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Abstract
Given a set of clients and a set of facilities with different priority levels in a metric
space, theBudgeted Priority p-Median problem aims to open a subset of facilities
and connect each client to an opened facility with the same or a higher priority level,
such that the number of opened facilities associated with each priority level is no more
than a given upper limit, and the sum of the client-connection costs is minimized.
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In this paper, we present a data reduction-based approach for limiting the solution
search space of the Budgeted Priority p-Median problem, which yields a (1 +
ε)-approximation algorithm running in O(nd log n) + (pε−1)pε

−O(1)
nO(1) time in d-

dimensional Euclidean space, where n is the size of the input instance and p is the
maximal number of opened facilities. The previous best approximation ratio for this
problem obtained in the same time is (3 + ε).

Keywords Approximation algorithms · Facility location · p-Median

Mathematics Subject Classification 90C27 · 68Q27 · 68Q25

1 Introduction

Locating facilities to serve a given set of clients is a fundamental problem in the
field of operational research. This problem becomes difficult when considering the
following trade-off: Each client should be served by a neighboring facility, while we
cannot open too many facilities.

The p-Median problem is one of the most commonly studied facility location-type
problems, which balances the client-connection and facility-opening costs by limiting
the number of opened facilities andminimizing the sum of distances of the clients from
the corresponding facilities. It was known that the p-Median problem is NP-hard [1,
2], and considerable attention has been paid on developing approximation algorithms
for it. The current best known approximation guarantees for the problem are the ratios
of 2.67059 [3] and 2.406 [4] in general and Euclidean metrics, respectively.

The p-Median problem assumes that each client can be connected to an arbitrary
opened facility, and thus, its algorithms fail to work in applications where clients differ
in levels of required services. One such example is in the construction of supply chain
networks, where the algorithms for the p-Median problem are not guaranteed to yield
feasible solutions since they tend tominimize the supply chain costwithout concerning
the target service levels of the chain members. Motivated by such applications, Kumar
and Sabharwal [5] introduced the Budgeted Priority p-Median problem, which
can be formally defined as follows.

Definition 1 (Budgeted Priority p-Median [5]) An instance (C,F ,L,P, �) of the
Budgeted Priority p-Median problem is specified by a set C of clients, a set F of
facilities, a set L = {1, · · · , |L|} of service levels (or called priority levels), and a set
P = {p1, · · · , p|L|} of real numbers no less than 1,where each x ∈ C∪F is located in a
metric space and associatedwith a service level �(x) ∈ L. A feasible solution (D, ϕ) to
this instance opens a subsetD ⊆ F of facilities satisfying |{ f ∈ D : �( f ) = i}| � pi
for each i ∈ L and connects each client c ∈ C to an opened facility ϕ(c) ∈ D
satisfying �(c) � �(ϕ(c)). The cost of such a solution is

∑
c∈C δ(c, ϕ(c)), where

δ(c, ϕ(c)) denotes the distance of c from ϕ(c), and the Budgeted Priority p-
Median problem aims to identify a feasible solution with minimal cost.

Despite its important role in applications involving different service levels, the
Budgeted Priority p-Median problem is far less understood from the theoretical
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point of view compared with the standard p-Median problem (the latter is a special
case of theBudgeted Priority p-Medianproblemwhere all the clients and facilities
are associated with the same service level). Kumar and Sabharwal [5] showed that
the natural linear programming relaxation of the Budgeted Priority p-Median
problem has an unbounded integrality gap if the number of service levels is more
than four, and gave a constant-factor approximation algorithm for instances with no
more than two service levels.Without such a limitation on the number of service levels,
whether theBudgeted Priority p-Median problem admits an O(1)-approximation
algorithm still remains elusive.

In most real-world applications of facility location-type problems, the facilities
providing services are much less than the clients with service requirements. Thus,
taking the number of opened facilities as a fixed parameter is a feasibleway for relaxing
these problems in practice, as done in [6–8]. However, the Budgeted Priority p-
Median problem has turned out to be still difficult when the maximal number of
opened facilities (denoted by p) is small: Reductions to the Set Covering problem
given by Guha and Khuller [1] indicate that the Budgeted Priority p-Median
problem, even for the case where the service levels associated with the clients and
facilities are uniform, is W[2]-hard if parameterized by p; Cohen-Addad et al. [2]
showed that the approximation ratio of any FPT(p)-time (i.e., g(p)nO(1) time for an
instance of size n and a positive function g) algorithm for the problem cannot be better
than (1 + 2e−1) under the Gap-Exponential Time Hypothesis. On the positive side,
Feng et al. [9] gave a (3 + ε)-approximation algorithm for the Budgeted Priority
p-Median problem running in (pε−1)O(p)nO(1) time based on a greedy sampling
approach, which significantly improves the performance guarantees of polynomial-
time algorithms.

1.1 Our Results

The negative result given by Cohen-Addad et al. [2] implies that we are unlikely
to approximate the Budgeted Priority p-Median problem with a ratio better than
1 + 2e−1 in FPT time if taking p as the fixed parameter, but we can still hope to
near-exactly solve the problem in Euclidean spaces using FPT-time algorithms since
such a lower bound only holds in general metrics. Indeed, for continuous Euclidean
instances where the services have only a single level and each facility can be opened
at an arbitrary location of the space, a series of sampling-based (1+ε)-approximation
algorithms running in FPT time are known for the Budgeted Priority p-Median
problem [10–12]. Unfortunately, without such limitations on the Euclidean instances,
the current best FPT-time approximation guarantee for the problem is still the ratio
of (3 + ε) given in [9], and whether the problem can be near-exactly solved in FPT
time remains an open question. The main result in this paper affirmatively answers
this question.

Theorem 1 Given a constant ε ∈ (0, 1) and an instance (C,F ,L,P, �) of the
Budgeted Priority p-Median problem with C ∪ F ⊂ R

d , there is a (1 + ε)-
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approximation algorithm running in O(nd log n) + (pε−1)pε
−O(1)

nO(1) time, where

n = |C| + |F | and p = ∑|L|
i=1�pi�.

1.2 Our Techniques

Asmentioned above, an Euclidean instance (C,F ,L,P, �) of theBudgeted Pri-
ority p-Median problem involving only a single service level (i.e., |L| = |P| = 1)
has several known FPT-time (1 + ε)-approximation algorithms [10–12]. The main
challenge encountered when removing such a limitation on the instance lies in the
significantly increased difficulty of constructing feasible solutions: We need to simul-
taneously satisfy the different service requirements of the clients and the budgeted
constraints defined by P . This invalidates existing algorithms in Euclidean spaces.

In this paper, we deal with the Budgeted Priority p-Median problem based
on a quite different data reduction-based method. Given an Euclidean instance of the
Budgeted Priority p-Median problem, we show that a combination of an adapted
coreset-construction approach and a Johnson–Lindenstrauss transform-type method
can significantly reduce its size and map it into a low-dimensional Euclidean space.
Based on such a reduced instance, we estimate the locations of the facilities opened
in optimal solutions and in turn construct a small solution search space by exploring
the properties of the Euclidean metrics. It is shown that enumerating over this search
space yields the desired (1 + ε)-approximation solution in FPT time.

1.3 Preliminaries

Let ε denote a constant from (0, 1) and I = (C,F ,L,P, �) be an instance of the
Budgeted Priority p-Median problem satisfying

∑|L|
i=1�pi� = p, |C| + |F | = n,

and C ∪ F ⊂ R
d . Define [t] = {1, · · · , t} for each integer t � 1. For each i ∈ L, let

Ci = {c ∈ C : �(c) = i} and Fi = { f ∈ F : �( f ) = i}, and define F+
i = ⋃|L|

j=i F j .
Let (D∗, ϕ∗) denote an optimal solution toI.Without loss of generality,we can assume
that |D∗| = p and let D∗ = { f ∗

1 , · · · , f ∗
p }. Let �∗

i = �( f ∗
i ) for each i ∈ [p]. Given

two data points x, y and a set X located in an Euclidean space, define δ(x, y) as the
distance of x from y, and let δ(X , y) = ∑

z∈X δ(z, y) and δ(y,X ) = minz∈X δ(y, z).
Let opt = ∑

c∈C δ(c, ϕ∗(c)) denote the cost of an optimal solution to I.
The running time of our algorithm is analyzed based on the following algebraic

fact.

Lemma 1 We have log j i � max{i, j O( j)} for each i, j > 1.
Proof If j � log i

log log i , then we have log i � j O(1) and hence log j i � j O( j). If

j <
log i

log log i , then we have log j i < log
log i

log log i i = i . Thus, Lemma 1 is true.

Our algorithm constructs nets for the facilities to identify a small solution search
space. Such nets can be formally defined as follows.

Definition 2 (λ-net [13]) Given a set X ⊂ R
d and a real number λ > 0, a subset

X ′ ⊆ X is called a λ-net of X if δ(x,X ′\{x}) > λ for each x ∈ X ′ and δ(x,X ′) < λ

for each x ∈ X .
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Har-Peled and Mendel [14] showed that a small-size net of a given set located in a
low-dimensional Euclidean space can be constructed in near-linear time.

Lemma 2 ([14])Given a setX ⊂ R
d and a real number λ > 0, one can construct a λ-

net of X of size no more thanmin{(λ−1 maxx,y∈X δ(x, y))d , |X |} in |X | log|X |2O(d)

time.

2 Data Reduction

In this section we reduce the size of instance I based on the stronger version of
Johnson–Lindenstrauss transform [15] given by Narayanan and Nelson [16] and the
coreset-construction approach given by Chen [11]. Lemma 3 and Lemma 4 are the
guarantees of these two approaches.

Lemma 3 ([16]) Given a set X ⊂ R
d and a real number ε ∈ (0, 1), a mapping

h : R
d → R

d̃ satisfying d̃ = O(ε−2 log|X |) and δ(h(x), h(y)) ∈ [1, 1 + ε]δ(x, y)
for each x ∈ X and y ∈ R

d can be constructed in O(|X |d log|X |) time.

We can assume that the mapping h : X ′ → R
d̃ constructed by Lemma 3 is injective

for each finite set X ′ ⊂ R
d . This is without loss of generality since we can make

copies of the points from R
d̃ that have multiple inverse images under h. Such an

assumption means that we need to differentiate h(x) and h(y) for each two distinct
points x, y ∈ R

d , even for the case where h(x) and h(y) share the same value in each
dimension (differentiating h(x) and h(y) is necessary since two points with the same
dimension values can be associated with different service levels).

Lemma 4 ([11])Given a setX ⊂ R
d , a real number ε ∈ (0, 1), and an integer k > 0,

one can construct aweighted subset X̃ ⊆ X with aweight functionw : X̃ → [1,+∞)

satisfying
∑

c∈X̃ w(c) = |X | in O(|X |dk) time, such that |X̃ | � d(kε−1 log|X |)O(1)

and
∑

c∈X̃ w(c)δ(c,D) ∈ [1−ε, 1+ε]∑c∈X δ(c,D) for eachD ⊂ R
d with |D| � k.

The following corollary of Lemma 4 says that the coreset-construction approach
given in [11] can be adapted to the Budgeted Priority p-Median problem.

Corollary 1 Given a real number ε ∈ (0, 1) and an instance I = (C,F ,L,P, �) of
the Budgeted Priority p-Median problem with

∑|L|
i=1�pi� = p and C ∪F ⊂ R

d ,

one can construct a weighted subset C̃ ⊆ C with a weight function w : C̃ → [1,+∞)

satisfying
∑

c∈C̃ w(c) = |C| in O(|C|dp) time, such that |C̃| � d(pε−1 log|C|)O(1)

and
∑

c∈C̃ w(c)δ(c,D∩F+
�(c)) ∈ [1−ε, 1+ε]∑c∈C δ(c,D∩F+

�(c)) for eachD ⊆ F
with |D| � p.

Proof For each i ∈ L, denote by C̃i the weighted subset of Ci and w : C̃i → [1,+∞)

the corresponding weight function constructed by Lemma 4 when taking Ci , ε, and p
as inputs. We have �(c) = i for each c ∈ C̃i due to the definition of Ci and the fact that
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C̃i ⊆ Ci . Let C̃ = ⋃|L|
i=1 C̃i . Lemma 4 implies that

∑

c∈C̃
w(c) =

|L|∑

i=1

∑

c∈C̃i
w(c) =

|L|∑

i=1

|Ci | = |C| (1)

and

|C̃| =
|L|∑

i=1

|C̃i | �
|L|∑

i=1

d(pε−1 log|Ci |)O(1) � d(pε−1 log|C|)O(1). (2)

Also by Lemma 4, we know that constructing C̃ and the corresponding weight function
takes

O

⎛

⎝
|L|∑

i=1

|Ci |dp
⎞

⎠ = O(|C|dp) (3)

time in total. Moreover, it is the case that

∑

c∈C̃i
w(c)δ(c,D ∩ F+

�(c)) =
∑

c∈C̃i
w(c)δ(c,D ∩ F+

i )

∈ [1 − ε, 1 + ε]
∑

c∈Ci
δ(c,D ∩ F+

i )

= [1 − ε, 1 + ε]
∑

c∈Ci
δ(c,D ∩ F+

�(c)) (4)

for each i ∈ L and D ⊆ F with |D| � p, where the first and third steps are due to
the fact that �(c) = i for each c ∈ C̃i , and the second step follows from Lemma 4.
Summing both sides of equality (4) over i ∈ L, we know that each D ⊆ F with
|D| � p satisfies

∑

c∈C̃
w(c)δ(c,D ∩ F+

�(c)) =
|L|∑

i=1

∑

c∈C̃i
w(c)δ(c,D ∩ F+

�(c))

∈ [1 − ε, 1 + ε]
|L|∑

i=1

∑

c∈Ci
δ(c,D ∩ F+

�(c))

= [1 − ε, 1 + ε]
∑

c∈C
δ(c,D ∩ F+

�(c)),

combining which with equality (1), inequality (2), and equality (3), we complete the
proof of Corollary 1.
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Based on Lemma 3 and Corollary 1, we obtain the following result about data
reduction for the Budgeted Priority p-Median problem.

Lemma 5 Given a real number ε ∈ (0, 1) and an instance I = (C,F ,L,P, �) of the
Budgeted Priority p-Median problem satisfying

∑|L|
i=1�pi� = p and C∪F ⊂ R

d ,

one can construct a mapping h : R
d → R

d̃ and a weighted set C̃ ⊂ R
d̃ with a weight

function w : C̃ → [1,+∞) satisfying
∑

c∈C̃ w(c) = |C| and a level function � : C̃ →
L in O(|C|d log|C| + (pε−1|C|)O(1)) time, such that d̃ = ε−O(1)(log p + log log|C|),
|C̃| � (pε−1 log|C|)O(1), and

∑
c∈C̃ w(c)δ(c, {h( f ) : f ∈ D ∩ F+

�(c)}) ∈ [1 − ε, 1 +
O(ε)]∑c∈C δ(c,D ∩ F+

�(c)) for each D ⊆ F with |D| � p.

Proof Denote by h1 : R
d → R

d ′
the mapping constructed by Lemma 3 when taking

ε and C as inputs, and let �(h1(x)) = �(x) for each x ∈ C ∪ F . Denote by C′ the
weighted subset of {h1(c) : c ∈ C} constructed by Corollary 1 when taking ε and
({h1(c) : c ∈ C}, {h1( f ) : f ∈ F},L,P, �) as inputs, and let w : C′ → [1,+∞) be
the corresponding weight function. Let h2 : R

d ′ → R
d̃ be the mapping constructed

by Lemma 3 when taking C′ and ε as inputs. Define C̃ = {h2(c) : c ∈ C′}. Let
h(x) = h2(h1(x)) for each x ∈ R

d . Let w(c) = w(h−1
2 (c)) and �(c) = �(h−1

2 (c)) for
each c ∈ C̃. The above process for data reduction is illustrated in Fig. 1.

Observe that

∑

c∈C̃
w(c) =

∑

c∈C̃
w(h−1

2 (c)) =
∑

c∈C′
w(c) = |{h1(c) : c ∈ C}| = |C|, (5)

where the second and fourth steps are due to the assumption that the mappings con-
structed by Lemma 3 are injective, and the third step is due to Corollary 1. Moreover,
Lemma 3 and Corollary 1 imply that

d ′ = O(ε−2 log|C|)

and

|C̃| = |C′| � d ′(pε−1 log|C|)O(1) = (pε−1 log|C|)O(1), (6)

combining which with Lemma 3 and Corollary 1, we know that constructing C̃ and
h : R

d → R
d̃ takes

O(|C|d log|C| + |C|d ′ p + |C′|d ′ log|C′|) � O(|C|d log|C| + (pε−1|C|)O(1)) (7)

time in total, and

d̃ = O(ε−2 log|C′|) � O(ε−2 log(pε−1 log|C|)) = ε−O(1)(log p + log log|C|). (8)
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Fig. 1 Illustration of our data reduction method, which reduces the dimensionality twice and constructs a
coreset. Here, we have C = {c1, · · · , c4}, C′ = {h1(c2), h1(c3)}, and C̃ = {h(c2), h(c3)}

Considering a set D ⊆ F with |D| � p, we have

∑

c∈C̃
w(c)δ(c, {h( f ) : f ∈ D ∩ F+

�(c)})

∈ [1, 1 + ε]
∑

c∈C′
w(c)δ(c, {h1( f ) : f ∈ D ∩ F+

�(c)})

∈ [1 − ε, 1 + O(ε)]
∑

c∈C
δ(h1(c), {h1( f ) : f ∈ D ∩ F+

�(c)})

∈ [1 − ε, 1 + O(ε)]
∑

c∈C
δ(c,D ∩ F+

�(c)), (9)

where the first and third steps follow from Lemma 3, and the second step is due to
Corollary 1. Combining formula (9) with equality (5), inequality (6), inequality (7),
and inequality (8), we complete the proof of Lemma 5.
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3 Our Algorithm

In this section we show how the desired (1 + ε)-approximation solution can be
constructed based on the reduced instance given by Lemma 5. We first introduce
some notations. Let h : R

d → R
d̃ and C̃ ⊂ R

d̃ be the mapping and weighted set
given by Lemma 5 when taking ε and I as inputs, and let w : C̃ → [1,+∞) and
� : C̃ → L denote the corresponding weight function and level function, respectively.
As done in Sect. 2, we can make h : F → R

d̃ injective by copying the points from
R
d̃ that have multiple inverse images. For each f ∈ F , let �(h( f )) = �( f ). Define

F̃ = {h( f ) : f ∈ F} and D̃∗ = {h( f ) : f ∈ D∗}. Let F̃i = {h( f ) : f ∈ Fi } and
F̃+
i = {h( f ) : f ∈ F+

i } for each i ∈ L. Define δmax = maxc∈C̃ δ(c, D̃∗ ∩ F̃+
�(c)). The

following lemma provides a way of estimating the cost of an optimal solution to I.
Lemma 6 δmax �

∑
c∈C̃ w(c)δ(c, D̃∗ ∩ F̃+

�(c)) � (1 + O(ε))opt.

Proof Observe that

δmax � max
c∈C̃

w(c)δ(c, D̃∗ ∩ F̃+
�(c))

�
∑

c∈C̃
w(c)δ(c, D̃∗ ∩ F̃+

�(c))

=
∑

c∈C̃
w(c)δ(c, {h( f ) : f ∈ D∗ ∩ F+

�(c)})

� (1 + O(ε))
∑

c∈C
δ(c,D∗ ∩ F+

�(c))

= (1 + O(ε))opt,

where the first step follows from the fact thatw(c) � 1 for each c ∈ C̃ and the definition
of δmax, the fourth step is due to Lemma 5, and the fifth step follows from the fact that
(D∗, ϕ∗) is an optimal solution to I. This completes the proof of Lemma 6.

3.1 The Partition Step

In this section, we estimate the locations of the facilities from D̃∗ based on their
neighboring clients. For each i ∈ [p], let ci denote the client from {c ∈ C̃ :
�(c) � �∗

i } nearest to h( f ∗
i ), and define Bi (α) = { f ∈ F̃ : δ(ci , f ) � α}

for each α > 0. We partition the facilities from F̃ into a set of ring cells cen-
tered at the clients from {c1, · · · , cp}: Let Q(i, 0) = Bi (εδmaxn−1) and Q(i, j) =
Bi (ε(1+ε) jδmaxn−1)\Bi (ε(1+ε) j−1δmaxn−1) for each i ∈ [p] and j ∈ [
ε−2 log n�],
as shown in Fig. 2a. We have

ε(1 + ε)
ε−2 log n�δmaxn
−1 > δmax = max

c∈C̃
δ(c, D̃∗ ∩ F̃+

�(c)) � δ(ci , h( f ∗
i ))
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Fig. 2 The images of candidates for the opened facilities under h

for each i ∈ [p], where the second step follows from the definition of δmax, and
the third step follows from the fact that h( f ∗

i ) ∈ D̃∗ ∩ F̃+
�(ci )

(due to the definition
of ci ). Combining this inequality with the definition of Q(i, j), we know that there
is an integer j ∈ [0, 
ε−2 log n�] satisfying h( f ∗

i ) ∈ Q(i, j) for each i ∈ [p].
Denote byQi such a setQ(i, j) containing h( f ∗

i ). Our idea for constructing solutions
to I in FPT(p) time is to guess the sets Q1, · · · ,Qp, such that we can limit the
search range of the opened facilities to the inverse images of the members of

⋃p
i=1Qi

under h. The following result implies that we can guess the sets Q1, · · · ,Qp with a
(pε−1)O(p)nO(1) multiplicative overhead in the running time of our algorithm.

Lemma 7 Given the reduced instance (C̃, F̃ ,L,P, �) of the Budgeted Priority
p-Median problem, the set {Q1, · · · ,Qp} can be guessed by enumerating over no
more than (pε−1)O(p)nO(1) items.

Proof We have |F̃ | = |F | � n and |C̃| � (pε−1 log n)O(1) due to Lemma 5. Using the
definitions of δmax and ci , it can be seen that there are |F̃ | · |C̃| � n(pε−1 log n)O(1)

choices of the value of δmax and |C̃|p � (pε−1 log n)O(p) choices of the set
{c1, · · · , cp}. Consequently, the definition of Q(i, j) indicates that we have no more
than n(pε−1 log n)O(p) choices of the set {Q(1, 0), · · · ,Q(p, 
ε−2 log n�)}. Combin-
ing this with the fact that each i ∈ [p] satisfiesQi ∈ {Q(i, 0), · · · ,Q(i, 
ε−2 log n�)},
the number of choices of the set {Q1, · · · ,Qp} can be upper-bounded by
n(pε−1 log n)O(p) · (ε−2 log n)p, which is no more than (pε−1)O(p)nO(1) due to
Lemma 1. Thus, Lemma 7 is true.

3.2 The Construction Step

Given the set {Q1, · · · ,Qp}, our algorithm constructs a net of Qi ∩ F̃ j for each
i ∈ [p] and j ∈ L and considers the inverse images of the members of the net under h
as candidates for the opened facilities (see Fig. 2b), as described inAlgorithm 1.Define
J , D, and N (i, j) in the same way as Algorithm 1 for each i ∈ [p] and j ∈ L. Let
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Algorithm 1 Construct the approximation solution
Require: A constant ε ∈ (0, 1), an instance I = (C,F ,L,P, �) of the Budgeted Priority p-Median

problem satisfying C ∪F ⊂ R
d and

∑|L|
i=1�pi � = p, an injective mapping h : F → R

d̃ , a set C̃ ⊂ R
d̃

of no more than (pε−1 log n)O(1) weighted clients with a weight function w : C̃ → [1,+∞) and a
level function � : C̃ → L, p subsets Q1, · · · ,Qp of {h( f ) : f ∈ F}, a set J storing the images of
facilities selected from F under h, and a set D storing selected subsets of J .

Ensure: A solution (D†, ϕ†) to I
1 J ⇐ ∅, D ⇐ ∅

2 for i ⇐ 1 to |L| do
3 Fi ⇐ { f ∈ F : �( f ) = i}
4 F̃i ⇐ {h( f ) : f ∈ Fi }
5 end for
6 for i ⇐ 1 to |L| do
7 F+

i ⇐ ⋃|L|
j=i F j

8 F̃+
i ⇐ {h( f ) : f ∈ F+

i }
9 end for
10 for i ⇐ 1 to p do
11 for j ⇐ 1 to |L| do
12 if |Qi ∩ F̃ j | � 1 then

13 J ⇐ J ∪ (Qi ∩ F̃ j )

14 else
15 Construct a maxx,y∈Qi

εδ(x, y)-net N (i, j) ofQi ∩ F̃ j
16 J ⇐ J ∪ N (i, j)
17 end if
18 end for
19 end for
20 for each D̃ ⊆ J do
21 if |D̃ ∩ F̃ j | � p j ∀ j ∈ L then

22 D ⇐ D ∪ {D̃}
23 end if
24 end for
25 D̃† ⇐ argminD̃∈D

∑
c∈C̃ w(c)δ(c, D̃ ∩ F̃+

�(c))

26 D† ⇐ {h−1( f ) : f ∈ D̃†}
27 for each c ∈ C do
28 ϕ†(c) ⇐ argmin f ∈D†∩F+

�(c)
δ(c, f )

29 end for
30 return (D†, ϕ†)

(D†, ϕ†) denote the solution returned by the algorithm, and let D̃† = {h( f ) : f ∈ D†}.
The following lemma implies that (D†, ϕ†) can be constructed in FPT(p) time.

Lemma 8 We can obtain the solution (D†, ϕ†) to I in no more than O(nd log n) +
(pε−1)pε

−O(1)
nO(1) time.

Proof Define G = {(i ∈ [p], j ∈ L) : |Qi ∩ F̃ j | > 1}. The definition of N (i, j) and
Lemma 2 imply that

|N (i, j)| �
(

maxx,y∈Qi∩F̃ j
δ(x, y)

εmaxx,y∈Qi∩F̃ j
δ(x, y)

)d̃

= ε−d̃ � (p log n)ε
−O(1)

(10)
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for each (i, j) ∈ G, where the third step follows from the fact that d̃ � ε−O(1)(log p+
log log n) (due to Lemma 5). Consequently, we know that

|J | =
∑

(i, j)∈G
|N (i, j)| + p|L| − |G|

� |L|(p log n)ε
−O(1)

� (p log n)ε
−O(1)

|L|∑

i=1

�pi�

= (p log n)ε
−O(1)

, (11)

where the first step follows from the definition of J , the second step is due to inequal-
ity (10), the third step follows from the fact that pi � 1 for each i ∈ L, and the fourth
step is derived from the fact that p = ∑|L|

i=1�pi�.
Observe that Algorithm 1 constructs a net ofQi ∩ F̃ j for each (i, j) ∈ G according

to the maximal distance between the facilities from Qi ∩ F̃ j . Lemma 2 and the fact
that d̃ � ε−O(1)(log p + log log n) imply that this takes no more than

∑

(i, j)∈G
2O(d̃)|Qi ∩ F̃ j |O(1) � 2O(d̃)nO(1) � (p log n)ε

−O(1)
nO(1) (12)

time in total.After this,Algorithm1 enumerates all subsets D̃ ⊆ J with |D̃∩F̃ j | � pi ,
∀ j ∈ L and selects the one corresponding to the solution with minimal cost to the
reduced instance (C̃, F̃ ,L,P, �). Equality

∑|L|
i=1�pi� = p implies that each subset

considered in this enumeration is of size no more than p, and we can complete this
enumeration in

O(|J |p|C̃|d̃ p) � (p log n)pε
−O(1) |C̃|d̃ p = (p log n)pε

−O(1)
(13)

time, where the first step follows from inequality (11), and the second step follows
from the fact that |C̃| � (pε−1 log n)O(1) and d̃ � ε−O(1)(log p + log log n) (due to
Lemma 5). Using inequality (12) and inequality (13), we know that Algorithm 1 runs
in no more than (p log n)pε

−O(1)
nO(1) time.

Lemma 5 implies that constructing the mapping h : R
d → R

d̃ and the reduced
instance (C̃, F̃ ,L,P, �) takes O(nd log n + (pε−1n)O(1)) time, and Lemma 7
says that there are at most (pε−1)O(p)nO(1) choices of the set {Q1, · · · ,Qp}.
Therefore, all inputs of Algorithm 1 can be known with a (pε−1)O(p)nO(1) mul-
tiplicative and an O(nd log n + (pε−1n)O(1)) additive overheads in the running
time of the algorithm. Combining this with the fact that Algorithm 1 runs in at
most (p log n)pε

−O(1)
nO(1) time, we know that constructing (D†, ϕ†) takes no more

than O(nd log n) + (p log n)pε
−O(1)

nO(1) time, which can be upper-bounded by
O(nd log n) + (pε−1)pε

−O(1)
nO(1) due to Lemma 1, as desired.
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We now consider the cost of (D†, ϕ†). The following lemma says that it is a (1 +
O(ε))-approximation solution to I.

Lemma 9
∑

c∈C δ(c, ϕ†(c)) � (1 + O(ε))opt.

Proof The fact that h( f ∗
i ) ∈ Qi and �(h( f ∗

i )) = �( f ∗
i ) = �∗

i implies that h( f ∗
i ) ∈

Qi ∩ F̃�∗
i
and thus |Qi ∩ F̃�∗

i
| � 1 for each i ∈ [p]. Given a real number i ∈ [p], we,

respectively, consider the following three cases: (1) |Qi ∩F̃�∗
i
| = 1, (2) |Qi ∩F̃�∗

i
| > 1

and Qi = Q(i, 0), and (3) |Qi ∩ F̃�∗
i
| > 1 and Qi �= Q(i, 0).

For case (1), the facility fromQi ∩ F̃�∗
i
is added to J by Algorithm 1, and the fact

that h( f ∗
i ) ∈ Qi ∩ F̃�∗

i
indicates that

{h( f ∗
i )} = Qi ∩ F̃�∗

i
⊆ J . (14)

For the case where |Qi ∩ F̃�∗
i
| > 1, it can be seen that Algorithm 1 adds the

facilities from a netN (i, �∗
i ) ofQi ∩ F̃�∗

i
to J , and the fact thatN (i, �∗

i ) ⊆ Qi ∩ F̃�∗
i

implies that (Qi ∩ F̃�∗
i
) ∩ J �= ∅. For case (2), let f ′

i ∈ F be a facility satisfying

h( f ′
i ) ∈ (Qi ∩ F̃�∗

i
) ∩ J . We have

δ(h( f ′
i ), h( f ∗

i )) � δ(ci , h( f ′
i )) + δ(ci , h( f ∗

i ))

� 2 max
f ∈Qi

δ(ci , f )

� 2ε

n
δmax

� 2ε

n
(1 + O(ε))opt, (15)

where the first step is due to triangle inequality, the second step follows from the fact
that {h( f ′

i ), h( f ∗
i )} ⊆ Qi , the third step is due to the assumption that Qi = Q(i, 0)

and the definition of Q(i, 0), and the fourth step follows from Lemma 6.
For case (3), let h( f ′

i ) be the facility from N (i, �∗
i ) nearest to h( f ∗

i ). We have
h( f ′

i ) ∈ N (i, �∗
i ) ⊆ Qi ∩ F̃�∗

i
, and

δ(h( f ′
i ), h( f ∗

i )) � ε max
x,y∈Qi

δ(x, y)

� 2ε max
f ∈Qi

δ(ci , f )

� 2ε(1 + ε)δ(ci , h( f ∗
i ))

= O(ε)δ(ci , h( f ∗
i )), (16)

where the first step follows from the fact that h( f ′
i ) is the nearest facility to h( f ∗

i ) in a
maxx,y∈Qi εδ(x, y)-net ofQi ∩ F̃�∗

i
, the second step follows from triangle inequality,

and the third step is due to the assumption that Qi �= Q(i, 0) (which says that there
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exists a real number j ∈ [
ε−2 log n�] satisfying Qi = Q(i, j)) and the definition of
Q(i, j) for j > 0.

The argument above implies the existence of a set D′ = { f ′
1, · · · , f ′

p} ⊆ F with

h( f ′
i ) ∈ J ∩ F̃�∗

i
for each i ∈ [p], which satisfies

δ(h( f ′
i ), h( f ∗

i )) � 2ε

n
(1 + O(ε))opt + O(ε)δ(ci , h( f ∗

i )) (17)

for each i ∈ [p] due to equality (14), inequality (15), and inequality (16). Define
D̃′ = {h( f ) : f ∈ D′}. The fact that h( f ′

i ) ∈ F̃�∗
i
for each i ∈ [p] and (D∗, ϕ∗) is a

feasible solution to I implies that inequality |D̃′ ∩ F̃ j | = |D∗ ∩ F j | � p j holds for
each j ∈ L. Combining this with the definition of D, we know that D̃′ ∈ D.

For each i ∈ [p], define C̃∗
i = {c ∈ C̃ : argmin f ∈D̃∗∩F̃+

�(c)
δ(c, f ) = h( f ∗

i )}. It is
the case that

p∑

i=1

∑

c∈C̃∗
i

w(c)δ(h( f ′
i ), h( f ∗

i )) �
p∑

i=1

∑

c∈C̃∗
i

w(c)

(
2ε

n
(1+O(ε))opt+O(ε)δ(ci , h( f ∗

i ))

)

� O(ε)opt + O(ε)

p∑

i=1

∑

c∈C̃∗
i

w(c)δ(ci , h( f ∗
i ))

� O(ε)opt + O(ε)

p∑

i=1

∑

c∈C̃∗
i

w(c)δ(c, h( f ∗
i ))

= O(ε)opt + O(ε)
∑

c∈C̃
w(c)δ(c, D̃∗ ∩ F̃+

�(c))

� O(ε)opt, (18)

where the first step follows from inequality (17), the second step is derived from the
fact that

∑
c∈C̃ w(c) = |C| < n (due to Lemma 5), the third step follows from the fact

that ci is the client from {c ∈ C̃ : �(c) � �∗
i } nearest to h( f ∗

i ) for each i ∈ [p], the
fourth step is due to the definition of C̃∗

i , and the fifth step is derived from Lemma 6.
Consequently, we have

∑

c∈C̃
w(c)δ(c, D̃′ ∩ F̃+

�(c)) =
p∑

i=1

∑

c∈C̃∗
i

w(c)δ(c, D̃′ ∩ F̃+
�(c))

�
p∑

i=1

∑

c∈C̃∗
i

w(c)(δ(c, h( f ∗
i )) + δ(h( f ∗

i ), D̃′ ∩ F̃+
�(c)))

�
p∑

i=1

∑

c∈C̃∗
i

w(c)(δ(c, h( f ∗
i )) + δ(h( f ∗

i ), h( f ′
i )))
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=
∑

c∈C̃
w(c)δ(c, D̃∗ ∩ F̃+

�(c))

+
p∑

i=1

∑

c∈C̃∗
i

w(c)δ(h( f ∗
i ), h( f ′

i ))

=(1 + O(ε))opt, (19)

where the second step is due to triangle inequality, the third step follows from the
fact that �(c) � �∗

i and h( f ′
i ) ∈ F̃�∗

i
⊆ F̃+

�(c) for each c ∈ C̃∗
i and i ∈ [p], the

fourth step follows from the definition of C̃∗
i , and the fifth step is due to Lemma 6 and

inequality (18).
Combining the fact that D̃′ ∈ D and D̃† = argminD̃∈D

∑
c∈C̃ w(c)δ(c, D̃ ∩ F̃+

�(c))

with inequality (19) yields

∑

c∈C̃
w(c)δ(c, D̃† ∩ F̃+

�(c)) �
∑

c∈C̃
w(c)δ(c, D̃′ ∩ F̃+

�(c)) � (1 + O(ε))opt. (20)

Therefore, we get

∑

c∈C
δ(c, ϕ†(c)) =

∑

c∈C
δ(c,D† ∩ F+

�(c))

� 1

1 − ε

∑

c∈C̃
w(c)δ(c, D̃† ∩ F̃+

�(c))

� 1 + O(ε)

1 − ε
opt

= (1 + O(ε))opt,

where the first step is due to the definition ofϕ†, the second step follows fromLemma5,
and the third step is due to inequality (20). This completes the proof of Lemma 9.

Lemma 8 and Lemma 9 imply that a (1 + O(ε))-approximation solution to I can
be constructed in O(nd log n) + (pε−1)pε

−O(1)
nO(1) time, which in turn implies that

Theorem 1 is true.

4 Conclusions

In this paper we consider the Budgeted Priority p-Median problem in high-
dimensional Euclidean spaces.We give a (1+O(ε))-approximation algorithm running
in FPT(p) time.Ourmain technical contribution is a data reduction-based approach for
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constructing small solution search spaces, which is quite different from the commonly
used sampling-based methods and we believe is of independent interest.
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