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Abstract Disjunctive ideals and strongly disjunctive ideals are introduced in lattices and
normal lattices are also characterized in terms of annihilators. Some properties of disjunctive
ideals are studied. The concept of normal prime ideals is introduced and their properties
are studied. Some equivalent conditions are derived for the class of all strongly disjunctive
ideals to become a sublattice of the ideal lattice.
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1 Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark Mandelker
[9] and he characterized distributive lattices in terms of their relative annihilators. Later,
many authors introduced the concept of annihilators in the structures of rings as well as
lattices and characterized several algebraic structures in terms of annihilators. Speed [8] and
Cornish [4, 5] made an extensive study of annihilators in distributive lattices. The main aim
of this paper is to study some further properties of annihilators in the form of disjunctive
ideals of distributive lattices.

In this note, the concepts of disjunctive ideals and strongly disjunctive ideals are intro-
duced in terms of annihilators. Normal lattices are once again characterized in terms of
annihilators. A set of equivalent conditions are derived for every ideal of a lattice to become
a disjunctive ideal. The notion of normal prime ideals is introduced and proved that every
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normal prime ideal is a disjunctive ideal as well as a minimal prime ideal. Some properties
of disjunctive ideals are observed with respect to inverse homomorphic images and carte-
sian products. The notion of weakly normal lattices is introduced and established a set of
equivalent conditions for every weakly normal lattice to become a normal lattice. A set of
equivalent conditions is derived for every ideal of a lattice to become a strongly disjunc-
tive ideal. Finally, a set of equivalent conditions is deduced for the class of all strongly
disjunctive ideals of a distributive lattice to become a sublattice of the ideal lattice.

2 Preliminaries

The reader is referred to [2] and [3] for the elementary notions and notations of distributive
lattices. However, some of the preliminary definitions and results are presented for the ready
reference of the reader.

For any element a of a distributive lattice (L,∨,∧, 0) with zero, we define the annihi-
lator of a by the set (a)∗ = {x ∈ L | x ∧ a = 0} and the principle ideal generated by a is
written as (a]. The set I(L) of all ideals of (L,∨,∧, 0) forms a complete distributive lat-
tice. A proper ideal P of a lattice L is called prime if for any x, y ∈ L, x ∧ y ∈ P implies
x ∈ P or y ∈ P . A prime ideal is called minimal if it is the minimal element in the partial
ordered set of all prime ideals. A prime ideal P is minimal if and only if to each x ∈ P

there exists y /∈ P such that x ∧ y = 0. A proper ideal M of a lattice is called maximal if
there exists no proper ideal N such that M ⊆ N . The properties of minimal prime ideals
are exclusively studied by J. Kist [7] in commutative semi-groups and later these ideals are
used by Cornish [4].

A distributive lattice with 0 is called normal [4] if every prime ideal contains a unique
minimal prime ideal. A distributive lattice L with 0 is normal if and only if for all x, y ∈
L, (x)∗ ∨ (y)∗ = L whenever x ∧ y = 0. Normal lattices were extensively studied by W.H.
Cornish [4]. In his study, he characterized normal lattices with the help of annihilators and
minimal prime ideals. Some examples of normal lattices are as follows: (1) the lattice of
all zero sets in a completely regular space, and (2) the generalized stone lattices. Example
(1) is considered in [1, pp. 107, 108] and quoted by Cornish in [4, pp. 214]. Example (2) is
considered by Katrinak [6] and it is proved in [5, Proposition 5.4]. Throughout this note, L
stands for a bounded distributive lattice with 0 and 1, unless otherwise mentioned.

3 Disjunctive Ideals

In this section, the concept of disjunctive ideals is introduced in lattices. Normal lattices are
characterized. A set of equivalent conditions is derived for every ideal of a lattice to become
a disjunctive ideal.

Definition 3.1 For any non-empty subset A of L, define

A◦ = {x ∈ L | (a)∗ ∨ (x)∗ = L for all a ∈ A}.

Clearly {0}◦ = L and L◦ = {0}. For any a ∈ L, we denote ({a})◦ by (a)◦. Then it is
obvious that (0)◦ = L and (1)◦ = {0}.

Proposition 3.2 For any non-empty subset A of L, A◦ is an ideal in L.
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Proof Clearly 0 ∈ A◦. Let x, y ∈ A◦. For any a ∈ A, we get (x ∨ y)∗ ∨ (a)∗ = {(x)∗ ∩
(y)∗} ∨ (a)∗ = {(x)∗ ∨ (a)∗} ∩ {(y)∗ ∨ (a)∗} = L ∩ L = L. Hence x ∨ y ∈ A◦. Again, let
x ∈ A◦ and y ≤ x. Then we get (x)∗ ∨ (a)∗ = L for any a ∈ A and (x)∗ ⊆ (y)∗. For any
c ∈ A, we then get L = (x)∗ ∨ (a)∗ ⊆ (y)∗ ∨ (a)∗. Hence y ∈ A◦. Therefore A◦ is an ideal
in L.

The following lemma is a direct consequence of the above definition.

Lemma 3.3 For any two non-empty subsets A and B of L, we have the following:

1. A◦ = ⋂

a∈A

(a)◦,

2. A ∩ A◦ = {0},
3. A ⊆ B implies B◦ ⊆ A◦,
4. A ⊆ A◦◦,
5. A◦◦◦ = A◦,
6. A◦ = L if and only if A = {0}.

In case of ideals, we have the following result.

Proposition 3.4 For any two ideals I, J of L, (I ∨ J )◦ = I ◦ ∩ J ◦.

Proof Clearly (I ∨J )◦ ⊆ I ◦∩J ◦. Conversely, let x ∈ I ◦∩J ◦. Let c ∈ I ∨J be an arbitrary
element. Then c = i ∨ j for some i ∈ I and j ∈ J . Now (x)∗ ∨ (c)∗ = (x)∗ ∨ (i ∨ j)∗ =
(x)∗∨{(i)∗∩(j)∗} = {(x)∗∨(i)∗}∩{(x)∗∨(j)∗} = L∩L = L. Therefore x ∈ (I ∨J )◦.

The following corollary is a direct consequence of the above results.

Corollary 3.5 For any a, b ∈ L, we have the following:

1. a ≤ b implies (b)◦ ⊆ (a)◦,
2. (a ∨ b)◦ = (a)◦ ∩ (b)◦,
3. (a)◦ = L if and only if a = 0.

For any ideal I of a distributive latticeL, it can be easily observed that I ◦ ⊆ I ∗. However,
we derive a set of equivalent conditions for every ideal to satisfy the reverse inclusion which
is not true in general.

Theorem 3.6 The following conditions are equivalent in a lattice L.

1. L is normal,
2. For any ideals I, J of L, I ∩ J = {0} if and only if I ⊆ J ◦,
3. For any ideal I of L, I ◦ = I ∗,
4. For any a ∈ L, (a)◦ = (a)∗.

Proof (1) ⇒ (2): Assume that L is normal. Suppose I ∩ J = {0}. Let x ∈ I . For any
a ∈ J , we get x ∧ a ∈ I ∩ J = {0}. Hence x ∧ a = 0. Since L is normal, we get
(x)∗ ∨ (a)∗ = L. Thus it concludes that x ∈ J ◦. Therefore I ⊆ J ◦. Conversely, suppose
that I ⊆ J ◦. Let x ∈ I ∩ J . Then x ∈ I ⊆ J ◦. Hence x ∈ J ∩ J ◦ = {0}. Therefore
I ∩ J = {0}.



674 M. Sambasiva Rao

(2) ⇒ (3): Assume the condition (2). Let I be an ideal of L. Clearly I ◦ ⊆
I ∗. Conversely, let x ∈ I ∗. Then, for any a ∈ I , we have the following
consequence:

x ∧ a = 0 ⇒ (x] ∩ (a] = (0]
⇒ (x] ⊆ (a)◦ by condition (2)

⇒ (x] ⊆
⋂

a∈I

(a)◦

⇒ x ∈ I ◦.

Hence it concludes I ∗ ⊆ I ◦. Therefore I ∗ = I ◦.

(3) ⇒ (4): It is obvious. (4) ⇒ (1): Let x, y ∈ L be such that x ∧ y = 0. Then x ∈ (y)∗ =
(y)◦. Hence (x)∗ ∨ (y)∗ = L. Therefore L is normal.

The concept of disjunctive ideals is now introduced in lattices.

Definition 3.7 An ideal I of a lattice L is called disjunctive if for all x, y ∈ L, (x)◦ = (y)◦
and x ∈ I imply that y ∈ I .

Clearly, each (x)◦, x ∈ L is a disjunctive ideal. It is evident that any ideal I is a disjunc-
tive ideal if it satisfies (x)◦◦ ⊆ I for all x ∈ I . By Theorem 3.6, it can be easily observed
that the disjunctive ideals are equivalent to α-ideals of Cornish [4] in the case of normal
lattices.

Theorem 3.8 The following conditions are equivalent in a lattice L:

1. Every ideal is a disjunctive ideal.
2. Every principal ideal is a disjunctive ideal.
3. Every prime ideal is a disjunctive ideal.
4. For a, b ∈ L, (a)◦ = (b)◦ implies (a] = (b].

Proof (1) ⇒ (2): It is clear.
(2) ⇒ (3): Assume that every principal ideal is a disjunctive ideal. Let P be a prime ideal
of L. Suppose (a)◦ = (b)◦ and a ∈ P . Then clearly (a] ⊆ P . Since (a)◦ = (b)◦ and (a] is
a disjunctive ideal, we get that b ∈ (a] ⊆ P . Therefore, P is a disjunctive ideal.
(3) ⇒ (4): Assume that every prime ideal of A is a disjunctive ideal. Let a, b ∈ A such
that (a)◦ = (b)◦. Suppose (a] �= (b]. Without loss of generality assume that (a] � (b].
Let � = { I ∈ I(L) | a ∧ b ∈ I and a /∈ I }. It is clear that (a ∧ b] ∈ �. Let {Ii}i∈�

be a chain in �. Then clearly
⋃

i∈� Ii is an ideal, a ∧ b ∈ ⋃
i∈� Ii and a /∈ ⋃

i∈� Ii .
Hence,

⋃
i∈� Ii is an upper bound for {Ii}i∈� in �. Therefore, by Zorn’s Lemma, � has

a maximal element, say P . We now prove that P is a prime ideal in L. Let x, y ∈ L

such that x /∈ P and y /∈ P . Hence P ⊂ P ∨ (x] and P ⊂ P ∨ (y]. Therefore, by the
maximality of P , P ∨ (x] and P ∨ (y] are not in �. Hence a ∈ P ∨ (x] and a ∈ P ∨ (y].
So we have the following consequence
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a ∈ { P ∨ (x] } ∩ { P ∨ (y] }
= P ∨ { (x] ∩ (y] }
= P ∨ (x ∧ y].

If x ∧ y ∈ P , then a ∈ P ∨ (x ∧ y] = P , which is a contradiction to that a /∈ P . Thus we
get x ∧ y /∈ P . Hence P is a prime ideal. Therefore, by hypothesis (3), we can get that P is
a disjunctive ideal of L. Since P ∈ �, we get that a ∧ b ∈ P and a /∈ P . Since P is prime,
we get b ∈ P . Since b ∈ P and P is disjunctive, we get a ∈ P , which is a contradiction to
a /∈ P . Therefore, it concludes that (a] = (b].
(4) ⇒ (1): Assume the condition (4). Let I be an arbitrary ideal of L. Suppose a, b ∈ L

are such that (a)◦ = (b)◦. Then by condition (4), we get (a] = (b]. Suppose a ∈ I . Then
b ∈ (b] = (a] ⊆ I . Therefore I is a disjunctive ideal of L.

The notion of normal prime ideals is now introduced in a lattice.

Definition 3.9 A prime ideal P of a lattice L is called a normal prime ideal if to each
x ∈ P , there exists x′ /∈ P such that (x)◦ ∨ (x′)◦ = L.

Proposition 3.10 Every normal prime ideal is a minimal prime ideal.

Proof Let P be a normal prime ideal of a lattice L. Suppose x ∈ P . Since P is normal,
there exists x′ /∈ P such that (x)◦ ∨ (x′)◦ = L. Hence, we get L = (x)◦ ∨ (x′)◦ ⊆ (x ∧x′)◦.
Thus by Corollary 3.5(3), we get that x ∧ x′ = 0. Therefore, P is a minimal prime ideal
of L.

In general, the converse of the above Proposition 3.10 is not true. It can be seen in the
following example.

Example 3.11 Consider the following distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given by:

Consider the prime ideal P = {0, a}. It can be easily observed that P is a minimal prime
ideal but not a normal prime ideal.

However, in the following, we derive a sufficient condition for every minimal prime ideal
to become a normal prime ideal.

Proposition 3.12 If L is a normal lattice, then every minimal prime ideal of L is a normal
prime ideal.
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Proof Assume that L is normal and P a minimal prime ideal of L. Let x ∈ P . Then there
exists x′ /∈ P such that x∧x′ = 0. SinceL is normal, we get (x)◦∨(x′)◦ = (x)∗∨(x′)∗ = L.
Therefore, P is normal in L.

Proposition 3.13 Let P be a normal prime ideal of a lattice L. Then for each x ∈ L, we
have the following property:

x /∈ P ⇔ (x)◦ ⊆ P.

Proof Let P be a normal prime ideal of L and x ∈ L. Suppose x /∈ P . Then clearly
(x)◦ ⊆ P . Conversely, assume that (x)◦ ⊆ P . Suppose x ∈ P . Since P is normal, there
exists x′ /∈ P such that (x)◦ ∨ (x′)◦ = L. Hence L = (x)◦ ∨ (x′)◦ ⊆ (x)∗ ∨ (x′)∗. Then
x′ ∈ (x)◦ ⊆ P , which is a contradiction. Therefore x /∈ P .

Theorem 3.14 Every normal prime ideal is a disjunctive ideal.

Proof Let P be a normal prime ideal of L. Suppose x, y ∈ L are such that (x)◦ = (y)◦
and x ∈ P . Since P is normal, there exists x′ /∈ P such that (x)◦ ∨ (x′)◦ = L. Hence L =
(x)◦ ∨ (x′)◦ = (y)◦ ∨ (x′)◦ ⊆ (y ∧x′)◦. Hence by Corollary 3.5(3), we get y ∧x′ = 0 ∈ P .
Since P is prime and x′ /∈ P , it yields that y ∈ P . Therefore, P is a disjunctive ideal.

In what follows, we prove a necessary and sufficient condition for the inverse image of
a disjunctive ideal to become again a disjunctive ideal.

Theorem 3.15 Let f be a homomorphism of a lattice (L,∨, ∧) onto another lat-
tice (L′,∨, ∧). If J is a disjunctive ideal of L′, then the following conditions are
equivalent:

1. f −1(J ) is a disjunctive ideal in L,
2. For each x ∈ L′, f −1((x)◦) is a disjunctive ideal in L.

Proof (1) ⇒ (2): Assume that f −1(J ) is a disjunctive ideal in L for each disjunctive
ideal J of L′. Since (x)◦ is a disjunctive ideal in L′ for each x ∈ L′, we get from (1) that
f −1((x)◦) is a disjunctive ideal in L.
(2) ⇒ (1): Assume that f −1((x)◦) is a disjunctive ideal in L for each x ∈ L′. Let J be
a disjunctive ideal of L′. Then clearly f −1(J ) is an ideal in L. Let x, y ∈ L be such that
(x)◦ = (y)◦ and x ∈ f −1(J ). Then f (x) ∈ J . For any a ∈ L′, we get the following
consequence:

a ∈ (f (x))◦ ⇔ f (x) ∈ (a)◦

⇔ x ∈ f −1((a)◦)
⇔ y ∈ f −1((a)◦) since f −1((a)◦) is disjunctive in L

⇔ f (y) ∈ (a)◦

⇔ a ∈ (f (y))◦.
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Hence, it concludes (f (x))◦ = (f (y))◦. Since f (x) ∈ J and J is a disjunctive
ideal, we get f (y) ∈ J . Hence y ∈ f −1(J ). Therefore f −1(J ) is a disjunctive ideal
in L.

We now discuss some properties of direct products of disjunctive ideals of lattices. First,
we need the following lemma whose proof is routine.

Lemma 3.16 Let L1 and L2 be two distributive lattices. For any a ∈ L1, b ∈ L2 and
(a, b) ∈ L1 × L2, we have the following:

1. (a, b)∗ = (a)∗ × (b)∗,
2. (a, b)∗ ∨ (c, d)∗ = (a ∨ c, b ∨ d)∗,
3. (a, b)◦ = (a)◦ × (b)◦.

Theorem 3.17 Let L = L1 × L2 be the product of the distributive lattices L1 and L2. If I1
and I2 are disjunctive ideals of L1 and L2, respectively, then I1 × I2 is a disjunctive ideal of
the product lattice L1×L2. Conversely, every disjunctive ideal of L1×L2 can be expressed
as I = I1 × I2 where I1 and I2 are disjunctive ideals of L1 and L2, respectively.

Proof Let I1 and I2 be the disjunctive ideals of L1 and L2, respectively. Then clearly,
I1 × I2 is an ideal of L1 × L2. Let a, c ∈ L1 and b, d ∈ L2 be such that (a, b)◦ = (c, d)◦
and (a, b) ∈ I1 × I2. Then a ∈ I1 and b ∈ I2. Since (a, b)◦ = (c, d)◦, we get (a)◦ × (b)◦ =
(c)◦ × (d)◦ and hence (a)◦ = (c)◦ and (b)◦ = (d)◦. Since I1 is a disjunctive ideal and
a ∈ I1, we get that c ∈ I1. Similarly, we get d ∈ I2. Hence it concludes that (c, d) ∈ I1×I2.
Therefore, I1 × I2 is a disjunctive ideal in L1 × L2.

Conversely, let I be a disjunctive ideal of L1 × L2. Consider I1 = {a ∈ L1 | (a, b) ∈
I for some b ∈ L2}. Clearly, I1 is an ideal in L1. Let x, y ∈ L1 be such that (x)◦ = (y)◦ and
x ∈ I1. Then (x, a) ∈ I for some a ∈ L2. Since (x)◦ = (y)◦, we get (x, a)◦ = (x)◦×(a)◦ =
(y)◦ × (a)◦ = (y, a)◦. Since I is a disjunctive ideal in L1 × L2, we get (y, a) ∈ I . Hence
it concludes that y ∈ I1. Therefore, I1 is a disjunctive ideal in L1. Similarly, we can obtain
that I2 is a disjunctive ideal in L2.

We now prove that I = I1 × I2. Clearly, I ⊆ I1 × I2. Conversely, let (a1, a2) ∈ I1 × I2.
Then a1 ∈ I1 and a2 ∈ I2. Hence (a1, b1) ∈ I and (b2, a2) ∈ I for some b2 ∈ L1 and b1 ∈
L2. Hence, we get (a1, 0) = (1, 0) ∧ (a1, b1) ∈ I and also (0, a2) = (0, 1) ∧ (b2, a2) ∈ I .
Thus (a1, a2) = (a1, 0) ∨ (0, a2) ∈ I . Therefore I1 × I2 ⊆ I .

We now introduce the concept of weakly normal lattices.

Definition 3.18 A distributive lattice L with 0 is called weakly normal if it satisfies (x)∗ ∨
(y)∗ = (x)◦ ∨ (y)◦ for all x, y ∈ L.

It is evident that every normal lattice is weakly normal. In general, the converse is not
true. However, in the following, a set of equivalent conditions is derived for every weakly
normal lattice to become normal.

Theorem 3.19 Let L be a weakly normal lattice. Then the following conditions are
equivalent:
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1. L is normal,
2. For x, y ∈ L, (x)◦ ∨ (y)◦ = (x ∧ y)◦,
3. For x, y ∈ L, x ∧ y = 0 implies (x)◦ ∨ (y)◦ = L.

Proof (1) ⇒ (2): Let L be a weakly normal lattice. Assume that L is a normal lattice. Let
x, y ∈ L. Since L is a normal lattice, by Theorem 3.6, we get (x)◦ ∨ (y)◦ = (x)∗ ∨ (y)∗ =
(x ∧ y)∗ = (x ∧ y)◦.
(2) ⇒ (3): It is clear.
(3) ⇒ (1): Assume that (3) is valid. Let x, y ∈ L be such that x ∧ y = 0. Then L =
(x)◦ ∨ (y)◦ ⊆ (x)∗ ∨ (y)∗. Hence L is normal.

4 Strongly Disjunctive Ideals

In this section, a concept of strongly disjunctive ideals is introduced in lattices. A set of
equivalent conditions is derived for the class of all strongly disjunctive ideals to become a
sublattice of the ideal lattice.

Definition 4.1 For any ideal I of a lattice L, define β(I) as follows:

β(I) = {x ∈ L | (x)◦ ∨ I = L}.

The following lemma is an immediate consequence of the above definition.

Lemma 4.2 For any ideals I, J of L, it holds that

1. β(I) ⊆ I ,
2. I ⊆ J implies β(I) ⊆ β(J ),
3. β(I ∩ J ) = β(I) ∩ β(J ).

Proof The proof of the identities (2) and (3) is routine. It is sufficient to prove the identity
(1). For that, let x ∈ β(I). Then (x)◦ ∨ I = L. Hence x = a ∨ b for some a ∈ (x)◦ ⊆ (x)∗
and b ∈ I . Then we get x ∧ a = 0 and x ∧ b ∈ I . Thus, we can conclude that x = x ∧ x =
x ∧ (a ∨ b) = (x ∧ a) ∨ (x ∧ b) = 0 ∨ (x ∧ b) = x ∧ b ∈ I . Therefore β(I) ⊆ I .

Proposition 4.3 For any ideal I of a lattice L, β(I) is an ideal in L.

Proof Clearly 0 ∈ β(I). Let x, y ∈ β(I). Then (x)◦ ∨ I = (y)◦ ∨ I = L. Hence (x ∨
y)◦ ∨ I = {(x)◦ ∩ (y)◦} ∨ I = {(x)◦ ∨ I } ∩ {(y)◦ ∨ I } = L. Hence x ∨ y ∈ β(I). Again
let x ∈ β(I) and y ≤ x. Then L = (x)◦ ∨ I ⊆ (y)◦ ∨ I . Thus y ∈ β(I). Therefore, β(I) is
an ideal in L.

Definition 4.4 An ideal I of a lattice L is called a strongly disjunctive ideal if I = β(I).

Proposition 4.5 Every strongly disjunctive ideal is a disjunctive ideal.

Proof Let I be a strongly disjunctive ideal of a lattice L. Let x, y ∈ L be such that (x)◦ =
(y)◦ and x ∈ I = β(I). Then it is clear that (x)◦ ∨ I = L. Hence (y)◦ ∨ I = L and so
y ∈ β(I) = I . Thus I is a disjunctive ideal of L.
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In general, the converse of the above proposition is not true. However, we can derive a
set of equivalent conditions for every ideal of a lattice to become strongly disjunctive.

Theorem 4.6 Consider the following conditions in a lattice L:

1. Every prime ideal is normal.

2. Every ideal is strongly disjunctive.
3. Every prime ideal is strongly disjunctive.

Then (1) ⇒ (2) ⇒ (3). If L is a weakly normal lattice, then all the above conditions are
equivalent.

Proof (1) ⇒ (2): Assume that every prime ideal is normal. Let I be an ideal of L. Clearly
β(I) ⊆ I . Conversely, let x ∈ I . Suppose (x)◦ ∨ I �= L. Then there exists a prime ideal P
such that (x)◦ ∨ I ⊆ P . Hence (x)◦ ⊆ P and x ∈ I ⊆ P . Since P is normal and (x)◦ ⊆ P ,
by Proposition 3.13, we get that x /∈ P , which is a contradiction to that x ∈ P . Hence
(x)◦ ∨ I = L. Thus it yields that x ∈ β(I). Therefore, I is strongly disjunctive.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): Suppose that L is weakly normal. Assume that every prime ideal is strongly
disjunctive. Let P be a prime ideal of L. Then by our assumption, β(P ) = P . Let x ∈ P .
Then (x)◦ ∨P = L. Hence a∨b = 1 for some a ∈ (x)◦ and b ∈ P . Since a ∈ (x)◦ and L is
weakly normal, we get (x)◦∨(a)◦ = (x)∗∨(a)∗ = L. Suppose a ∈ P . Then 1 = a∨b ∈ P ,
which is a contradiction. Therefore, a /∈ P and hence P is a normal prime ideal.

Theorem 4.7 The following conditions are equivalent in a lattice L:

1. (x)◦ ∨ (x)◦◦ = L for all x ∈ L,
2. Every ideal of the form I = I ◦◦ is strongly disjunctive,
3. For each x ∈ L, (x)◦◦ is strongly disjunctive.

Proof (1) ⇒ (2): Assume that the condition (1) holds in L. Let I be an ideal in L such
that I = I ◦◦. Clearly β(I) ⊆ I . Conversely, let x ∈ I . Clearly (x)◦◦ ⊆ I ◦◦. Hence we get
L = (x)◦ ∨ (x)◦◦ ⊆ (x)◦ ∨ I ◦◦ = (x)◦ ∨ I . Thus it yields that x ∈ β(I). Therefore, I is
strongly disjunctive.
(2) ⇒ (3): It is obvious.
(3) ⇒ (1): Assume the condition (3). Then we get β((x)◦◦) = (x)◦◦. Since x ∈ (x)◦◦, we
get (x)◦ ∨ (x)◦◦ = L. Hence the proof is complete.

Definition 4.8 For any maximal ideal M of a lattice L, define �(M)={x ∈ L | (x)◦�M}.

Lemma 4.9 For any maximal ideal M,�(M) is an ideal contained in M .

Proof Clearly 0 ∈ �(M). Let x, y ∈ �(M). Then (x)◦ � M and (y)◦ � M . Since M is
prime, we get (x ∨ y)◦ = (x)◦ ∩ (y)◦ � M . Hence x ∨ y ∈ �(M). Let x ∈ �(M) and
y ≤ x. Then (x)◦ � M and (x)◦ ⊆ (y)◦. Thus we get (y)◦ � M and hence y ∈ �(M).
Therefore, �(M) is an ideal of L. Now, let x ∈ �(M). Then (x)◦ � M . Hence there
exists a ∈ (x)◦ such that a /∈ M . Since a ∈ (x)◦, we get L = (a)∗ ∨ (x)∗ ⊆ (a ∧ x)∗.
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Thus a ∧ x = 0 ∈ M . Since M is prime and a /∈ M , it concludes that x ∈ M . Therefore
�(M) ⊆ M .

By μ we denote the set of all maximal ideals of a lattice L. For any ideal I of a lattice L,
let μ(I ) = {M ∈ μ | I ⊆ M}.

Theorem 4.10 For any ideal I of a lattice L, β(I) = ⋂
M∈μ(I ) �(M).

Proof Let x ∈ β(I) and I ⊆ M where M ∈ μ. Then L = (x)◦ ∨ I ⊆ (x)◦ ∨ M . Suppose
(x)◦ ⊆ M , then M = L, which is a contradiction. Hence (x)◦ � M . Thus x ∈ �(M) for all
M ∈ μ(I ). Therefore β(I) ⊆ ⋂

M∈μ(I ) �(M). Conversely, let x ∈ ⋂
M∈μ(I ) �(M). Then

x ∈ �(M) for all M ∈ μ(I ). Suppose (x)◦ ∨ I �= L. Then there exists a maximal ideal M0
such that (x)◦ ∨ I ⊆ M0. Hence (x)◦ ⊆ M0 and I ⊆ M . Since I ⊆ M0, by hypothesis, we
get x ∈ �(M0). Hence (x)◦ � M0, which is a contradiction. Therefore (x)◦ ∨ I = L. Thus
x ∈ β(I). Hence

⋂
M∈μ(I ) �(M) ⊆ β(I).

By the above Theorem 4.10, it can be easily observed that β(I) ⊆ �(M) for every
M ∈ μ(I ). In what follows, a set of equivalent conditions is derived for the class of all
strongly disjunctive ideals of a lattice to become a sublattice of the ideal lattice I(L) of the
lattice L.

Theorem 4.11 The following conditions are equivalent in a lattice L:

1. For any M ∈ μ, �(M) is maximal,

2. For any I, J ∈ I(L), I ∨ J = L implies β(I) ∨ β(J ) = L,
3. For any I, J ∈ I(L), β(I) ∨ β(J ) = β(I ∨ J ),
4. For any two distinct maximal ideals M, N , �(M) ∨ �(N) = L,
5. For any M ∈ μ, M is the unique member of μ such that �(M) ⊆ M .

Proof (1) ⇒ (2): Assume the condition (1). Then it is clear that �(M) = M for all
M ∈ μ. Let I, J ∈ I(L) be such that I ∨ J = L. Suppose β(I) ∨ β(J ) �= L. Then
there exists a maximal ideal M such that β(I) ∨ β(J ) ⊆ M . Hence β(I) ⊆ M and
β(J ) ⊆ M . Now

β(I) ⊆ M ⇒
⋂

M∈μ(I )

�(M) ⊆ M

⇒ �(Mi) ⊆ M for some Mi ∈ μ(I ) (since M is prime)

⇒ Mi ⊆ M by condition (1)

⇒ I ⊆ M.

Similarly, we can get J ⊆ M . Hence L = I ∨ J ⊆ M , which is a contradiction. Therefore
β(I) ∨ β(J ) = L.
(2) ⇒ (3): Assume the condition (2). Let I, J ∈ I(L). Clearly β(I) ∨ β(J ) ⊆
β(I ∨ J ). Let x ∈ β(I ∨ J ). Then ((x)◦ ∨ I ) ∨ ((x)◦ ∨ J ) = (x)◦ ∨ I ∨
J = L. Hence by condition (2), we get β((x)◦ ∨ J ) ∨ β((x)◦ ∨ J ) = L. Thus
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x ∈ β((x)◦∨I )∨β((x)◦∨J ). Hence x = r∨s for some r ∈ β((x)◦∨I ) and s ∈ β((x)◦∨J ).
Now

r ∈ β((x)◦ ∨ I ) ⇒ (r)◦ ∨ (x)◦ ∨ I = L

⇒ L = ((r)◦ ∨ (x)◦) ∨ I ⊆ (r ∧ x)◦ ∨ I

⇒ (r ∧ x)◦ ∨ I = L

⇒ r ∧ x ∈ β(I).

Similarly, we can get s ∧ x ∈ β(J ). Hence

x = x ∧ x

= x ∧ (r ∨ s)

= (x ∧ r) ∨ (x ∧ s) ∈ β(I) ∨ β(J ).

Then β(I ∨ J ) ⊆ β(I) ∨ β(J ). Therefore β(I) ∨ β(J ) = β(I ∨ J ).
(3) ⇒ (4): Assume the condition (3). LetM,N be two distinct maximal ideals ofL. Choose
x ∈ M − N and y ∈ N − M . Now

x /∈ N ⇒ there exists x1 ∈ N such that x ∨ x1 = 1,

y /∈ M ⇒ there exists y1 ∈ M such that y ∨ y1 = 1.

Then (x ∨ y1) ∨ (y ∨ x1) = (x ∨ x1) ∨ (y ∨ y1) = 1. Now

L = β(L)

= β((1])
= β(((x ∨ y1) ∨ (y ∨ x1)])
= β((x ∨ y1]) ∨ β((y ∨ x1]) by condition (3)

⊆ �(M) ∨ �(N) since (x ∨ y1] ⊆ M, (y ∨ x1] ⊆ N.

Therefore �(M) ∨ �(N) = L.
(4) ⇒ (5): Assume the condition (4). Let M ∈ μ. Suppose N ∈ μ is such that N �= M and
�(N) ⊆ M . Since �(M) ⊆ M by our hypothesis, we get L = �(M)∨�(N) = M , which
is a contradiction. Therefore M is the unique maximal ideal such that �(M) is contained in
M .
(5) ⇒ (1): Let M ∈ μ. Suppose �(M) is not maximal. Let M0 be a maximal ideal of L

such that �(M) ⊆ M0. We have always �(M0) ⊆ M0, which is a contradiction to the
hypothesis.
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