
Journal of the Operations Research Society of China
https://doi.org/10.1007/s40305-023-00501-4

Scheduling Games with Potential Penalties on the Move of
Jobs

Zhu-Yi-Nan Wang1 · Chen Zhang1 · Zhi-Yi Tan1

Received: 18 January 2023 / Revised: 9 July 2023 / Accepted: 22 August 2023
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
This paper studies scheduling games with potential penalties on the move of jobs.
There are a set of machines and a set of jobs. Each job could choose one machine
and be processed by the chosen one. Jobs that try to change their original choice will
incur additional costs, which is proportional to its processing time with proportional
parameter δ � 0. A schedule is a δ-NE if no job has the incentive to change its choice
unilaterally. The δ-NE is a generation of Nash equilibrium, and its inefficiency can be
measured by the δ-PoA, which is also a generalization of the Price of Anarchy. For
the game with the social cost of minimizing the makespan, the exact δ-PoA for any
number of machines and any δ � 0 is obtained. For the game with the social cost of
maximizing the minimum machine load, an upper bound on the δ-PoA is presented,
and tight bounds are given for 2 � m � 11 and any δ � 0, where m is the number of
machines.
Keywords Scheduling game · Price of Anarchy · Nash equilibrium · Parallel machine

Mathematics Subject Classification 90B35 · 90C27

1 Introduction

In recent years, scheduling games have gained more and more attention in the oper-
ations research and computer science community [1]. In contrast to the assumption of

This work was supported by the National Natural Science Foundation of China (No.12071427).

B Zhi-Yi Tan
tanzy@zju.edu.cn

Zhu-Yi-Nan Wang
437630394@qq.com

Chen Zhang
2547816534@qq.com

1 School of Mathematical Science, Zhejiang University, Hangzhou 310058, Zhejiang, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-023-00501-4&domain=pdf
http://orcid.org/0000-0002-4714-5448

Z.-Y.-N. Wang et al.

classical scheduling problems that all jobs are arranged by a central decision maker,
every job is an independent decision maker who can decide the way how it is pro-
cessed. This assumption adapts to the requirement of decentralized applications such
as network economy and cloud services. One platform may have various resources
with different performances and prices and provide services for multiple customers at
the same time.However, the platform cannot or should not decide customers’ behavior,
but let their customers be free to make choices. Each customer has the right to choose
one of these resources based on their interests. The change in the decision-making
body leads to distinct features from classical optimization problems.

Without a centralized arrangement, schedules occurring in scheduling games are
usually determined by the decision of each job rather than a particular algorithm.
One basic hypothesis of game theory is the rationality of the players [2]. That is,
each decision maker will choose a strategy to minimize his cost. In the case of the
scheduling game, each job could choose one machine from a set of parallel machines
and be processed by the chosen one. The costs of the jobs are also determined by the
choices of the jobs [3]. Since all the jobs are scheduled on the same set of machines,
there is an interaction effect between the choices of the jobs. Each job will also seek
the possibility of reducing its cost by changing its choice, i.e., moving from one
machine to another. However, this kind of movement may not be endless. Under most
circumstances, the choices of jobs will eventually form a steady schedule, which is
known as a Nash equilibrium (NE) [3]. In the NE, no job will reduce its cost by
changing its choice unilaterally. This kind of schedule is one of the main focuses of
scheduling games.

Although each customer makes a decision based on its own cost, the platform has to
pay attention to the overall interest, which is called social cost. It is not surprising that
decentralized decisions will suffer losses on the social cost compared to centralized
decisions. High loss indicates that the decisionmechanism is not effective and requires
to improve. Possible improvements include limiting the choice of jobs, guiding jobs
in their choices through economic means, or even returning to centralized decisions.

The Price of Anarchy (PoA) is a kind of quantitative index that measures the inef-
ficiency of the NE. The PoA of an instance is defined as the ratio between the social
cost of a worst NE and the optimal social cost. The PoA of the game is the supremum
value of the PoA of all instances. Analogous to the worst-case ratio of an approxima-
tion algorithm, PoA reflects the performance of an NE in the worst case in terms of
social cost. To obtain the value of the PoA is one of the central roles of research on
scheduling games.

Naturally, more complex scenarios exist in real situations. For example, it may not
be very smooth to change the previous choice of the job. Sometimes the change of
choice will produce extra cost or require additional time, so the job is preferred to
keep the current choice. Under this circumstance, the scope of the steady schedule
will be wider than the NE. The consequence is that the loss from the decentralized
decisionmaybeunderestimated,which further influences the evaluationof the decision
mechanism. So it is necessary to study the property of the new kind of equilibrium
and to generalize the notion of the Price of Anarchy.

In this paper, we will study the scheduling game with additional penalties on
the change of the choice of the players. There are a set of machines M =

123

Scheduling Games with Potential Penalties on the Move of Jobs

{M1, M2, · · · , Mm} and a set of jobs J = {J1, J2, · · · , Jn}. The processing time
of job J j is p j , j = 1, · · · , n. The player set of the game is J , and every player
J j ∈ J has a strategy set that consists of all the machines. A strategy profile of the
game is essentially a schedule in which every job is scheduled on one of the machines.
A load of a machine is the sum of the processing times of all the jobs that choose this
machine in the schedule. Given a penalty parameter δ � 0, a profile σ is a δ-NE if
the cost of any job in σ is no larger than its new cost when it unilaterally moves to
another machine. Suppose that J j is scheduled on Mi in σ , and the schedule that J j
unilaterally moves to Mk is denoted σ ′. Then, the cost of J j in σ is the load of Mi in
σ , whereas its new cost is the load of Mk in σ ′ plus the penalty cost. Although there
may be different settings on the penalty cost, we assume that the penalty cost of a job
is proportional to its processing time with a proportional factor δ. Two kinds of social
costs are considered. The first is minimizing makespan, i.e., the maximal load of all
the machines. The second is maximizing the minimum load of all the machines.

The inefficiency of the δ-NE is measured by δ-PoA, which is a generalization of the
classical PoA [3]. For the games with the social cost of minimizing the makespan, the
δ-PoA of an instance is defined to be the ratio of the social cost of a δ-NE, which has
the largest social cost among all the δ-NEs to the optimal social cost. For the games
with the social cost of maximizing the minimum machine load, in reverse, the δ-PoA
of an instance is defined to be the ratio of the optimal social cost to the social cost of a
δ-NE, which has the smallest social cost among all the δ-NEs. The δ-PoA of the game
is the supremum value of the δ-PoA of all instances.

The framework of scheduling games and the notion of the Price of Anarchy were
formulated by Koutsoupias and Papadimitriou in their seminar work [3]. For the
scheduling game with the social cost of minimizing the makespan, the PoA is 2m

m+1 [4,

5]. For the social cost of maximizing theminimummachine load, the PoA is 17
10 for any

number ofmachines [6].When the number ofmachines is small, the bound of 7
4− 1

4�m
2 �

is better and is tight when 2 � m � 7 [6]. Research on the PoA for other social costs
and more sophisticated paradigms of scheduling games can be found in [7–14].

There are also some models of scheduling games that additional costs incurred by
the move of jobs. For the scheduling game with migration cost [15], a set of jobs and a
set of original machines, as well as an initial schedule, are given. Machines can either
be removed, or be added, but not both. The processing time of a job will increase by a
constant if it is scheduled on amachine that is different from themachine it is scheduled
in the initial schedule. However, in their model, no penalty cost would occur if a job
moves from one machine to the other machine, but both machines are different from
the machine it is scheduled in the initial schedule. The concept of a steady schedule
does not change, but whether a schedule is a NE or not heavily depended on the initial
schedule. Remind that in our model, the penalty costs are virtual and only act as a
disincentive to the change of choice.

A term similar to δ-NE is ε-approximateNE [16–18].An (additive ormultiplicative)
ε-approximate NE is a profile from which no player has the incentive to deviate so
that it decreases its cost by more than ε, or by a factor larger than 1 + ε. However, in
our model, the penalty cost is neither a constant, nor proportional to the new cost.

123

Z.-Y.-N. Wang et al.

In this paper, we study the inefficiency of the equilibrium with potential penalty
cost for the change of choice. For the game with the social cost of minimizing the
makespan, we show the δ-PoA is

{
max

{
m�α�

m�α�−(m−1)(1+δ)
, �α�

}
, 0 � δ < m − 1,

m, δ � m − 1,

where α = 1+ m−1
m (1+ δ). The bound is tight for any δ andm. For the game with the

social cost of maximizing the minimum machine load, we show the δ-PoA is at most
1

2�m
2 �

(
1 + 2�m

2 �
1−δ

+ 3(�m
2 �−1)
2−δ

)
, and tight bounds are obtained for any δ and m � 11

(Ref. Fig. 1). A lower bound of 1
12 + 1

1−δ
+ 1

2−δ
+ 7

12(6−δ)
is also given for m � 12.

As a corollary of our result, the PoA is 5
3 up to 11 machines, and at least 121

72 for more
than 11 machines, which extends some results of [6] for a small number of machines.

The paper is organized as follows: In Section 2,we present somepreliminary results.
In Sections 3 and 4, we prove upper and lower bounds on the δ-PoA for the game with
the social cost of minimizing the makespan and maximizing the minimum machine
load, respectively.

2 Preliminaries

We first introduce some notations, which will be used throughout the paper. An
instance I of the scheduling game can be represented by an ordered pair I = (J ,M).
A schedule of instance I is denoted σ(I). We omit I if no confusion can arise. Given a
subsetJ0 ⊆ J , the total processing time of the jobs inJ0 is denoted P(J0).We abbre-
viate P(J) to P . For any schedule σ A(I), the subset of jobs that are scheduled onMi is
denoted J A

i (I), i = 1, · · · ,m. Let nA
i (I) = |J A

i (I)| and L A
i (I) = P(J A

i (I)) be the
number of jobs scheduled on Mi and the load of Mi , respectively. Denote by CA

max(I)
andCA

min(I) themaximum load (makespan) and theminimum load of all themachines,
respectively. That is CA

max(I) = max
i=1,··· ,m L A

i (I) and CA
min(I) = min

i=1,··· ,m L A
i (I).

1 2 3 4 5 6

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Fig. 1 Left: The δ-PoA for the game with the social cost of minimizing the makespan on 2(bottom),
4(middle), and 6(top) machines. Right: The δ-PoA (solid line) for the game with the social cost of maxi-
mizing the minimum machine load on 2(bottom), 4(middle), and 6(top) machines, and an upper bound of
the δ-PoA (dashed line) on 12 machines

123

Scheduling Games with Potential Penalties on the Move of Jobs

Let σ δ be an arbitrarily δ-NE. W.l.o.g., we assume that Lδ
1 � Lδ

2 � · · · � Lδ
m .

Denote by Jai , Jbi , Jzi the job with the largest, the second largest, and the smallest
processing time among J δ

i , respectively. By the definition of the δ-NE, for any 1 �
i, k � m and any J j ∈ J δ

i ,

Lδ
i � Lδ

k + (1 + δ)p j . (1)

In fact, assume that there exist i and k, J j ∈ J δ
i and Lδ

i > Lδ
k + (1 + δ)p j . If J j

moves from Mi to Mk , the new cost of J j is Lδ
k + p j + δ p j , which is smaller than its

cost in σ δ . It contradicts that σ δ is a δ-NE.
Though (1) is also sufficient, we have a simpler criterion for whether a schedule

σ A is a δ-NE or not. If J j ∈ J A
i and nA

i = 1, then L A
i = p j � L A

k + (1 + δ)p j for
any k 	= i . Hence, any job that scheduled on a machine separately has no incentive to
move to another machine. If LA

i � L A
k , then L A

i � L A
k + (1+ δ)p j trivially holds for

any J j ∈ J A
i . It follows that no job has an incentive to move to a machine with an

equal or larger load. Therefore, we have the following lemma.

Lemma 1 If for any J j ∈ J A
i where nA

i > 1 and L A
i > CA

min, L
A
i � CA

min+(1+δ)p j ,
then σ A is a δ-NE.

From (1), it is clear that any NE is a δ-NE for any δ � 0, but the reverse is not true.
Due to the existence of NE for the classical scheduling game [19], δ-NE also exists
for any δ � 0. When δ = 0, δ-NE degenerate to the classical NE. Moreover, for any
δ1 < δ2, δ1-NE is also a δ2-NE and thus δ1-PoA is no more than δ2-PoA. Note that
0-PoA is equal to the PoA.

Denote by σ ∗ and σ ∗∗ the optimal schedule with the social cost of minimizing the
makespan and maximizing the minimum machine load, respectively. The δ-PoA for
the scheduling game on m machines with the social cost of minimizing the makespan
is

Uδ,m = sup

{
Cδ
max(I)

C∗
max(I)

| I = (J ,M), |M| = m

}
.

The δ-PoA for the scheduling game onm machines with the social cost of maximizing
the minimum machine load is

Vδ,m = sup

{
C∗∗
min(I)

Cδ
min(I)

| I = (J ,M), |M| = m

}
.

The following lemma provides some basic bounds on the optimum.

Lemma 2 (Folklore) (i) C∗
max � max{ Pm , max

j=1,··· ,n p j }.
(ii) C∗∗

min � P
m .

123

Z.-Y.-N. Wang et al.

3 Minimizing theMakespan

In this section, we present the exact value of the δ-PoA for the game with the social
cost of minimizing the makespan.

Theorem 1 For the scheduling game on m identical machines with the social cost of
minimizing the makespan, the δ-PoA is

Uδ,m =
{
max

{
m�α�

m�α�−(m−1)(1+δ)
, �α�

}
, 0 � δ < m − 1,

m, δ � m − 1,

where α = 1 + m−1
m (1 + δ).

Proof We start from the relatively easy case of δ � m − 1. Obviously, Cδ
max � P �

mC∗
max by Lemma 2(i), and thus, Uδ,m � m. To show the bound is tight, consider an

instance I1 consisting of m jobs of processing time 1. Clearly, C∗
max(I1) = 1. On the

other hand, the schedule σ 1 that all the jobs are scheduled on M1 is a δ-NE. In fact,
note that L1

1 = m and L1
i = 0 for any i 	= 1. Thus, C1

max(I1) = 1 and C1
min(I1) = 0.

Since L1
1 = m � 1 + δ = C1

min(I1) + (1 + δ), σ 1 is a δ-NE by Lemma 1. Hence,

Uδ,m � C1
max(I1)

C∗
max(I1)

= m. Thus, Uδ,m = m for any δ � m − 1.
We assume 0 � δ < m − 1 in the rest of the proof. Note that

nδ
1 pz1 � Cδ

max = Lδ
1 � nδ

1 pa1 . (2)

Moreover, by (1),

Lδ
1 � Lδ

i + (1 + δ)pz1 , i > 1. (3)

If nδ
1 > m−1

m (1 + δ) = α − 1, by (3) and (2),

P =
m∑
i=1

Lδ
i = Lδ

1 +
m∑
i=2

Lδ
i � Lδ

1 + (m − 1)(Lδ
1 − (1 + δ)pz1)

= mLδ
1 − (m − 1)(1 + δ)pz1 � mLδ

1 − (m − 1)(1 + δ)

nδ
1

Lδ
1

=
(
m − (m − 1)(1 + δ)

nδ
1

)
Cδ
max.

Combining the above inequality with Lemma 2(i), we have

Cδ
max

C∗
max

�

P
m− (m−1)(1+δ)

nδ
1

P
m

= mnδ
1

mnδ
1 − (m − 1)(1 + δ)

. (4)

123

Scheduling Games with Potential Penalties on the Move of Jobs

On the other hand,

Cδ
max

C∗
max

� Lδ
1

pa1
� nδ

1 (5)

by Lemma 2(i) and (2).

Note that
mnδ

1
mnδ

1−(m−1)(1+δ)
is amonotone decreasing function of nδ

1. If 2 � nδ
1 � �α�,

then by (5),

Cδ
max

C∗
max

� nδ
1 � �α� � max

{
m�α�

m�α� − (m − 1)(1 + δ)
, �α�

}
.

If nδ
1 � �α�, then by (4),

Cδ
max

C∗
max

� mnδ
1

mnδ
1 − (m − 1)(1 + δ)

� m�α�
m�α� − (m − 1)(1 + δ)

� max

{
m�α�

m�α� − (m − 1)(1 + δ)
, �α�

}
.

Therefore,

Uδ,m � max

{
m�α�

m�α� − (m − 1)(1 + δ)
, �α�

}
.

We introduce two instances to show that the bound is tight. Note that α < m when
δ < m − 1. Instance I2 consists of (m − �α�)(m − 1) + �α� jobs, including �α�
large jobs with processing times 1, and (m − �α�)(m − 1) small jobs with processing

times max
{ �α�−1−δ

m−�α� , 0
}
. In a schedule σ 2, all the large jobs are scheduled on M1,

and each of the remaining m − 1 machines processes m − �α� small jobs. Clearly,
L2
1 = �α� and L2

i = max{�α� − 1 − δ, 0}, i = 2, · · · ,m. Thus C2
max(I2) = �α� and

C2
min(I2) = max{�α� − 1 − δ, 0}. Moreover, since

L2
1 = �α� � max{�α� − 1 − δ, 0} + (1 + δ) = C2

min(I2) + (1 + δ),

σ 2 is a δ-NE by Lemma 1.
In another schedule σ ′, each large job is scheduled on a machine separately. Each

of the remaining m − �α� machines processes m − 1 small jobs. Since �α� � 1 +
m−1
m (1 + δ), m � m�α� − (m − 1)(1 + δ) and thus

(m − 1)
�α� − 1 − δ

m − �α� � (m − 1)(�α� − 1 − δ)

m�α� − (m − 1)(1 + δ) − �α� = 1.

The loads of all the machines in σ ′ are no more than 1. Therefore, C∗
max(I2) � 1 and

Uδ,m � C2
max(I2)

C∗
max(I2)

� �α�.

123

Z.-Y.-N. Wang et al.

Instance I3 consists of (2m−�α�)(m−1)+�α� jobs, including �α� large jobs with
processing time1, (m−�α�)(m−1) small jobswith processing time 1

m−1 , andm(m−1)

tiny jobs with processing time (�α�−1−δ)(m−1)−(m−�α�)
m(m−1) . Since �α� � 1+ m−1

m (1+ δ),

(�α� − 1 − δ)(m − 1) − (m − �α�) = m�α� − m − (m − 1)(1 + δ) � 0

and thus the instance is well-defined.
In a schedule σ 3, all the large jobs are scheduled on M1, and each of the remaining

m − 1 machines processes m − �α� small jobs and m tiny jobs. Clearly,

L3
1 = �α�,

L3
i = m − �α�

m − 1
+ (�α� − 1 − δ)(m − 1) − (m − �α�)

m − 1
= �α� − 1 − δ, i = 2, · · · ,m.

Thus, C3
max(I3) = �α� and C3

min(I3) = �α� − 1 − δ. Moreover, since

L3
1 = �α� = (�α� − 1 − δ) + (1 + δ) = C3

min(I3) + (1 + δ),

σ 3 is a δ-NE by Lemma 1.
In another schedule σ ′, each of the first �α� machines processes a large job and

m − 1 tiny jobs. Each of the remaining m −�α� machines processes m − 1 small jobs
and m − 1 tiny jobs. The loads of all the machines in σ ′ are

1 + (�α� − 1 − δ)(m − 1) − (m − �α�)
m

= m�α� − (m − 1)(1 + δ)

m
.

Therefore, C∗
max(I3) = m�α�−(m−1)(1+δ)

m and Uδ,m � C3
max(I3)

C∗
max(I3)

� m�α�
m�α�−(m−1)(1+δ)

.

4 Maximizing theMinimumMachine Load

In this section, we present lower and upper bounds on the δ-PoA for the game with
the social cost of maximizing the minimum machine load. Unlike the game with the
social cost of minimizing the makespan, the δ-PoA is unbounded for any m � 2.

Theorem 2 For the scheduling game on m identical machines with the social cost of
maximizing the minimum machine load, the δ-PoA is infinity when δ � 1.

Proof Consider the instance I1 consisting of m jobs of processing time 1. Clearly,
C∗∗
min(I1) = 1. On the other hand, the schedule σ ′ that two jobs are scheduled on M1,

one job is scheduled on Mi , 2 � i � m − 1, and none of the jobs is scheduled on Mm

is a δ-NE. In fact, note that L ′
1 = 2, L ′

m = 0 and L ′
i = 1 for any 1 < i < m. Thus,

C ′
min(I1) = 0. Since L ′

1 = 2 � 1 + δ = C ′
min(I1) + (1 + δ), σ ′ is a δ-NE by Lemma

1. Hence, Vδ,m = ∞.

123

Scheduling Games with Potential Penalties on the Move of Jobs

According to Theorem 2, we assume that 0 < δ < 1 in the rest of the section. We
first show some further properties on the δ-NE.Remind that Lδ

1 � Lδ
2 � · · · � Lδ

m , and
Jai , Jbi , Jzi is the job with the largest, the second largest and the smallest processing
time among J δ

i , respectively. Let MI I = {Mi |1 � i � m − 1 and nδ
i = 2} and

MI I I = {Mi |1 � i � m − 1 and nδ
i = 3} be the subsets of M\{Mm} consisting of

machines that process 2 and 3 jobs in σ δ , respectively. Denote by JI I = ⋃
Mi∈MI I

J δ
i

and JI I I = ⋃
Mi∈MI I I

J δ
i the subsets of jobs that are processed on the machines of

MI I and MI I I , respectively. Clearly, |JI I | = 2|MI I | and |JI I I | = 3|MI I I |.
Lemma 3 If nδ

i � 2 for some 1 � i � m − 1, then Lδ
i � nδ

i
nδ
i −1−δ

Lδ
m and Lδ

i − pzi �
nδ
i −1

nδ
i −1−δ

Lδ
m. Specifically, p j � 1

1−δ
Lδ
m for any J j ∈ JI I .

Proof Since σ δ is a δ-NE, nδ
i pzi � Lδ

i � Lδ
m + (1 + δ)pzi by (1). Thus, pzi �

1
nδ
i −1−δ

Lδ
m . Hence, L

δ
i � Lδ

m + (1+δ)pzi � nδ
i

nδ
i −1−δ

Lδ
m and Lδ

i − pzi � Lδ
m +δ pzi �

nδ
i −1

nδ
i −1−δ

Lδ
m .

If nδ
i = 2, then pzi � pai = Lδ

i − pzi � 1
1−δ

Lδ
m . Therefore, p j � 1

1−δ
Lδ
m for any

J j ∈ JI I .

Next we show that the δ-PoA is non-decreasing for the number of machines.

Lemma 4 Vδ,m � Vδ,m+1.

Proof Let I = (J ,M) be an arbitrary instance with |M| = m, and σ δ(I) be an
arbitrary δ-NE of I . Consider an instance I ′ = (J ′,M′) with m + 1 machines,
where J ′ = J ∪ {Jn+1} and M′ = M ∪ {Mm+1}. The processing time of Jn+1 is
pn+1 = C∗∗

min(I).
Obviously, C∗∗

min(I
′) � C∗∗

min(I), as we can easily obtain a feasible schedule σ ′ of
I ′ with C ′

min(I
′) = C∗∗

min(I) based on σ ∗∗(I). That is

J ′
i (I

′) = J ∗∗
i (I), i = 1, · · · ,m,J ′

m+1(I
′) = {Jn+1}.

On the other hand, let σ δ(I ′) be a schedule of I ′ such that

J δ
i (I ′) = J δ

i (I), i = 1, · · · ,m,J δ
m+1(I

′) = {Jn+1}.

Note that

Lδ
m+1(I

′) = pn+1 = C∗∗
min(I) � Cδ

min(I) = Lδ
m(I) = Lδ

m(I ′).

Thus, Cδ
min(I

′) = Cδ
min(I) = Lδ

m(I). Since σ δ(I) is a δ-NE of I , for any 1 � i � m,
and J j ∈ J δ

i (I ′) = J δ
i (I),

Lδ
i (I

′) = Lδ
i (I) � Lδ

m(I) + (1 + δ)p j = Cδ
min(I

′) + (1 + δ)p j .

123

Z.-Y.-N. Wang et al.

By Lemma 1, σ δ(I ′) is a δ-NE of I ′, and C∗∗
min(I

′)
Cδ
min(I

′) � Cmin(I)
Cδ
min(I)

. By the arbitrariness of I

and σ δ , we have Vδ,m+1 � Vδ,m .

Lemma 4 indicates that the δ-PoA for m machines is no less than the δ-PoA for
fewer machines. However, the ratio between the social cost of an optimal schedule
and a δ-NE will not exceed the δ-PoA for m − 1 machines in some circumstances, as
we will see in the next lemma.

Lemma 5 Suppose that σ δ(I) and σ ′(I) is a δ-NE and a feasible schedule of I ,

respectively. If there exists k 	= m such that J δ
k (I) ⊆ J ′

k(I), then
C ′
min(I)

Cδ
min(I)

� Vδ,m−1.

Proof Let I− = (J −,M−) be an instance with m − 1 machines, where J − =
J \J δ

k (I) and M− = M\{Mk}. Construct a schedule σ δ(I−) of I− based on σ δ(I)
such that J δ

i (I−) = J δ
i (I) for any i 	= k. Obviously, σ δ(I−) is a δ-NE of I− and

Cδ
min(I

−) = min
i 	=k

Lδ
i (I

−) = min
i 	=k

Lδ
i (I) = min

i=1,2,··· ,mL
δ
i (I) = Cδ

min(I), (6)

where the third equality is due to k 	= m.
Next we provide another schedule σ ′(I−) of I− based on σ ′(I). Let

J ′
m(I−) = J ′

m(I) ∪ (J ′
k(I) \ J δ

k (I)),J ′
i (I

−) = J ′
i (I), i 	= k,m.

Then, L ′
i (I

−) � L ′
i (I) for any i 	= k. Hence,

C∗∗
min(I

−) � C ′
min(I

−) = min
i 	=k

L ′
i (I

−) � min
i 	=k

L ′
i (I) � min

i=1,2,··· ,mL
′
i (I) = C ′

min(I).

(7)

By (6), (7) and the fact that σ δ(I−) is a δ-NE of instance I− with m − 1 machines,

C ′
min(I)

Cδ
min(I)

� C∗∗
min(I

−)

Cδ
min(I

−)
� Vδ,m−1.

In the next lemma, we provide two specific situations that meet the condition
of Lemma 5. It significantly simplifies the proof of the δ-PoA in companion with
Lemma 4.

Lemma 6

(i) If there exists i 	= m such that nδ
i = 1, then

C∗∗
min(I)

Cδ
min(I)

� Vδ,m−1.

(ii) If there exists a machine that processes at least two jobs of JI I in σ ∗∗, then
C∗∗
min(I)

Cδ
min(I)

� Vδ,m−1.

Proof

(i) If there exists i 	= m such that nδ
i = 1, then J δ

i = {Jai }. Since Jai must be
processed on somemachine in σ ∗∗, we can assume thatJ δ

i ⊆ J ∗∗
i by renumbering

the indexes of the machines of σ ∗∗. Hence, C∗∗
min(I)

Cδ
min(I)

� Vδ,m−1 by Lemma 5.

123

Scheduling Games with Potential Penalties on the Move of Jobs

(ii) Construct an instance I+ = (J +,M) whose job set has a one-to-one map to
the job set of I = (J ,M). For any J j ∈ JI I , the corresponding job J+

j has a

processing time 1
1−δ

Lδ
m(I). For any J j /∈ JI I , the corresponding job J+

j has the

same processing time as J j . By Lemma 3, p+
j � p j for any j .

Let σ δ(I+) be a schedule of I+ such that J δ
i (I+) = J δ

i (I) for any i . Since p+
j = p j

for any J j /∈ JI I , Lδ
i (I

+) = Lδ
i (I) for any Mi /∈ MI I . Thus, Lδ

m(I+) = Lδ
m(I) �

Lδ
i (I) � Lδ

i (I
+) for any i 	= m. It follows that Cδ

min(I
+) = Cδ

min(I) = Lδ
m(I). For

any Mi ∈ MI I ,

Lδ
i (I

+) = 2

1 − δ
Lδ
m(I) = Lδ

m(I) + (1 + δ)
1

1 − δ
Lδ
m(I) = Cδ

min(I
+) + (1 + δ)

1

1 − δ
Lδ
m(I).

Hence, σ δ(I+) is also a δ-NE of I+ by the fact that σ δ(I) is a δ-NE of I and Lemma
1.

Let σ ′(I+) be a schedule of I+ such that J ′
i (I

+) = J ∗∗
i (I) for any i . Clearly,

C∗∗
min(I) � C ′

min(I
+). Recall that all the jobs of I+ correspond to the jobs of JI I

have the same processing time. Since there exists a machine which processes at least
two jobs of JI I in σ ∗∗(I), we have J δ

i (I+) ⊆ J ′
i (I

+) for some Mi ∈ MI I by
renumbering the indexes of the jobs correspond to the jobs of JI I and the machines

in σ ′. Therefore, C∗∗
min(I)

Cδ
min(I)

� C ′
min(I

+)

Cδ
min(I

+)
� Vδ,m−1 by Lemma 5.

By Lemmas 4 and 6(i), to prove that the δ-PoA for m machines does not exceed
Vδ,m , it is sufficient to assume that nδ

i � 2 for any 1 � i � m − 1. Under such
circumstance, it is easy to obtain an upper bound of Vδ,m by Lemma 3, as we will
show in Lemma 8. However, the upper bound is too crude to be tight. With the help
of Lemma 6(ii), we get a tighter and still universal upper bound in Theorem 3. It
matches the lower bound of Vδ,m up to 7 machines. To obtain the tight bound for more
machines, a careful investigation on the jobs of JI I I is required, which forms the last
and the most technical part of the paper.

For simplicity of notation, denote ωi = 1
i−δ

for any i � 1. Clearly,

(i + 1)ωi = i + 1

i − δ
= 1 + 1 + δ

i − δ
= 1 + (1 + δ)ωi . (8)

We list some simple algebraic properties of ωi below.

Lemma 7 (i) ω1 � 2ω2 � 3ω3 � 4ω4 � 6ω6 � 1.
(ii) For any k � 1, 1+ kω1 � 2(k + 1)ω2. For any k � 2, 1+ 2kω2 � 3(k + 1)ω3

and 1 + kω2 � 2(k + 2)ω4.
(iii) 1

2 + ω1 � 1
4 + ω1 + ω3 � 1

4 + ω1 + 3
4ω2 � 1

6 + ω1 + ω2.
(iv) 1

10 + ω1 + 3
5ω2 + 4

5ω3 � 1
8 + ω1 + 3

4ω2 + 1
2ω3 � 1

6 + ω1 + ω2.
(v) For any m � 2, 1 + 6ω1 + 3 (m − 4) ω2 � 1 + 8ω1 + 3 (m − 6) ω2 + 4ω3.
(vi) For any m � 12, 1

m + m−1
m ω1 + 4

3ω2 � 1
12 + 11

12ω1 + 4
3ω2 � 1

6 + ω1 + ω2.
(vii) For any m � 8, 1

m (1 + 8ω1 + 3 (m − 6) ω2 + 4ω3) � 1
8 +ω1+ 3

4ω2+ 1
2ω3 �

1
6 + ω1 + ω2.

123

Z.-Y.-N. Wang et al.

(viii) For any m � 9, 1
m (1 + 8ω1 + 3(m − 5)ω2) � 1

9 + 8
9ω1+ 4

3ω2 � 1
6 +ω1+ω2.

(ix) 1
9 + ω1 + 8

9ω2 + 4
9ω4 � 1

6 + ω1 + ω2.
(x) 1

11 + 10
11ω1 + 12

11ω2 + 4
11ω3 � 1

11 + 10
11ω1 + 4

3ω2 � 1
6 + ω1 + ω2.

Proof (i) and (ii) can be proved by direct algebraic calculation. (iii) can be proved
by (i). Both inequalities of (iv) are equivalent to 1 + 6ω2 � 12ω3, which is valid
according to (ii). (v) can be proved by 2ω1 + 4ω3 � 2ω1 + 1 � 6ω2, which is valid
according to (i) and (ii). The first inequality of (vi) can be proved by (i), and the second
inequality of (vi) is equivalent to 1 + ω1 � 4ω2, which is valid according to (ii). The
first inequalities of both (vii) and (viii) can be proved by 1 + 8ω1 � 18ω2, which is
valid according to (ii). The second inequalities of (vii) and (viii) can be proved by (iv)
and (vi), respectively. (ix) is equivalent to 1+ 2ω2 � 8ω4, which is valid according to
(ii). The first and second inequality of (x) can be proved by (i) and (vi), respectively.

Lemma 8 If nδ
i � 2 for any 1 � i � m − 1, then

C∗∗
min

Cδ
min

� 1

m
(1 + 2|MI I |ω1 + 3|MI I I |ω2 + 4(m − 1 − |MI I | − |MI I I |)ω3)

� 1

m
(1 + 2|MI I |ω1 + 3(m − 1 − |MI I |)ω2) � 1

m
(1 + 2(m − 1)ω1) .

Proof By Lemmas 2(ii), 3 and 7(i),

C∗∗
min

Cδ
min

�
P
m

Lδ
m

= 1

m

∑m
i=1 L

δ
i

Lδ
m

= 1

m

Lδ
m + ∑m−1

i=1 Lδ
i

Lδ
m

� 1

m

(
1 +

m−1∑
i=1

nδ
i

nδ
i − 1 − δ

)

= 1

m

⎛
⎝1 +

∑
Mi∈MI I

nδ
i

nδ
i − 1 − δ

+
∑

Mi∈MI I I

nδ
i

nδ
i − 1 − δ

+
∑

Mi∈M\(MI I∪MI I I∪{Mm })

nδ
i

nδ
i − 1 − δ

⎞
⎠

� 1

m
(1 + 2|MI I |ω1 + 3|MI I I |ω2 + 4(m − 1 − |MI I | − |MI I I |)ω3)

� 1

m
(1 + 2|MI I |ω1 + 3(m − 1 − |MI I |)ω2) � 1

m
(1 + 2(m − 1)ω1) .

For any 0 < δ < 1 and m � 2, define

V ′
δ,m = 1

2�m
2 �

(
1 + 2�m

2
�ω1 + 3

(
�m
2

� − 1
)

ω2

)
. (9)

Set V ′
δ,1 = 1. We will show that V ′

δ,m is an improved upper bound of Vδ,m . As a
preparation, we present some properties of the V ′

δ,m .

Lemma 9 (i) If m is an even number, then V ′
δ,m = V ′

δ,m+1 � V ′
δ,m+2.

123

Scheduling Games with Potential Penalties on the Move of Jobs

(ii) V ′
δ,m � 1

m

(
1 + 2�m

2 �ω1 + 3
(
m − �m

2 � − 1
)
ω2

)
.

Proof (i) Since m is an even number, �m
2 � = �m+1

2 �. Obviously, V ′
δ,m = V ′

δ,m+1. By
(9) and Lemma 7(i),

V ′
δ,m − V ′

δ,m+2 = 1

m

(
1 + mω1 + 3

(m
2

− 1
)

ω2

)
− 1

m + 2

(
1 + (m + 2)ω1 + 3m

2
ω2

)

= 2

m(m + 2)
+ 3ω2

(m
2 − 1

m
−

m
2

m + 2

)
= 2

m(m + 2)
(1 − 3ω2) � 0.

(ii) If m is an even number, then V ′
δ,m = 1

m

(
1 + 2�m

2 �ω1 + 3
(
m − �m

2 � − 1
)
ω2

)
by (9). Otherwise, �m

2 � = �m−1
2 � = m−1

2 . By (9) and Lemma 7(ii),

V ′
δ,m−1 − 1

m

(
1 + 2�m

2
�ω1 + 3

(
m − �m

2
� − 1

)
ω2

)
= 1

m − 1

(
1 + (m − 1)ω1 + 3

2
(m − 3) ω2

)
− 1

m

(
1 + (m − 1)ω1 + 3

2
(m − 1) ω2

)

= 1

m(m − 1)

(
1 + (m − 1)ω1 − 3

2
(m + 1) ω2

)
�

2m − 3
2 (m + 1)

m(m − 1)
ω2 = m − 3

2m(m − 1)
ω2 � 0.

Therefore, V ′
δ,m = V ′

δ,m−1 � 1
m

(
1 + 2�m

2 �ω1 + 3
(
m − �m

2 � − 1
)
ω2

)
by (i).

Theorem 3 For the scheduling game on m identical machines with the social cost of
maximizing the minimum machine load, the δ-PoA is at most V ′

δ,m when δ < 1, and
the bound is tight for 2 � m � 7.

Proof We will prove that V ′
δ,m is an upper bound on the δ-PoA for m machines by

induction on m. Obviously, Vδ,1 = V ′
δ,1 = 1. Assume that the δ-PoA is at most V ′

δ,k
for any k < m machines.

If there exists i 	= m such that nδ
i = 1, then

C∗∗
min

Cδ
min

� Vδ,m−1 � V ′
δ,m−1 � V ′

δ,m by

Lemmas 6(i) and 9(i). Therefore, we assume that nδ
i � 2 for any 1 � i � m − 1. If

|MI I | � �m
2 �, then by Lemmas 8, 7(i) and 9(ii),

C∗∗
min

Cδ
min

� 1

m
(1 + 2|MI I |ω1 + 3(m − 1 − |MI I |)ω2)

� 1

m

(
1 + 2�m

2
�ω1 + 3

(
m − �m

2
� − 1

)
ω2

)
� V ′

δ,m .

If |MI I | � �m
2 �+1, then |JI I | � m+1. Thus there exists a machine which processes

at least two jobs ofJI I in σ ∗∗. By Lemmas 6(ii) and 9(i),
C∗∗
min

Cδ
min

� Vδ,m−1 � V ′
δ,m−1 �

V ′
δ,m . The proof of the first part of the theorem is completed by induction.
The remaining part of the proof includes instances to show the bound is tight for

2 � m � 7. To prove the tightness of m = 2, consider an instance I4 consisting of
two large jobs of processing time ω1 and two small jobs of processing time 1

2 . Clearly,

123

Z.-Y.-N. Wang et al.

C∗∗
min(I4) = 1

2 + ω1. On the other hand, consider a schedule σ 4 that the two large jobs
are scheduled on M1 and the two small jobs are scheduled on M2, which is an δ-NE.
Clearly, L4

1 = 2ω1 > 1 = L4
2. Thus, C

4
min(I4) = 1. By (8) and Lemma 1, σ 4 is a

δ-NE. Hence,
C∗∗
min(I4)

C4
min(I4)

� 1
2 + ω1, and Vδ,2 = V ′

δ,2 = 1
2 + ω1. The tightness of m = 3

can be obtained by Lemmas 4 and 9(i).
To prove the tightness of m = 4, consider an instance I5 consisting of four large

jobs of processing time ω1, four small jobs of processing time ω2, and four tiny jobs
of processing time 1

4 (1−ω2). In the optimal schedule, each machine processes a large
job, a small job and a tiny job. Thus,C∗∗

min(I5) = ω1+ω2+ 1
4 (1−ω2) = 1

4 +ω1+ 3
4ω2.

On the other hand, consider a schedule σ 5 that two large jobs are scheduled on each
of the first two machines M1 and M2, three small jobs are scheduled on M3, and the
remaining jobs are scheduled on M4. Clearly, by Lemma 7(i),

L5
1 = L5

2 = 2ω1 � 3ω2 = L5
3 > 1 = ω2 + 4 · 1

4
(1 − ω2) = L5

4.

Thus, C5
min(I5) = 1. By (8) and Lemma 1, σ 5 is a δ-NE. Hence,

C∗∗
min(I5)

C5
min(I5)

� 1
4 + ω1 +

3
4ω2, and Vδ,4 = V ′

δ,4 = 1
4 + ω1 + 3

4ω2. The tightness of m = 5 can be obtained by
Lemmas 4 and 9(i).

To prove the tightness of m = 6, consider an instance I6 consisting of six large
jobs of processing time ω1, six small jobs of processing time ω2, and six tiny jobs
of processing time 1

6 . In the optimal schedule, each machine processes a large job, a
small job and a tiny job. Thus, C∗∗

min(I6) = 1
6 + ω1 + ω2.

On the other hand, consider a schedule σ 6 that two large jobs are scheduled on each
of the first three machines M1, M2 and M3, three small jobs are scheduled on each
machine of M4 and M5, and the tiny jobs are scheduled on M6. Clearly, by Lemma
7(i),

L6
1 = L6

2 = L6
3 = 2ω1 � 3ω2 = L6

4 = L6
5 > 1 = L6

6.

ThusC6
min(I6) = 1. By (8) and Lemma 1, σ 6 is a δ-NE. Hence,

C∗∗
min(I6)

C6
min(I6)

� 1
6 +ω1+ω2,

and Vδ,6 = V ′
δ,6 = 1

6 + ω1 + ω2. The tightness of m = 7 can be obtained by Lemmas
4 and 9(i).

In fact, 16 +ω1+ω2 is also the δ-PoA for 8 � m � 11machines, but is strict smaller
than V ′

δ,m . In order to get an upper bound smaller than V ′
δ,m , we need more accurate

estimates of the optimum than Lemma 2(ii), which can be achieved by examining the
processing times of the jobs of JI I I and the machines they are scheduled on in σ ∗∗.

Denote byM∗∗
0 andM∗∗

1 the subset of machines that process 0 and 1 jobs of JI I I

in σ ∗∗, respectively. Then

|M∗∗
1 | � 2m − |JI I I | − 2|M∗∗

0 |. (10)

123

Scheduling Games with Potential Penalties on the Move of Jobs

In fact, if |M∗∗
1 | � 2m −|JI I I |− 2|M∗∗

0 |− 1, there are at least m − (2m −|JI I I |−
2|M∗∗

0 | − 1) − |M∗∗
0 | machines each of which processes at least two jobs of JI I I in

σ ∗∗. Then

|JI I I | � 2(m − (2m − |JI I I | − 2|M∗∗
0 | − 1) − |M∗∗

0 |)
+(2m − |JI I I | − 2|M∗∗

0 | − 1) = |JI I I | + 1,

a contradiction.
Though Lδ

i = pai + pbi + pzi � 3ω2Lδ
m for any Mi ∈ MI I I by Lemma 3, we

cannot assert that p j � ω2Lδ
m for any J j ∈ JI I I . To get an effective upper bound on

the total processing time of a subset ofJI I I , further classification ofJI I I is necessary.
Let JI I I a = ⋃

Mi∈MI I I

{Jai } ⊆ JI I I . Clearly, |JI I I a | = |MI I I | = 1
3 |JI I I |. For any

job Jai ∈ JI I I a , both Jbi and Jzi are called slave jobs of Jai , and {Jbi , Jzi } is called a
companion pair of Jai . Meanwhile, Jai is called the master job of Jbi or Jzi .

In the next three lemmas, we give upper bounds on the total processing time of a
subset of JI I I in various situations. Together with the upper bound on the processing
time of jobs of JI I , we are able to derive upper bounds on the total processing time
of jobs that are processed on a certain subset of machines in σ ∗∗, and then get more
precise upper bounds on the C∗∗

min.

Lemma 10 Suppose that J0 ⊆ JI I I .

(i) If for any job of JI I I a ∩ J0, at least one of its slave job is also in J0, then
P(J0) � |J0|ω2Lδ

m.
(ii) If J0 does not contain any companion pair, then P(JI I I \J0) � |JI I I \J0|ω2Lδ

m.

Proof By Lemma 3, for any Mi ∈ MI I I , pai + pbi = Lδ
i − pzi � 2ω2Lδ

m and thus
pzi � pbi � ω2Lδ

m . Therefore, unless J0 contains some job of JI I I a but does not
contain any of its slave job, any two jobs of J0 has a total processing time of no more
than 2ω2Lδ

m . This clearly leads to (i). If J0 does not contain any companion pair, then
whenever JI I I \ J0 contains a job of JI I I a , it also contains at least one of its slave
jobs. (ii) can be proved by (i).

Lemma 11 If J ∗∗
i contains a companion pair {Jb j , Jz j }, then P(JI I I \J ∗∗

i) �
(|JI I I | − 3)ω2Lδ

m + pa j , and there exists Mk ∈ M\{Mi } such that P(JI I I \(J ∗∗
i ∪

J ∗∗
k)) � (|JI I I | − 3)ω2Lδ

m.

Proof By Lemma 10(i),

P(JI I I \ J ∗∗
i) � P(JI I I \ {Jb j , Jz j }) = P(JI I I \ {Ja j , Jb j , Jz j }) + pa j

� (|JI I I | − 3)ω2L
δ
m + pa j .

If {Ja j , Jb j , Jz j } ⊆ J ∗∗
i , then for any Mk ∈ M\{Mi },

P(JI I I \ (J ∗∗
i ∪ J ∗∗

k)) � P(JI I I \ J ∗∗
i) � P(JI I I \ {Ja j , Jb j , Jz j }) � (|JI I I | − 3)ω2L

δ
m .

123

Z.-Y.-N. Wang et al.

Otherwise, assume that Ja j ∈ J ∗∗
k , then

P(JI I I \ (J ∗∗
i ∪ J ∗∗

k)) � P(JI I I \ {Ja j , Jb j , Jz j }) � (|JI I I | − 3)ω2L
δ
m .

Lemma 12 (i) Suppose thatMS ⊆ M∗∗
1 . If � 1

2 (|MS|−|JI I I a |)� � |JI I I a | � |MS|,
then there exists a subsetM′ ⊆ MS with |M′| = � 3

2 (|MS|− |JI I I a |)� such that the
total processing time of the jobs of JI I I that are processed on M′ is no more than
|M′|ω2Lδ

m.
(ii) If 2|JI I I a | � m − |M∗∗

0 | � 3|JI I I a |, then there exists a subsetM′ ⊆ M∗∗
1 with

|M′| = 3m−2|JI I I |−3|M∗∗
0 | such that the total processing time of the jobs ofJI I I

that are processed on M′ is no more than |M′|ω2Lδ
m.

Proof (i) The subset M′ can be constructed as follows. Initially set M′ = ∅. Obvi-
ously, there are |MS|− |JI I I a |machines ofMS that do not process any job ofJI I I a .
Add these machines to M′ and denote the set of the remaining |JI I I a | machines of
MS byMC . Select � 1

2 (|MS|−|JI I I a |)� jobs from the jobs ofJI I I that are processed
on the machines of MS \ MC , such that no two jobs belong to the same companion
pair. Since |MS|−|JI I I a | jobs ofJI I I \JI I I a belong to at least � 1

2 (|MS|−|JI I I a |)�
different companion pairs, the selection is feasible and the subset of the selected jobs
is denoted J ′. For each job of J ′, if its master job is processed on a machine of
MC , add this machine to M′ and delete it from MC . If its master job is not pro-
cessed on the machines of MC , select an arbitrary machine of MC that does not
process any job of JI I I a , and add the machine to M′ and delete it from MC . Since
|MC | = |JI I I a | � � 1

2 (|MS|−|JI I I a |)�, the requiredmachines can always be found.
At the end of the process, there are � 3

2 (|MS| − |JI I I a |)� machines in M′. For any
job of JI I I a that is processed on the machines of M′, at least one of its slave jobs is
also processed on the machines ofM′. By Lemma 10(i), the total processing time of
the jobs of JI I I that are processed onM′ is no more than |M′|ω2Lδ

m .
(ii) By (10), |M∗∗

1 | � 2m − |JI I I | − 2|M∗∗
0 |. Let MS be an arbitrary subset of

M∗∗
1 with |MS| = 2m − |JI I I | − 2|M∗∗

0 |. By (i), there exists a subset M′ ⊆ MS

with

|M′| = �3
2
(|MS| − |JI I I a |)� = �3

2
(2m − |JI I I | − 2|M∗∗

0 | − |JI I I a |)�
= 3m − 2|JI I I | − 3|M∗∗

0 |,

and the total processing time of the jobs of JI I I that are processed onM′ is no more
than |M′|ω2Lδ

m .

So far we have done all the preparation, we will show the exact value of the δ-PoA
for 8 � m � 11 in two theorems.

Theorem 4 For the scheduling game on 8 and 9 identical machines with the social
cost of maximizing the minimum machine load, the δ-PoA is 1

6 + 1
1−δ

+ 1
2−δ

when
δ < 1.

123

Scheduling Games with Potential Penalties on the Move of Jobs

Proof Note that Vδ,7 = 1
6 + ω1 + ω2 by Theorem 3. We only need to show that

Vδ,m � 1
6 + ω1 + ω2 for 8 � m � 9. If there exists i 	= m such that nδ

i = 1, or
there exists at least a machine which processes at least two jobs of JI I in σ ∗∗, then
C∗∗
min(I)

Cδ
min(I)

� Vδ,m−1 by Lemma 6(i) and Lemma 6(ii). Assume in the following that

nδ
i � 2 for any 1 � i � m − 1 and each machine processes at most one job of JI I in

σ ∗∗. Thus, |MI I | � �m
2 � = 4.

If |MI I | � 3, then by Lemmas 8 and 7(i)(v)(vii),

C∗∗
min

Cδ
min

� 1

m
(1 + 2|MI I |ω1 + 3(m − 1 − |MI I |)ω2)

� 1

m
(1 + 6ω1 + 3(m − 4)ω2) � 1

6
+ ω1 + ω2.

If |MI I | = 4 and |MI I I | � m − 6, then by Lemmas 8 and 7(i)(vii),

C∗∗
min

Cδ
min

� 1

m
(1 + 2|MI I |ω1 + 3|MI I I |ω2 + 4(m − 1 − |MI I | − |MI I I |)ω3)

� 1

m
(1 + 8ω1 + 3(m − 6)ω2 + 4ω3) � 1

6
+ ω1 + ω2.

We are left with the case of |MI I | = 4 and |MI I I | = m − 5. Then, J = J δ
m ∪JI I ∪

JI I I and |JI I | = 8, |JI I I | = 3(m − 5).
For the case ofm = 8, eachmachine processes exactly one job ofJI I with process-

ing time of no more thanω1Lδ
m in σ ∗∗. Since |JI I I | = 9, there must be a machine, say

M1, which processes at least two jobs ofJI I I in σ ∗∗. IfJ ∗∗
1 does not contain any com-

panion pair, then by Lemma 10(ii), P(JI I I \J ∗∗
1) � |JI I I \J ∗∗

1 |ω2Lδ
m � 7ω2Lδ

m .
Even if all the jobs of J δ

m are processed onM\{M1}, we still have

C∗∗
min � 1

7

8∑
i=2

L∗∗
i � 1

7

(
Lδ
m + 7ω1L

δ
m + 7ω2L

δ
m

) = 1

7
(1 + 7ω1 + 7ω2) L

δ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

If J ∗∗
1 contains a companion pair, then there exists a machine, say M8, such that

P(JI I I \(J ∗∗
1 ∪ J ∗∗

8)) � 6ω2Lδ
m by Lemma 11. Thus even if all the jobs of J δ

m are
processed on M\{M1, M8}, we still have

C∗∗
min � 1

6

7∑
i=2

L∗∗
i � 1

6

(
Lδ
m + 6ω1L

δ
m + 6ω1L

δ
m

) = 1

6
(1 + 6ω1 + 6ω2) L

δ
m

=
(
1

6
+ ω1 + ω2

)
Cδ
min.

Combining the above analysis with Vδ,7 = 1
6 +ω1+ω2, we have Vδ,8 = 1

6 +ω1+ω2.

123

Z.-Y.-N. Wang et al.

For the case of m = 9, by Lemmas 2(ii), 10(i) and 7(vi),

C∗∗
min � P

9
� 1

9

(
Lδ
m + 8ω1L

δ
m + 12ω2L

δ
m

)
=

(
1

9
+ 8

9
ω1 + 4

3
ω2

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min.

Combining the above analysis with Vδ,8 = 1
6 +ω1+ω2, we have Vδ,9 = 1

6 +ω1+ω2.

Theorem 5 For the scheduling game on 10 and 11 identical machines with the social
cost of maximizing the minimum machine load, the δ-PoA is 1

6 + 1
1−δ

+ 1
2−δ

when
δ < 1.

Proof Note that Vδ,9 = 1
6 + ω1 + ω2 by Theorem 4. We only need to show that

Vδ,m � 1
6 + ω1 + ω2 for 10 � m � 11. If there exists i 	= m such that nδ

i = 1, or
there exists at least a machine which processes at least two jobs of JI I in σ ∗∗, then
C∗∗
min(I)

Cδ
min(I)

� Vδ,m−1 by Lemma 6(i) and Lemma 6 (ii). Assume in the following that

nδ
i � 2 for any 1 � i � m − 1 and each machine processes at most one job of JI I in

σ ∗∗. Thus |MI I | � �m
2 � = 5.

If |MI I | � 4, then by Lemmas 8 and 7(i)(viii),

C∗∗
min

Cδ
min

� 1

m
(1 + 2ω1|MI I | + 3ω2(m − 1 − |MI I |)) � 1

m
(1 + 8ω1 + 3(m − 5)ω2)

� 1

6
+ ω1 + ω2.

Therefore, we assume that |MI I | = 5 in the rest of the proof.
First consider the case of m = 10. Then each machine processes exactly one job

of JI I with processing time of no more than ω1Lδ
m in σ ∗∗. We distinguish several

subcases according to the value of |MI I I |.
If |MI I I | � 2, then by Lemmas 8 and 7(iv),

C∗∗
min

Cδ
min

� 1

10
(1 + 2ω1|MI I | + 3ω2|MI I I | + 4ω3(m − 1 − |MI I | − |MI I I |))

� 1

10
(1 + 10ω1 + 6ω2 + 8ω3) = 1

10
+ ω1 + 3

5
ω2 + 4

5
ω3 � 1

6
+ ω1 + ω2.

If |MI I I | = 3, then let k < m and Mk /∈ MI I ∪ MI I I . Thus J = J δ
m ∪ J δ

k ∪
JI I ∪JI I I and Lδ

k � 4ω3Lδ
m by Lemma 3. Consider the assignment of 9 jobs of JI I I

in σ ∗∗. If |M∗∗
0 | � 4, then even if all the jobs of J δ

m ∪J δ
k are processed onM∗∗

0 , we
still have

C∗∗
min � 1

|M∗∗
0 |

∑
Mi∈M∗∗

0

L∗∗
i � 1

|M∗∗
0 |

(
Lδ
m + 4ω3L

δ
m + |M∗∗

0 |ω1L
δ
m

)

�
(
1

4
+ ω1 + ω3

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min,

123

Scheduling Games with Potential Penalties on the Move of Jobs

byLemma7(iii). If 2 � |M∗∗
0 | � 3, byLemma12(ii), there exists a subsetM′ ⊆ M∗∗

1
with |M′| = 3m − 2|JI I I | − 3|M∗∗

0 | = 12 − 3|M∗∗
0 | such that the total processing

time of the jobs of JI I I that are processed on M′ is no more than |M′|ω2Lδ
m . By

Lemma 7(i)(iii), even if all the jobs of J δ
m ∪J δ

k are processed onM′ ∪M∗∗
0 , we still

have

C∗∗
min � 1

12 − 2|M∗∗
0 |

∑
Mi∈M′∪M∗∗

0

L∗∗
i

� 1

12 − 2|M∗∗
0 |

(
Lδ
m + 4ω3L

δ
m + (12 − 2|M∗∗

0 |)ω1L
δ
m + (12 − 3|M∗∗

0 |)ω2L
δ
m

)
=

(
ω1 + ω2 + 1

12 − 2|M∗∗
0 |

(
1 + 4ω3 − |M∗∗

0 |ω2
))

Lδ
m

�
(

ω1 + ω2 + 1

8
(1 + 4ω3 − 2ω2)

)
Lδ
m

=
(
1

8
+ ω1 + 3

4
ω2 + 1

2
ω3

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min.

Therefore, it is sufficient to assume that |M∗∗
0 | = 1 and each machine of M \ {M10}

processes exactly one job ofJI I I in σ ∗∗. We further discuss below the number of jobs
of J δ

k and the machines that they are processed on in σ ∗∗.
If nδ

k � 5, then by Lemma 3, Lδ
k − pzk � 4ω4Lδ

m . If no job of J δ
k is processed on

M\{M10} in σ ∗∗, then by Lemma 10(i),

C∗∗
min � 1

9

9∑
i=1

L∗∗
i � 1

9

(
Lδ
m + 9ω1L

δ
m + 9ω2L

δ
m

) =
(
1

9
+ ω1 + ω2

)
Lδ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

Otherwise, assume that some jobs of J δ
k are processed on M1 in σ ∗∗. Then, the total

processing time of the jobs of J δ
k that are processed on M \ {M1} is no more than

4ω4Lδ
m . By Lemmas 10(i) and 7(ix),

C∗∗
min � 1

9

10∑
i=2

L∗∗
i � 1

9

(
Lδ
m + 4ω4L

δ
m + 9ω1L

δ
m + 8ω2L

δ
m

)

=
(
1

9
+ ω1 + 8

9
ω2 + 4

9
ω4

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min.

We are left with the case of nδ
k = 4.

If no job of J δ
k is processed on M10 in σ ∗∗, then there exist at least 5 machines

of M \ {M10} that do not process any job of J δ
k , and 3 machines among them, say

M7, · · · , M9, process jobs ofJI I I with a total processing time of nomore than 3ω2Lδ
m

123

Z.-Y.-N. Wang et al.

by Lemma 12(i). Then by Lemma 7(iii),

C∗∗
min � 1

4

10∑
i=7

L∗∗
i � 1

4

(
Lδ
m + 4ω1L

δ
m + 3ω2L

δ
m

) =
(
1

4
+ ω1 + 3

4
ω2

)
Lδ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

If exactly one job of J δ
k is processed on M10 in σ ∗∗, then there are 6 machines

of M \ {M10} that do not process any job of J δ
k , and 5 machines among them, say

M5, · · · , M9, process jobs ofJI I I with a total processing time of nomore than 5ω2Lδ
m

by Lemma 12(i). If pak � ω2Lδ
m , then

C∗∗
min � 1

6

10∑
i=5

L∗∗
i � 1

6

(
Lδ
m + ω2L

δ
m + 6ω1L

δ
m + 5ω2L

δ
m

) =
(
1

6
+ ω1 + ω2

)
Lδ
m

=
(
1

6
+ ω1 + ω2

)
Cδ
min.

Otherwise, we have

ω2L
δ
m + 2pzk < pak + 2pzk � Lδ

k − pzk � Lδ
m + δ pzk (11)

by (1). Thus,

pzk � 1

2 − δ
(1 − ω2)L

δ
m = ω2(1 − ω2)L

δ
m = ω2

(
1 − 1

2 − δ

)
Lδ
m � 1

2
ω2L

δ
m .

Combining the above inequality with (11), we have

Lδ
k − pzk � Lδ

m + δ pzk � Lδ
m + 1

2
δω2L

δ
m =

(
1 + 1

2
δω2

)
Lδ
m =

(
1

2
+ ω2

)
Lδ
m .

(12)

Assume that M1 processes at least one job of J δ
k in σ ∗∗. By Lemma 10(i), the total

processing time of jobs of JI I I that are processed on M \ {M1} is no more than
8ω2Lδ

m . Then by (12),

C∗∗
min � 1

9

10∑
i=2

L∗∗
i � 1

9

(
Lδ
m + Lδ

k − pzk + 9ω1L
δ
m + 8ω2L

δ
m

)

� 1

9

(
1 + 1

2
+ ω2 + 9ω1 + 8ω2

)
Lδ
m =

(
1

6
+ ω1 + ω2

)
Cδ
min.

If at least two jobs of J δ
k are processed on M10 in σ ∗∗, then there are at least 7

machines of M \ {M10} that do not process any job of J δ
k , and 6 machines among

123

Scheduling Games with Potential Penalties on the Move of Jobs

them, say M4, · · · , M9, process jobs of JI I I with a total processing time of no more
than 6ω2Lδ

m by Lemma 12(i). Then,

C∗∗
min � 1

6

9∑
i=4

L∗∗
i � 1

6

(
Lδ
m + 6ω1L

δ
m + 6ω2L

δ
m

) =
(
1

6
+ ω1 + ω2

)
Lδ
m

=
(
1

6
+ ω1 + ω2

)
Cδ
min.

If |MI I I | = 4, consider the assignment of 12 jobs of JI I I in σ ∗∗. If |M∗∗
0 | � 2,

then by Lemma 7(iii),

C∗∗
min � 1

|M∗∗
0 |

∑
Mi∈M∗∗

0

L∗∗
i � 1

|M∗∗
0 |

(
Lδ
m + |M∗∗

0 |ω1L
δ
m

)
�

(
1

2
+ ω1

)
Lδ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

If |M∗∗
0 | � 1, by Lemma 12(ii), there exists a subset M′ ⊆ M∗∗

1 with |M′| =
3m − 2|JI I I | − 3|M∗∗

0 | = 6− 3|M∗∗
0 | such that the total processing time of the jobs

of JI I I that are processed on M′ is no more than |M′|ω2Lδ
m . By Lemma 7(i), we

have

C∗∗
min � 1

6 − 2|M∗∗
0 |

∑
Mi∈M′∪M∗∗

0

L∗∗
i

� 1

6 − 2|M∗∗
0 |

(
Lδ
m + (6 − 2|M∗∗

0 |)ω1L
δ
m + (6 − 3|M∗∗

0 |)ω2L
δ
m

)
=

(
ω1 + ω2 + 1

6 − 2|M∗∗
0 |

(
1 − |M∗∗

0 |ω2
))

Lδ
m �

(
1

6
+ ω1 + ω2

)
Lδ
m

=
(
1

6
+ ω1 + ω2

)
Cδ
min.

So far, all the cases of m = 10 have been discussed. Combining the above analysis
with Vδ,9 = 1

6 + ω1 + ω2, we have Vδ,10 = 1
6 + ω1 + ω2.

Next consider the case of m = 11. We assume that each machine of M \ {M11}
processes a job ofJI I with processing time nomore thanω1Lδ

m in σ ∗∗. If |MI I I | � 4,
then by Lemmas 8 and 7(x),

C∗∗
min

Cδ
min

� 1

11
(1 + 2ω1|MI I | + 3ω2|MI I I | + 4ω3(m − 1 − |MI I | − |MI I I |))

� 1

11
(1 + 10ω1 + 12ω2 + 4ω3) � 1

6
+ ω1 + ω2.

In the following, we assume that |MI I I | = 5. Thus, J = J δ
m ∪ JI I ∪ JI I I and

|JI I I | = 15.

123

Z.-Y.-N. Wang et al.

If there exists Mi ∈ MI I I , such that pai � 4
3ω2Lδ

m , then by Lemma 3, pzi �
pbi � 2

3ω2Lδ
m and Lδ

i = Lδ
i − pzi + pzi � 2ω2Lδ

m + 2
3ω2Lδ

m = 8
3ω2Lδ

m . Thus, by
Lemmas 2(ii), 10(i) and 7(x),

C∗∗
min � P

11
� 1

11

(
Lδ
m + P(JI I) + P(JI I I \ J δ

i) + Lδ
i

)
� 1

11

(
Lδ
m + 10ω1L

δ
m + 12ω2L

δ
m + 8

3
ω2L

δ
m

)

= 1

11

(
1 + 10ω1 + 44

3
ω2

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min.

Hence, we assume in the following that pai < 4
3ω2Lδ

m for any Mi ∈ MI I I .
Suppose that there exists a machine of M\{M11}, say M1, which processes at

least two jobs of JI I I in σ ∗∗. If J ∗∗
1 does not contain any companion pair, then

P(JI I I \J ∗∗
1) � 13ω2Lδ

m � 40
3 ω2Lδ

m by Lemma 10(ii). Otherwise, P(JI I I \J ∗∗
1) �

12ω2Lδ
m + 4

3ω2Lδ
m = 40

3 ω2Lδ
m by Lemma 11. Therefore, by Lemma 7(vi),

C∗∗
min � 1

10

11∑
i=2

L∗∗
i � 1

10

(
Lδ
m + 9ω1L

δ
m + 40

3
ω2L

δ
m

)

= 1

10

(
1 + 9ω1 + 40

3
ω2

)
Lδ
m �

(
1

6
+ ω1 + ω2

)
Cδ
min.

We are left with the case that each machine of M\{M11} processes at most one
job of JI I I in σ ∗∗. Then, M∗∗

0 ∪ M∗∗
1 = M\{M11}. If |M∗∗

0 | � 2, then by Lemma
7(iii),

C∗∗
min � 1

|M∗∗
0 |

∑
Mi∈M∗∗

0

L∗∗
i � 1

|M∗∗
0 |

(
Lδ
m + |M∗∗

0 |ω1L
δ
m

)
�

(
1

2
+ ω1

)
Lδ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

If |M∗∗
0 | = 1, then by Lemma 12(i), there are 6 machines of M\{M11}, say

M5, · · · , M10, process jobs of JI I I with a total processing time of no more than
6ω2Lδ

m . Thus,

C∗∗
min � 1

6

10∑
i=5

L∗∗
i � 1

6

(
Lδ
m + 6ω1L

δ
m + 6ω2L

δ
m

)

=
(
1

6
+ ω1 + ω2

)
Lδ
m =

(
1

6
+ ω1 + ω2

)
Cδ
min.

If |M∗∗
0 | = 0, then by Lemma 12(i), there are 8 machines of M\{M11}, say

M3, · · · , M10, process jobs of JI I I with a total processing time of no more than

123

Scheduling Games with Potential Penalties on the Move of Jobs

8ω2Lδ
m . Thus

C∗∗
min � 1

8

10∑
i=3

L∗∗
i � 1

8

(
Lδ
m + 8ω1L

δ
m + 8ω2L

δ
m

) =
(
1

8
+ ω1 + ω2

)
Lδ
m

�
(
1

6
+ ω1 + ω2

)
Cδ
min.

All the cases of m = 11 have been discussed. Combining the above analysis with
Vδ,10 = 1

6 + ω1 + ω2, we have Vδ,11 = 1
6 + ω1 + ω2.

At the end of the paper, we present a lower bound for m � 12 machines.

Theorem 6 For the scheduling gameonm � 12 identicalmachineswith the social cost
ofmaximizing theminimummachine load, the δ-PoA is at least 1

12+ 1
1−δ

+ 1
2−δ

+ 7
12(6−δ)

when δ < 1.

Proof Consider an instance I7 consisting of 12 huge jobs of processing time ω1, 12
large jobs of processing time ω2, 5 medium jobs of processing time 1

12 + 7
12ω6, 7

small jobs of processing time ω6, and 7 tiny jobs of processing time 1
12 − 5

12ω6. In the
optimal schedule, each of the first 5 machines processes a huge job, a large job and a
medium job. Each of the last 7 machines processes a huge job, a large job, a small job
and a tiny job. Thus, C∗∗

min(I7) = 1
12 + ω1 + ω2 + 7

12ω6.
On the other hand, consider a schedule σ 7 that two huge jobs are scheduled on

each machines of M1, · · · , M6, three large jobs are scheduled on each machine of
M7, · · · , M10. All the small jobs are processed on M11, and the medium and the tiny
jobs are scheduled on M12. Clearly, by Lemma 7(i),

L7
1 = · · · = L7

6 = 2ω1 � 3ω2 = L7
7 = · · · = L7

10 > L7
11 > 1 = 7ω6 = L7

12.

Thus, C7
min(I7) = 1. By (8) and Lemma 1, σ 7 is a δ-NE. Hence,

C∗∗
min(I7)

C7
min(I7)

� 1
12 +ω1 +

ω2 + 7
12ω6, and Vδ,m � 1

12 + 1
1−δ

+ 1
2−δ

+ 7
12(6−δ)

for m � 12.

Author Contributions Z.-Y. Tan conceived of the study, all authors conducted the analyses, and Z.-Y.-N.
Wang and Z.-Y. Tan wrote the paper.

Conflict of interest The authors declare no conflict of interest.

References

[1] Heydenreich, B., Muller, R., Uetz, M.: Games and mechanism design in machine scheduling: an
introduction. Prod. Oper. Manag. 16, 437–454 (2007)

[2] Maschler, M., Solan, E., Zamir, S.: Game Theory. Cambridge University Press (2020)
[3] Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Comput. Sci. Rev. 3, 65–69 (2009)
[4] Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor scheduling. BIT

Numer. Math. 19, 312–320 (1979)

123

Z.-Y.-N. Wang et al.

[5] Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multiprocessor scheduling.
INFORMS J. Comput. 19, 52–63 (2007)

[6] Chen,X., Epstein, L.,Kleiman, E., van Stee, R.:Maximizing theminimum load: the cost of selfishness.
Theor. Comput. Sci. 482, 9–19 (2013)

[7] Gairing, M., Lucking, T., Mavronicolas, M., Monien, B.: The price of anarchy for polynomial social
cost. Theor. Comput. Sci. 369(1–3), 116–135 (2006)

[8] Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci.
410, 3327–3336 (2009)

[9] Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination mechanisms for selfish scheduling.
Theor. Comput. Sci. 410, 1589–1598 (2009)

[10] Feldman, M., Tamir, T.: Conflicting congestion effects in resource allocation games. Oper. Res. 60,
529–540 (2012)

[11] Chen, B., Gurel, S.: Efficiency analysis of load balancing games with and without activation costs. J.
Sched. 15(2), 157–164 (2012)

[12] Chen, X., Hu, X., Ma, W., Wang, C.: Reducing price of anarchy of selfish task allocation with more
selfishness. Theor. Comput. Sci. 507, 17–33 (2013)

[13] Ye, D., Chen, L., Zhang, G.: On the price of anarchy of two-stage machine scheduling games. J.
Comb. Optim. 42, 616–635 (2021)

[14] Cheng, X., Li, R., Zhou, Y.: Tighter price of anarchy for selfish task allocation on selfish machines.
J. Comb. Optim. 44, 1848–1879 (2022)

[15] Belikovetsky, S., Tamir, T.: Load rebalancing games in dynamic systems with migration costs. Theor.
Comput. Sci. 622, 16–33 (2016)

[16] Hemon, S., de Rougemont, M., Santha, M.: Approximate Nash Equilibria for multi-player games.
In: Proceeding of the 1st International Symposium on Algorithmic Game Theory, Lecture Notes in
Computer Science, vol 4997, pp. 267–278 (2008)

[17] Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash Equilibria in weighted
congestion games: Existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3,
Article 2 (2015)

[18] Daskalakis, C., Papadimitriou, C.H.: Approximate Nash equilibria in anonymous games. J. Econ.
Theory 156, 207–245 (2015)

[19] Even-Dar, E., Kesselman A., Mansour, Y.: Convergence time to Nash equilibrium in load balancing.
ACM Trans. Algorithms 3(3), Article 32 (2007)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Scheduling Games with Potential Penalties on the Move of Jobs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Minimizing the Makespan
	4 Maximizing the Minimum Machine Load
	References

