proof of Lemma 2.1 for assertion (d).

The following corollary was previously observed in [19]. By induction on r = dimR M ,
it also can be achieved independently using Proposition 2.2.

Corollary 2.3 If M is a module of positive dimension and I is a parameter ideal for M ,
then e1(I,M) ≤ 0.



42 L. Ghezzi et al.

2.2 Unmixed Modules

We recall the notion of unmixed local rings and modules and develop a setting to study their
Hilbert coefficients.

Definition 2.4 Let (R,m) be a Noetherian local ring of dimension d . Then, we say that R
is unmixed if dim R̂/p = d for every p ∈ AssR̂, where R̂ is the m–adic completion of R.
Similarly, let M be a finitely generated R–module of dimension r . Then, we say that M is
unmixed if dim R̂/p = r for every p ∈ AssR̂M̂ , where M̂ denotes the m–adic completion of
M .

Our formulation of unmixedness is the following.

Theorem 2.5 Let R be a Noetherian local ring and M a finitely generated R–module with
dimR M = dim R. Then, the following conditions are equivalent:

(i) M is an unmixed R–module.
(ii) There exists a surjective homomorphism S → R̂ of rings together with an embedding

M̂ ↪→ Sn as an S–module for some n > 0, where S is a Gorenstein local ring with
dim S = dim R.

Proof We have only to prove (i) ⇒ (ii). We may assume R is complete. Thanks to Cohen’s
structure theorem of complete local rings, we can choose a surjective homomorphism
S → R of rings such that S is a Gorenstein local ring with dim S = dim R. Then, because
AssSM ⊆ AssS and the Sp–module Mp is reflexive for all p ∈ AssSM , the canonical map

M → HomS(HomS(M, S), S)

is injective, while we get an embedding

HomS(HomS(M, S), S) ↪→ Sn

for some n > 0 because HomS(M, S) is a finitely generated S–module. Hence, the result.

Corollary 2.6 ([11]) Let (R,m) be a Noetherian local ring and M a finitely generated R–
module with dimR M = dim R ≥ 2. If M is an unmixed R–module, then H1

m(M) is finitely
generated.

Proof We may assume R is complete. We maintain the notation in Proof of Theorem 2.5
and let n denote the maximal ideal of S. Then, applying the functors Hi

n(∗) to the exact
sequence

0 → M → Sn → C → 0

of S–modules, we get H1
m(M) ∼= H0

n(C) because depthS ≥ 2. Hence, H1
m(M) is finitely

generated.

3 Vanishing of e1(Q, M)

Let R be a Noetherian local ring with maximal ideal m and M a finitely generated R–module
with r = dimR M . Recall that a parameter ideal for M is an ideal Q = (x1, x2, . . . , xr ) ⊆ m

in R with λ(M/QM) < ∞.
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Theorem 3.1 Let R be a Noetherian local ring and M a finitely generated R–module with
dimR M ≥ 2. Suppose that M is unmixed and let Q be a parameter ideal for M . Then, the
following conditions are equivalent :

(i) M is a Cohen–Macaulay R–module.
(ii) e1(Q,M) = 0.

Proof We set e1(Q) = e1(Q,M). It is enough to show that if M is not Cohen–Macaulay,
then e1(Q) < 0. We may assume that R is complete with an infinite residue field and
dim R = dim M .

Choose a Gorenstein local ring (S, n) and a surjection S → R, with dim S = dim R.
If Q is a parameter ideal of R, there exists a parameter ideal q of S such that qR = Q

([9, Lemma 3.1]). Therefore, the associated graded module of Q relative to M is isomorphic
to the associated graded module of q with respect to the S–module M:

grQ(M) � grq(M),

which implies that
e1(Q) = e1(q,M),

where e1(q,M) denotes the first Hilbert coefficient of q with respect to the S–module M .
Consider the exact sequence of S–modules obtained from Proposition 2.5:

0 → M → Sn → C → 0.

Let y be a superficial element for q with respect to M such that y is part of a minimal
generating set of q. We may assume that y is a nonzero divisor on M . By tensoring the exact
sequence of S–modules with S/(y), we get

0 → T = TorS
1(S/(y), C) → M/yM

ζ→ Sn/ySn → C/yC → 0.

Let M ′ = M/yM and N = Im(ζ ) and consider the short exact sequence:

0 → T → M ′ → N → 0.

Then, either T = 0 or T has finite length λ(T ) < ∞. Note that N is an unmixed S/(y)-
module.

We use induction on d = dim M to show that if M is not Cohen–Macaulay, then
e1(q, M) < 0.

Let d = 2 and q = (y, z). Then, T �= 0 so that λ(T ) < ∞. Applying the Snake Lemma to

we get for sufficiently large n,

λ(M ′/znM ′) = λ(T ) + λ(N/znN).

Computing the Hilbert polynomials, we have

e1(q,M) = e1(q/(y),M/yM) = −λ(T ) < 0.

Now suppose that d ≥ 3. From the exact sequence

0 → T → M ′ = M/yM → N → 0,
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we have
e1(q, M) = e1(q/(y),M/yM) = e1(q/(y),N).

By an induction argument, it is enough to show that N is not Cohen–Macaulay since
dim(S/(y)) = d − 1.

Suppose that N is Cohen–Macaulay. Let n be the maximal ideal of S/yS. From the exact
sequence

0 → T → M ′ = M/yM → N → 0,

we obtain the long exact sequence:

0 → H0
n(T ) → H0

n(M ′) → H0
n(N) → H1

n(T ) → H1
n(M ′) → H1

n(N).

By the assumption that N is Cohen–Macaulay of dimension d − 1 ≥ 2 and the fact that T

is a torsion module, we get

0 → T � H0
n(M ′) → 0 → 0 → H1

n(M ′) → 0.

From the exact sequence

0 → M
·y→ M → M ′ = M/yM → 0,

we obtain the following exact sequence:

0 → T � H0
n(M ′) → H1

n(M)
·y→ H1

n(M) → H1
n(M ′) = 0.

Since H1
n(M) is finitely generated by Corollary 2.6 and H1

n(M) = yH1
n(M), we have

H1
n(M) = 0. This means that T = 0. Therefore,

0 → T = 0 → M/yM � N → 0.

Since N is Cohen–Macaulay, M/yM is Cohen–Macaulay. Since y is regular on M , M is
Cohen–Macaulay, which is a contradiction.

Example 3.2 ([32]) Let M = R = k[[x, y, z]]/(z(x, y, z)). Then, H0
m(R) = (z) and

S = R/H 0
m(R) � k[[x, y]] is Cohen-Macaulay. If Q is a parameter ideal of R, then

e1(Q, R) = e1(QS, S) = 0. Hence, e1(Q, R) = 0, but R is not Cohen-Macaulay.
Therefore, the unmixdness condition is necessary in Theorem 3.1.

Let us list some consequences of Theorem 3.1. Let R be a Noetherian local ring and M

a finitely generated R-module. We put

AsshRM = {p ∈ AssRM | dim R/p = dimR M}.
Let (0M) = ⋂

p∈AssRM M(p) be a primary decomposition of 0M in M , where M(p) is a
p–primary submodule of M for each p ∈ AssRM . We put

UM(0) =
⋂

p∈AsshRM

M(p)

and call it the unmixed component of M . We then have the following.

Lemma 3.3 Let R be a Noetherian local ring and M a finitely generated R–module with
r = dimR M > 0. Let Q be a parameter ideal for M . Let U = UM(0) and suppose that
U �= (0). We put N = M/U . Then, the following assertions hold.

(a) dimR U < dimR M .
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(b)

e1(Q,M) =
⎧
⎨

⎩

e1(Q,N) if dimR U ≤ r − 2,

e1(Q,N) − s0 if dimR U = r − 1,

where s0 ≥ 1 denotes the multiplicity of the graded grQ(R)–module⊕
n≥0 U/(Qn+1M ∩ U).

(c) e1(Q,M) ≤ e1(Q,N) and the equality e1(Q,M) = e1(Q,N) holds if and only if
dimR U ≤ r − 2.

Proof (a) This is clear since Up = (0) for all p ∈ AsshRM .
(b) We write

λR

(
U/(Qn+1M ∩ U)

)
= s0

(
n + t

t

)
− s1

(
n + t − 1

t − 1

)
+ · · · + (−1)t st

for n � 0 with integers {si}0≤i≤t , where t = dimR U . Then, the claim follows from
the exact sequence 0 → U → M → N → 0 of R–modules, which gives

λR(M/Qn+1M) = λR(N/Qn+1N) + λR(U/(Qn+1M ∩ U)), ∀ n ≥ 0.

(c) This follows from (b) and the fact that s0 ≥ 1.

Theorem 3.4 Let R be a Noetherian local ring and M a finitely generated R–module with
r = dimR M ≥ 2. Suppose that R is a homomorphic image of a Cohen–Macaulay ring.
Let U = UM(0) and let Q be a parameter ideal for M . Then, the following conditions are
equivalent :

(i) e1(Q,M) = 0.
(ii) M/U is a Cohen–Macaulay R–module and dimR U ≤ r − 2.

Proof It is enough to prove (i) ⇒ (ii). If dimR U = r−1, then by (i) and Lemma 3.3–(b), we
obtain 0 ≥ e1(Q,M/U) = s0 ≥ 1, which is a contradiction. Hence, dimR U ≤ r −2. This
means that 0 = e1(Q,M) = e1(Q,M/U). By Theorem 3.1, M/U is Cohen–Macaulay.

The implication (i) ⇒ (ii) in Theorem 3.4 is not true in general without the assump-
tion that R is a homomorphic image of a Cohen–Macaulay ring (see [8, Remark 2] for an
example). The following corollary gives a characterization of Cohen–Macaulayness.

Corollary 3.5 Let R be a Noetherian local ring, M a finitely generated R–module with
r = dimR M > 0, and Q a parameter ideal for M . Let 1 ≤ k ≤ r be an integer and assume
that ei(Q,M) = 0 for all 1 ≤ i ≤ k. Then,

dimR̂ UM̂ (0) ≤ r − (k + 1) and Hr−j
m (M) = (0)

for all 1 ≤ j ≤ k. In particular, if k = r , then M is a Cohen–Macaulay R–module.

Proof We may assume that R is complete. We put U = UM(0) and N = M/U . Then,
e0(Q, M) = e0(Q,N) since dimR U < r . Therefore, by Theorem 3.4, N is a Cohen–
Macaulay R–module so that we have exact sequences

0 → U/Qn+1U → M/Qn+1M → N/Qn+1N → 0
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of R–modules for all n ≥ 0. Hence, computing Hilbert polynomials, we get dimR U ≤
r−(k+1). Let 1 ≤ j ≤ k. Then, Hr−j

m (U) = (0), since dimR U < r−j , while Hr−j
m (N) =

(0), as N is a Cohen–Macaulay R–module with dimR N = r . Thus, Hr−j
m (M) = (0) as

claimed.

Let R be a Noetherian local ring and M a finitely generated R–module. In [8], the authors
examined the rings with e1(Q,R) vanishing. Here, we briefly extend this theory to modules.
Let us begin with the definition.

Definition 3.6 A finitely generated R–module M is called a Vasconcelos module1 if either
dimR M = 0 or dimR M > 0 and e1(Q,M) = 0 for some parameter ideal Q for M .

Every Cohen–Macaulay module is by definition Vasconcelos. Here is a basic characteri-
zation. We omit the proof since it is similar to those in the ring case.

Theorem 3.7 Let (R,m) be a Noetherian local ring and M a finitely generated R–module
with r = dimR M ≥ 2. Let U = UM̂ (0) be the unmixed component of (0) in the m–adic
completion M̂ of M . Then, the following conditions are equivalent :

(i) M is a Vasconcelos R–module.
(ii) e1(Q,M) = 0 for every parameter ideal Q for M .

(iii) M̂/UM̂ (0) is a Cohen–Macaulay R̂–module and dimR̂UM̂ (0) ≤ r − 2.
(iv) There exists a proper R̂–submodule L of M̂ such that M̂/L is a Cohen–Macaulay

R̂–module with dimR̂L ≤ r − 2.

When this is the case, M̂ is a Vasconcelos R̂–module and Hr−1
m (M) = (0).

Remark 3.8 Several properties of Vasconcelos rings such as [8, 3.5, 3.8, 3.9, 3.10, 3.11,
3.12, 3.13, 3.15, 3.16, 3.17] can be all extended to Vasconcelos modules.

4 Generalized Cohen–Macaulayness of Modules with Λ(M) Finite

Let R be a Noetherian local ring with maximal ideal m and M a finitely generated R–module
with r = dimR M > 0. In this section, we study the problem of when the set

Λ(M) = {e1(Q,M) | Q is a parameter ideal for M}
is finite. Part of the motivation comes from the fact that generalized Cohen–Macaulay mod-
ules have this property. Recall that M is said to be generalized Cohen–Macaulay if all
the local cohomology modules {Hi

m(M)}0≤i<r are finitely generated (see [6] where these
modules originated).

Assume that M is a generalized Cohen–Macaulay R–module with r = dimR M ≥ 2 and
put

s =
r−1∑

i=1

(
r − 2

i − 1

)
hi(M),

1The terminology is due to the other five authors.
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where hi(M) = λR(Hi
m(M)) for each i ∈ Z. If Q is a parameter ideal for M , by the proof

of [12, Lemma 2.4], we have that e1(Q,M) ≥ −s. Since e1(Q,M) ≤ 0 by Corollary 2.3,
it follows that Λ(M) is a finite set.

Let us establish here that if M is unmixed and Λ(M) is finite, then M is indeed a
generalized Cohen–Macaulay R–module (Proposition 4.2).

Assume now that R is a homomorphic image of a Gorenstein local ring and that
AssRM = AsshRM . Then, R contains a system x1, x2, . . . , xr of parameters of M which
forms a strong d-sequence for M , that is, the sequence x

n1
1 , x

n2
2 , . . . , x

nr
r is a d-sequence

for M for all integers n1, n2, . . . , nr ≥ 1 (see [5, Theorem 2.6] or [17, Theorem 4.2] for
the existence of such systems of parameters). For each integer q ≥ 1, let Λq(M) be the set
of values e1(Q,M), where Q runs over the parameter ideals for M such that Q ⊆ mq and
Q = (x1, x2, . . . , xr ) with x1, x2, . . . , xr a d-sequence for M . We then have Λq(M) �= ∅,
Λq+1(M) ⊆ Λq(M) for all q ≥ 1 and α ≤ 0 for every α ∈ Λq(M) (Corollary 2.3).

The following result plays a key role in our argument. The proof which we present here
is based on Theorem 2.5 and slightly different from that of the ring case.

Lemma 4.1 Let (R,m) be a Noetherian local ring and assume that R is a homomorphic
image of a Gorenstein ring. Let M be a finitely generated R–module with r = dimR M ≥ 2
and AssRM = AsshRM . Assume that Λq(M) is a finite set for some integer q ≥ 1 and put
� = −minΛq(M). Then, m�Hi

m(M) = (0) for all i �= r and hence all the local cohomology
modules {Hi

m(M)}0≤i<r are finitely generated.

Proof Passing to the ring R/[(0) :R M], we may assume that R is a Gorenstein ring with
dim R = dimR M = r . Enlarging the residue class field R/m of R if necessary, we may
assume the field R/m is infinite. By Corollary 2.6, H1

m(M) is finitely generated since M is
unmixed.

Suppose that r = 2. We put �′ = λ(H1
m(M)). Let Q = (x, y) ⊆ mq be a sys-

tem of parameters for M such that QH1
m(M) = (0) and x, y is a d-sequence for M .

Then, x is superficial for M with respect to Q. Hence, by Proposition 2.2 (d), we get
e1(Q, M) = − λ (H1

m(M)) = −�′. Thus, � ≥ �′, as −�′ = e1(Q,M) ∈ Λq(M). Hence,
m�H1

m(M) = (0) because m�′
H1
m(M) = (0).

Suppose that r ≥ 3 and that our assertion holds true for r −1. We have an exact sequence

(�) 0 → M → Rn → C → 0

of R–modules by Theorem 2.5. Choose an R-regular element x ∈ R so that x is superfi-
cial both for M and C with respect to m. Let us fix an integer m ≥ 1. We put y = xm,
N = M/yM , and look at the exact sequence

0 → (0) :C y → N
ϕ→ (R/yR)n → C/yC → 0

of R–modules obtained by sequence (�). Let L = Imϕ. Then, dimR L = r − 1,
AssRL = AsshRL and H0

m(N) ∼= (0) :C y because L is an R–submodule of (R/yR)n and
λ((0) :C y) < ∞. Hence, L ∼= N/H0

m(N).
Let q ′ ≥ q be an integer such that mq ′

N ∩ H0
m(N) = (0). Let y2, y3, . . . , yr ∈ mq ′

be
a system of parameters for L and assume that y2, y3, . . . , yr is a d-sequence for L. Then,
since (y2, y3, . . . , yr )N ∩ H0

m(N) = (0), we get y2, y3, . . . , yr forms a d-sequence for N

also. Therefore, since y is M-regular, the sequence y1 = y, y2, . . . , yr forms a d-sequence
for M; whence, y1 is superficial for M with respect to Q = (y1, y2, . . . , yr ). Consequently,

e1((y2, y3, . . . , yr ), L) = e1((y2, y3, . . . , yr ), N) = e1(Q,M) ∈ Λq(M),
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so that Λq ′(L) ⊆ Λq(M). Hence, because the set Λq ′(L) is finite, the hypothesis of induc-
tion on r yields that m�′′

Hi
m(L) = (0) for all i �= r − 1, where �′′ = −minΛq ′(L). Thus,

because �′′ ≤ �, m�Hi
m(L) = (0) for all i �= r − 1. Hence, m�Hi

m(N) = (0) for all
1 ≤ i < r − 1 because Hi

m(N) ∼= Hi
m(L) for i ≥ 1.

Look now at the exact sequence

(��) · · · → H1
m(M)

xm→ H1
m(M) → H1

m(N) → · · · → Hi
m(N)

→ Hi+1
m (M)

xm→ Hi+1
m (M) → · · ·

of local cohomology modules. We then have

m�
[
(0) :Hi+1

m (M)
xm

]
= (0)

for all integers 1 ≤ i ≤ r −2 and m ≥ 1 since m�Hi
m(N) = (0) for all 1 ≤ i ≤ r −2. Thus,

m�Hi+1
m (M) = (0) because

Hi+1
m (M) =

⋃

m≥1

[
(0) :Hi+1

m (M)
mm

]
.

On the other hand, from sequence (��), we get the embedding H1
m(M) ⊆ H1

m(N), choosing
the integer m ≥ 1 so that xmH1

m(M) = (0). Hence, m�H1
m(M) = (0), which completes the

proof of Lemma 4.1.

Since Λ(M) = Λ(M̂), passing to the completion M̂ of M and applying Lemma 4.1, we
readily get the following.

Proposition 4.2 Let (R,m) be a Noetherian local ring and M a finitely generated
unmixed R–module with r = dimR M ≥ 2. Assume that Λ(M) is a finite set and put
� = −minΛ(M). Then, m�Hi

m(M) = (0) for every i �= r so that M is a generalized
Cohen–Macaulay R–module.

We conclude this section with a characterization of R–modules for which Λ(M) is finite.
Let us note the following with a brief proof.

Lemma 4.3 Let R be a Noetherian local ring and M a finitely generated R–module with
r = dimR M ≥ 2. Assume that there exists an integer t ≥ 0 such that e1(Q, M) ≥ −t for
every parameter ideal Q for M . Then dimR UM(0) ≤ r − 2.

Proof Let U = UM(0) and N = M/U . Assume that dimR U = r − 1. Choose a system
x1, x2, . . . , xr of parameters of M such that xrU = (0). Let � > t be an integer and put
Q = (

x�
1, x2, . . . , xr

)
. Then, we get exact sequences

0 → U/(Qn+1M ∩ U) → M/Qn+1M → N/Qn+1N → 0

of R–modules for all n ≥ 0. Let us take an integer k ≥ 0 so that

QnM ∩ U = Qn−k
(
QkM ∩ U

)

for n ≥ k and consider U ′ = QkM ∩ U . Let q = (
x�

1, x2, . . . , xr−1
)
. We then have

Qn−kU ′ = qn−kU ′,
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as xrU = (0). Hence, for all n ≥ k

λR(M/Qn+1M) = λR(N/Qn+1N) + λR(U ′/qn−k+1U ′) + λR(U/U ′),

which yields −t ≤ e1(Q,M) = e1(Q,N) − e0(q, U
′). Hence,

−t ≤ e1(Q, M) = e1(Q,N) − e0(q, U),

because e0(q, U) = e0(q, U
′) (remember that λ(U/U ′) < ∞). Therefore, since

e1(Q, N) ≤ 0 by Corollary 2.3, we get

� ≤ �e0((x1, x2, . . . , xr−1), U) = e0(q, U) ≤ e1(Q,N) + t ≤ t,

which is impossible. Thus, dimR U ≤ r − 2.

Remark 4.4 Let R be a Noetherian local ring and M a finitely generated R–module with
r = dimR M ≥ 2. Assume that dimR UM(0) ≤ r − 2. Let q be a parameter ideal for
N = M/UM(0). Then one can find a parameter ideal Q for M with QN = qN so that
e1(q, N) = e1(q,M) by Lemma 3.3. Hence, Λ(M) = Λ(N).

The goal of this section is the following.

Theorem 4.5 Let (R,m) be a Noetherian local ring and M a finitely generated R–module
with r = dimR M ≥ 2. Let U = UM̂ (0) denote the unmixed component of (0) in the m-adic
completion M̂ of M . Then, the following conditions are equivalent :

(i) Λ(M) is a finite set.
(ii) M̂/U is a generalized Cohen–Macaulay R̂–module and dimR̂ U ≤ r − 2.

When this is the case, one has the estimation

0 ≥ e1(Q, M) ≥ −
r−1∑

i=1

(
r − 2

i − 1

)
hi(M̂/U)

for every parameter ideal Q for M .

Proof We may assume that R is complete.

(i) ⇒ (ii) Since the set Λ(M) is finite, by Proposition 4.3, we get dimR U ≤ r − 2. By
Remark 4.4, the set Λ(M/U) is finite so that M/U is a generalized Cohen–Macaulay
R–module by Proposition 4.2.

(ii) ⇒ (i) By [12, Lemma 2.4], the set Λ(M/U) is finite and hence the set Λ(M) is also
finite by Lemma 3.3.

See [12, Lemma 2.4] for the last assertion.

5 Buchsbaumness of Modules Possessing Constant First Hilbert Coefficients
of Parameters

Let R be a Noetherian local ring with maximal ideal m and M a finitely generated R–
module with r = dimR M > 0. In this section, we study the problem when e1(Q, M) is
independent of the choice of parameter ideals Q for M . Part of the motivation comes from
the fact that Buchsbaum modules have this property. We establish here that if e1(Q,M) is
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constant and M is unmixed, then M is indeed a Buchsbaum R–module (Theorem 5.4) (see
[13] for the ring case).

First of all, let us recall some definitions. A system x1, x2, . . . , xr of parameters of M is
said to be standard if it forms a d+-sequence for M , that is, x1, x2, . . . , xr forms a strong d-
sequence for M in any order. Remember that M possesses a standard system of parameters
if and only if M is a generalized Cohen–Macaulay R–module ([29]).

Let Q be a parameter ideal for M . Then, we say that Q is standard if it is generated by a
standard system of parameters of M . Remember that Q is standard if and only if the equality

λR(M/QM) − e0(Q,M) =
r−1∑

i=0

(
r − 1

i

)
hi(M) := I(M)

holds ([29, Theorem 2.1]). It is known that every system of parameters of M contained in a
standard parameter ideal for M is standard ([29]).

Suppose that M is a generalized Cohen–Macaulay R–module with r = dimR M ≥ 2 and
s = ∑r−1

i=1

(
r−2
i−1

)
hi(M). If Q is a parameter ideal for M , then by [12, Lemma 2.4], we get

e1(Q, M) ≥ −s, where the equality holds if Q is standard ([25, Korollar 3.2]).
We say that our R–module M is Buchsbaum if every parameter ideal for M is standard.

Hence, if M is a Buchsbaum R-module with r = dimR M ≥ 2, then M is a generalized
Cohen–Macaulay R–module with

e1(Q, M) = −
r−1∑

i=1

(
r − 2

i − 1

)
hi(M)

for every parameter ideal Q (see [28] for a detailed theory of Buchsbaum rings and
modules).

We begin with the following two results, whose proofs are similar to those in the ring
case (see [8, Lemma 4.5] and [13, Proposition 2.3]).

Lemma 5.1 Let (R,m) be a Noetherian local ring and M a generalized Cohen–Macaulay
R–module with r = dimR M ≥ 2 and depthRM > 0. Let Q be a parameter ideal for M

such that e1(Q,M) = −∑r−1
i=1

(
r−2
i−1

)
hi(M). Then, QHi

m(M) = (0) for all 1 ≤ i ≤ r − 1.

For each x ∈ m, we put UM(x) := ⋃
n≥0[xM :M mn].

Proposition 5.2 Let (R,m) be a Noetherian local ring and M a generalized Cohen–
Macaulay R–module with r = dimR M ≥ 3 and depthRM > 0. Let Q = (x1, x2, . . . , xr )

be a parameter ideal for M . Assume that (x1, xr )H1
m(M) = (0) and that the parameter ideal

(x1, x2, . . . , xr−1) for the generalized Cohen–Macaulay R–module M/UM(xr) is standard.
Then, UM(x1) ∩ QM = x1M .

We then have the following, which is the key in our argument. The proof is similar to
the ring case [13, Theorem 2.1], but let us note a brief proof in order to see how we use the
previous results of Lemma 5.1 and Proposition 5.2.

Theorem 5.3 Let (R,m) be a Noetherian local ring and let M be a generalized Cohen–
Macaulay R–module with r = dimR M ≥ 2 and depthRM > 0. Let Q be a parameter ideal
for M . Then, the following conditions are equivalent :
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(i) Q is a standard parameter ideal for M .
(ii) e1(Q,M) = −∑r−1

i=1

(
r−2
i−1

)
hi(M).

Proof We have only to show the implication (ii) ⇒ (i). To do this, we may assume that the
residue class field R/m of R is infinite. We write Q = (x1, x2, . . . , xr ), where each xj is
superficial for M with respect to Q. Remember that by Lemma 5.1, QHi

m(M) = (0) for all
i �= r . Hence, Q is standard if r = 2 ([29, Corollary 3.7]).

Assume that r ≥ 3 and that our assertion holds true for r−1. Let 1 ≤ j ≤ r be an integer.
We put N = M/xjM , M = N/H0

m(N) (= M/UM(xj )) and Qj = (xi | 1 ≤ i ≤ r, i �= j).
Then, Hi

m(N) ∼= Hi
m(M) for all i ≥ 1. On the other hand, since xj Hi

m(M) = (0) for i �= r

and xj is M-regular, for each 0 ≤ i ≤ r − 2, we have the short exact sequence

0 → Hi
m(M) → Hi

m(N) → Hi+1
m (M) → 0

of local cohomology modules. Hence, I(M) = I(N) and

e1(Q,M) = e1(Qj ,N) = e1(Qj ,M)

≥ −
r−2∑

i=1

(
r − 3

i − 1

)
hi(M)

= −
r−2∑

i=1

(
r − 3

i − 1

)
hi(N)

= −
r−2∑

i=1

(
r − 3

i − 1

)
[hi(M) + hi+1(M)]

= −
r−1∑

i=1

(
r − 2

i − 1

)
hi(M)

= e1(Q,M),

so that the equality

e1(Qj ,M) = −
r−2∑

i=1

(
r − 3

i − 1

)
hi(M)

holds for the parameter ideal Qj for the generalized Cohen–Macaulay R–module
M = M/UM(xj ). Thus, by the hypothesis of induction on r = dimR M , Qj is a stan-
dard parameter ideal for M/UM(xj ) for every 1 ≤ j ≤ r . Hence, UM(x1) ∩ QM = x1M

by Proposition 5.2. Thus, Q1 is a standard parameter ideal for M/x1M ([29, Corollary
2.3]). Therefore, Q is a standard parameter ideal for M because I(M) = I(M/x1M)

([29, Corollary 2.4]).

We are now ready to prove the main result of this section.

Theorem 5.4 Let (R,m) be a Noetherian local ring and M an unmixed R–module with
r = dimR M ≥ 2. Then, the following conditions are equivalent :

(i) M is a Buchsbaum R–module.
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(ii) The first Hilbert coefficient e1(Q,M) of M is constant and independent of the choice
of parameter ideals Q for M .

When this is the case, one has the equality

e1(Q, M) = −
r−1∑

i=1

(
r − 2

i − 1

)
hi(M)

for every parameter ideal Q for M , where hi(M) = λ(Hi
m(M)) for each 1 ≤ i ≤ r − 1.

Proof (i) ⇒ (ii) This is due to Schenzel [25].
(ii) ⇒ (i) Since �Λ(M) = 1, by Proposition 4.2, M is a generalized Cohen–Macaulay

R–module. Hence, Λ(M) = {−∑r−1
i=1

(
r−2
i−1

)
hi(M)} by [25, Korollar 3.2] so that by

Theorem 5.3, every parameter ideal Q for M is standard. Thus, M is, by definition, a
Buchsbaum R–module ([27]).

See [25] for the last assertion.

e1(Q,M) = −
r−1∑

i=1

(
r − 2

i − 1

)
hi(M̂/U)

for every parameter ideal Q for M .

Proof We may assume R is complete.

(i) ⇒ (ii) Since �Λ(M) = 1, dimR U ≤ r − 2 by Proposition 4.3. We get �Λ(M/U) = 1
by Remark 4.4 so that by Theorem 5.4, M/U is a Buchsbaum R-module.

(ii) ⇒ (i) We get by Theorem 5.4 that �Λ(M/U) = 1 and hence �Λ(M) = 1 by Lemma
3.3.

See Theorem 5.4 for the last assertion.

6 Homological Degrees

In this section, we deal with the variation of the extended degree function hdeg ([7, 30]),
labeled hdegI (see [18], [31, p. 142]). We recall the basic properties of these functions.
These techniques and their relationships to e1(I ) have been mentioned in [32], but the
treatment here is more focused. It will lead to sharper bounds in the case of e1(I,M).

We are now in a position to conclude this section with a characterization of R–modules
possessing �Λ(M) = 1.

Theorem 5.5 Let (R,m) be a Noetherian local ring and M a finitely generated R–module
with r = dimR M ≥ 2. Let U = UM̂ (0) be the unmixed component of (0) in the m-adic
completion M̂ of M . Then, the following conditions are equivalent :

(i) �Λ(M) = 1
(ii) M̂/U is a Buchsbaum R̂–module and dimR̂ U ≤ r − 2.

When this is the case, one has the equality
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6.1 Cohomological Degrees

Let R be a Noetherian local ring with maximal ideal m and infinite residue class field. Let
M(R) denote the category of finitely generated R-modules and let I be an m–primary ideal
of R. Then, one has the following extension of the classical multiplicity.

Definition 6.1 A cohomological degree, or extended multiplicity function with respect to I ,
is a function

Deg(·) : M(R) → N

that satisfies the following conditions. Let M ∈ M(R).

(a) If L = 
m(M) is the R-submodule of elements of M that are annihilated by a power
of the maximal ideal m and M = M/L, then

Deg(M) = Deg(M) + λ(L).

(b) (Bertini’s rule) If M has positive depth, then

Deg(M) ≥ Deg(M/hM)

for every generic hyperplane section h ∈ I \ mI .
(c) (The calibration rule) If M is a Cohen-Macaulay R–module, then

Deg(M) = deg(M),

where deg(M) = e0(I,M) is the Samuel multiplicity of M with respect to I .

The existence of cohomological degrees in arbitrary dimensions was established in [30].
Let us formulate it for the case where the ring R is complete. The use of the more gen-
eral Samuel multiplicities was introduced in [18]. When precision demands, we denote the
degree and homological degree functions associated to the m-primary ideal I by degI and
hdegI , respectively.

For the rest of this section, suppose that R is complete. For each finitely generated R–
module M and j ∈ Z, let

Mj = HomR

(
Hj
m(M),E

)
,

where E = ER(R/m) denotes the injective envelope of the residue class field. Then, thanks
to the local duality theorem, one gets dimR Mj ≤ j for all j ∈ Z.

Definition 6.2 Let M be a finitely generated R-module with r = dimR M > 0. Then, the
homological degree of M is the integer

hdeg(M) = deg(M) +
r−1∑

j=0

(
r − 1

j

)
· hdeg

(
Mj

)
.

We call attention to the fact (see [30] for details) that the notion of generic hyperplane
section used for hdeg(M) are superficial elements not only for M and for all Mj but also
for the iterated ones of these modules (there are only a finite number of them).

We will employ hdeg to derive lower bounds for e1(I,M).
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6.2 Homological Torsion

There are other combinatorial expressions of the terms hdegI (Mj ) that behave well under
hyperplane sections.

Definition 6.3 Let M be an R-module with r = dimR M ≥ 2. For each integer
1 ≤ i ≤ r − 1, we put

T(i)
I (M) =

r−i∑

j=1

(
r − i − 1

j − 1

)
· hdegI (Mj ).

Hence,

hdegI (M) > T(1)
I (M) ≥ T(2)

I (M) ≥ · · · ≥ T(r−1)
I (M).

If M is a generalized Cohen-Macaulay R–module, then

T(i)
I (M) =

r−i∑

j=1

(
r − i − 1

j − 1

)
λ

(
Hj
m(M)

)

which is independent of I .

We then have the following.

Theorem 6.4 [30, Theorem 2.13] Let M be a finitely generated R–module with
r = dimR M and let h be a generic hyperplane section. Then, T(i)

I (M/hM) ≤ T(i)
I (M)

for all 1 ≤ i ≤ r − 2.

We now turn this into a uniform bound for the first Hilbert coefficient of a module M

relative to an ideal I generated by a system of parameters of M . We note that there are
general bounds for all Hilbert coefficients ei(I,M) for arbitrary m-primary ideals I ([22]).
Those developed here have a more specialized character and hold only for e1(I,M) and
parameter ideals I .

Theorem 6.5 Let M be a finitely generated R–module with dimR M = dim R ≥ 2 and let
Q be a parameter ideal of R. Then,

−e1(Q,M) ≤ T(1)
Q (M).

Proof Let d = dim R and let h ∈ Q \ mQ be a generic hyperplane section used for
hdegQ(M). Since

−e1(Q,M) = −e1

(
Q,M/H0

m(M)
)

and T(1)
Q

(
M/H0

m(M)
)

≤ T(1)
Q (M),

replacing M with M/H0
m(M) if necessary, we may assume depthRM ≥ 1. We may also

assume that h is superficial for M and for all Mj (0 ≤ j ≤ d −1) with respect to Q. Hence,
h is M–regular and λ(M1/hM1) < ∞ (remember that dimR M1 ≤ 1). Suppose d = 2.

Then, T(1)
Q (M) = hdegQ(M1) and −e1(Q,M) = λ

(
(0) :H1

m(M) h
)

by Proposition 2.2 (d).

On the other hand, from the exact sequence

0 −→ M
h−→ M −→ M/hM −→ 0
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of R–modules, we obtain the exact sequence

0 → (0) :H1
m(M) h → H1

m(M)
h→ H1

m(M).

Then, taking the Matlis dual, we have an epimorphism

M1/hM1 → HomR

(
(0) :H1

m(M) h,E
)

→ 0

so that

λ
(
(0) :H1

m(M) h
)

= hdegQ

(
HomR

(
(0) :H1

m(M) h, E
))

≤ hdegQ(M1/hM1) ≤ hdegQ(M1)

by Theorem 6.4. Thus, −e1(Q,M) ≤ T(1)
Q (M). If d ≥ 3, then we get

T(1)
Q/(h)(M/hM) ≤ T(1)

Q (M).

Hence, the result follows since −e1(Q,M) = −e1(Q/(h),M/hM) by Proposition 2.2
(a).

When the module is generalized Cohen-Macaulay, we recover the bound discussed at the
beginning of Section 4.

Corollary 6.6 If M is a generalized Cohen-Macaulay R–module with dimR M ≥ 1, then
the Hilbert coefficients e1(Q, M) are bounded for all parameter ideals Q for M .

Proof Passing to the ring R/[(0) :R M], we may assume that dim R = dimR M and that
Q is a parameter ideal of R. Then, e1(Q,M) ≤ 0 by Corollary 2.3. We get by Theorem 6.5

−e1(Q,M) ≤ T(1)
Q (M), while T(1)

Q (M) = ∑d−1
j=1

(
d−2
j−1

)
λ

(
Hj
m(M)

)
is independent of the

choice of Q. Hence, the result.

Corollary 6.7 Suppose that dimR M ≥ 1. Then, the set

{e1(Q,M) | Q are parameter ideals of M with the same integral closure}
is finite.

Proof For each parameter ideal Q of M , we get e1(Q,M) ≤ 0, while Theorem 6.5 asserts
that e1(Q,M) ≥ −T(1)

Q (M). Hence, the result follows because T(1)
Q (M) depends only on

Q̄, the integral closure of Q.

7 Euler Characteristics and Hilbert Characteristics

The relationship between partial Euler characteristics and superficial elements make for
a straightforward comparison with extended degree functions. Unless otherwise specified,
throughout, it is assumed that R is a Noetherian complete local ring with infinite residue
class field. We will prove that Euler characteristics can be uniformly bounded by homo-
logical degrees. The basic tool is the following observation, which is found in the proof of
[3, Theorem 4.6.10 (a)].

Proposition 7.1 Let M be a finitely generated R-module with r = dimR M ≥ 2. Let
x = {x1, x2, . . . , xr } be a system of parameters for M and set x′ = {x2, . . . , xr }. Then,

χ1(x; M) = χ1
(
x′; M/x1M

) + χ1
(
x′; 0 :M x1

)
.
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Theorem 7.2 Let M be a finitely generated R-module with dimR M = dim R = d ≥ 1.
Then, for every system x = {x1, x2, . . . , xd} of parameters of R, one has

χ1(x;M) ≤ hdegQ(M) − degQ(M),

where Q = (x).

Proof As λ(M/QM) = χ1(x;M) + degQ(M), we have only to show λ(M/QM) ≤
hdegQ(M). Let h ∈ Q \ mQ be a generic hyperplane section used for hdegQ(M). Then,
since λ(M/QM) = λ((M/hM)/Q·(M/hM)) and hdegQ/(h)(M/hM) ≤ hdegQ(M), by
induction on d , we may assume d = 1. When d = 1, χ1(x;M) = λ(0 :M x1), and hence
λ(M/QM) = χ1(x;M) + degQ(M) ≤ λ

(
H0
m(M)

) + degQ(M) = hdegQ(M), as
wanted.

Corollary 7.3 Suppose that dimR M ≥ 1. Then, for every primary ideal I of M , the set

ΞI (M) = {
χ1(x,M) | x are systems of parameters of M with �(x) = I

}

is finite.

Proof Both hdegQ(M) and degQ(M) depend only on the integral closure I = Q̄ of
Q = (x).

Definition 7.4 Let R be a Noetherian local ring and M a finitely generated R–module with
r = dimR M ≥ 1. For each system x = {x1, x2, . . . , xr } of parameters of M , the Hilbert
characteristic of M with respect to Q = (x) is defined to be

h(x;M) =
r∑

i=0

(−1)iei(Q,M).

The following proposition shows that the Hilbert characteristic can be characterized as a
quasi-cohomological degree for M .

Proposition 7.5 Let (R,m) be a Noetherian local ring and M a finitely generated R–
module with r = dimR M ≥ 1. Let x = {x1, x2, . . . , xr } be a system of parameters of M

and a d–sequence for M . Then, the Hilbert characteristic of M with respect to x satisfies
the following.

(a) Suppose that x1 is a superficial element for M and depthRM ≥ 1. Then,

h(x;M) = h(x′; M/x1M),

where x′ = {x2, . . . , xr }.
(b) Let M0 = H0

m(M) and M ′ = M/M0. Then,

h(x;M) = h(x; M ′) + λ(M0).

Proof Let Q = (x). Recall that, by [14, Proposition 3.4], we have (−1)rer (Q,M) =
λ

(
H 0

m(M)
)
.
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(a) We may assume that x1 is M–regular. By Proposition 2.2, we obtain

h(x;M) =
r−1∑

i=0

(−1)iei(Q,M) + (−1)rer (Q,M)

=
r−1∑

i=0

(−1)iei

(
x′,M/x1M

) = h
(
x′; M/x1M

)
.

(b) By applying Proposition 2.2-(b) to the exact sequence 0 → M0 → M → M ′ → 0,
we get

ei(Q, M) = ei

(
Q, M ′) for all 0 ≤ i ≤ r − 1.

Note that (−1)rer (Q,M ′) = λ(H 0
m(M ′)) = 0. Hence,

h(x;M) = ∑r
i=0(−1)iei(Q,M) = ∑r−1

i=0 (−1)iei(Q,M) + λ(M0)

= ∑r−1
i=0 (−1)iei(Q,M ′) + λ(M0)

= ∑r
i=0(−1)iei(Q,M ′) + λ(M0)

= h(x;M ′) + λ(M0).

Proposition 7.6 Let (R,m) be a Noetherian local ring and M a finitely generated R–
module with r = dimR M ≥ 1. Let x = {x1, x2, . . . , xr } be a system of parameters of M

and a d–sequence for M . Let Q = (x). Then,

h(x;M) = λ(M/QM).

In particular, h(x; M) ≥ e0(Q, M) with equality if and only if M is Cohen–Macaulay.

Proof Using [10, Theorem 3.7], one can prove that

(−1)iei(Q,M) = χ1 (x1, . . . , xr−i , xr−i+1;M) − χ1 (x1, . . . , xr−i;M) ≥ 0

for all 1 ≤ i ≤ r . Therefore,

h(x;M) = e0(Q, M) +
r∑

i=1

(−1)iei(Q, M)

= e0(Q, M) +
r∑

i=1

(χ1(x1, . . . , xr−i , xr−i+1; M) − χ1(x1, . . . , xr−i; M))

= χ0(x; M) + χ1(x;M)

= λ(M/QM).

Corollary 7.7 Let x be a system of parameters of M which is a d–sequence for M . Suppose
that x ∈ m \ m2. Then, the Betti numbers βR

i (M) satisfy

βR
i (M) ≤ λ(M/(x)M) · βR

i (k).
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Proof It follows from the argument of [31, Theorem 2.94], where we use the properties of
h(x; M) in the induction part.

Remark 7.8 Note that the condition x ∈ m \ m2 in Corollary 7.7 is needed in the induction
argument which requires the inequality of Betti numbers β

R/(x1)
i (k) ≤ βR

i (k)([15, Corollary
3.4.2]).

8 Buchsbaum-Rim Coefficients

In this section, let us note another set of related questions concerned about the vanishing
and the negativity of the Buchsbaum-Rim coefficients of modules.

Let R be a Noetherian local ring with maximal ideal m and d = dim R ≥ 1. The
Buchsbaum-Rim multiplicity ([4]) arises in the context of an embedding

0 → E −→ F = Rs −→ C → 0

of R–modules, where E ⊆ mF and C has finite length. Let

ϕ : Rm −→ F = Rs

be an R–linear map represented by a matrix with entries in m such that Imϕ = E. We then
have a homomorphism

S(ϕ) : S(Rm) −→ S(Rs)

of symmetric algebras, whose image is the Rees algebra R(E) of E, and whose cokernel
we denote by C(ϕ). Hence,

0 → R(E) −→ S(Rs) = R[T1, T2, . . . , Ts] −→ C(ϕ) → 0.

This exact sequence (with a different notation) is studied in [4] in great detail. Of sig-
nificance for us is the fact that C(ϕ), with the grading induced by the homogeneous
homomorphism S(ϕ), has components of finite length for which we have the following. Let
En = [R(E)]n and Fn = [S(F )]n for n ≥ 0, where F = Rs .

Theorem 8.1 λ(Fn/En) is a polynomial in n of degree d + s − 1 for n � 0 :
λ(Fn/En) = br(E)

(
n + d + s − 2

d + s − 1

)
− br1(E)

(
n + d + s − 3

d + s − 2

)
+ lower terms.

This polynomial is called the Buchsbaum-Rim polynomial of E. The leading coefficient
br(E) is the Buchsbaum-Rim multiplicity of ϕ; if the homomorphism ϕ is understood, we
shall simply denote it by br(E). This number is determined by an Euler characteristic of the
Buchsbaum-Rim complex ([4]).

Assume now the residue class field of R is infinite. The minimal reductions U of E

are generated by d + s − 1 elements. We refer to U as a parameter module of F . The
corresponding coefficients are br(U) = br(E) but br1(U) ≤ br1(E). It is not clear what
the possible values of br1(U) are and, in similarity to the case of ideals, we can ask the
following:

(a) br1(U) ≤ 0?
(b) Suppose that R is unmixed. Then, is R Cohen-Macaulay if br1(U) = 0?
(c) Are the values of br1(U) bounded?
(d) What happens in low dimensions?
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As for question (a), a surprising result of Hayasaka and Hyry shows the negativity of
br1(U) in the following way. It gives an eminent proof of Corollary 2.3.

Theorem 8.2 ([16, Theorem 1.1]) λ(Fn/Un) ≥ br(U)
(
n+d+s−2
d+s−1

)
for all n ≥ 0. Hence,

br1(U) ≤ 0.

They also proved that R is a Cohen-Macaulay ring once λ(Fn/Un) = br(U)
(
n+d+s−2
d+s−1

)

for some n ≥ 1. When this is the case, one has the equality λ(Fn/Un) = br(U)
(
n+d+s−2
d+s−1

)

for all n ≥ 0, whence br1(U) = 0 ([2, Theorem 3.4]).
Note that question (c) is answered affirmatively for s = 1 in Corollary 6.7.
We close this paper with the following.

Conjecture 8.3 Let (R,m) be a Noetherian local ring with dim R ≥ 2 and let U ⊆ mRs

be a parameter module of Rs (s > 0). Then, R is a Cohen-Macaulay ring if and only if R
is unmixed and br1(U) = 0.
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