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Abstract
Mixed integer linear programming (MILP) is an NP-hard problem, which can be
solved by the branch and bound algorithm by dividing the original problem into several
subproblems and forming a search tree. For each subproblem, linear programming (LP)
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relaxation can be solved tofind the bound formaking the followingdecisions.Recently,
with the increasing dimension ofMILPs in different applications, how to accelerate the
solution process becomes a huge challenge. In this survey, we summarize techniques
and trends to speed upMILP solving from two perspectives. First, we present different
approaches in simplex initialization, which can help to accelerate the solution of LP
relaxation for each subproblem. Second, we introduce the learning-based technologies
in branch and bound algorithms to improve decision making in tree search. We also
propose several potential directions and extensions to further enhance the efficiency
of solving different MILP problems.

Keywords MILP acceleration · Simplex initialization · Linear programming · Mixed
integer linear programming · Machine learning

Mathematics Subject Classification 90C11

1 Introduction

Mixed integer linear programming (MILP) is a minimization or maximization opti-
mization problemwith a linear objective. It includes both linear and integer constraints.
A general formulation of the MILP is given as follows:

Definition 1 (MILP) Given a matrix A ∈ R
m×n , vectors b ∈ R

m and c ∈ R
n , and a

subset I ⊆ {1, · · · , n}, the mixed-integer linear program MILP = (A, b, c, I ) is

z� = min{cTx | Ax � b, x ∈ R
n, x j ∈ Z,∀ j ∈ I }. (MILP)

The vectors in the feasible region XMILP = {x ∈ R
n | Ax � b, x ∈ R

n, x j ∈
Z,∀ j ∈ I } are called feasible solution of MILP. A feasible solution x� ∈ XMILP of
MILP is optimal if its objective value satisfies cTx� = z�.

Owing to the integrality requirement, MILP is usually an NP-hard problem. Most
modern MILP solvers, such as CPLEX[1], LINDO[2], and SCIP[3], use the branch
and bound (B&B) as the framework to efficiently enumerate the candidate solution.
The B&B was initially proposed by Land and Doig [4]. This method implicitly enu-
merates all possible solutions by iteratively dividing the original problem into a series
of subproblems, organized in a tree structure, and discarding the subproblems where a
global optimumcannot be found.Once the entire tree has been explored, the exact opti-
mal solution can be achieved. It implements a divide-and-conquer algorithm, where
a linear programming (LP) relaxation of the problem is computed by removing the
integrality conditions. By solving the relaxed problem, a lower bound of the original
MILP problem can be obtained. This bound is a crucial element for making the fol-
lowing decisions in the tree search. For example, if the objective value ž of the LP
problem is larger than or equal to the value ẑ = cT x̂ of the current best solution x̂ , the
corresponding branch can be discarded. The definition of the LP relaxation problem
is shown as follows:
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Definition 2 (LP relaxation of an MILP) The LP relaxation of an MILP is

ž = min{cTx | Ax � b, x ∈ R
n}. (LP)

Compared with theMILP problem, the LP problem only has linear constraints. The
foundation of LP dates back to the work proposed by [5]. There are two commonly
used methods for solving a given LP problem, namely the simplex method [6] and the
interior point method (IPM) [7]. In this survey, the simplex method is considered to
solve the relaxed problem of the MILP.

MILP hasmany applications in engineering, agriculture, transportation, food indus-
try, and manufacturing. However, in recent years, as the dimension ofMILPs becomes
larger and larger, how to find an effective way to solve large-scale MILPs becomes
a huge challenge. From the solving process discussed before, we can note that both
the solution time of the relaxed subproblems and the choices of tree search strategies
in the B&B are important factors in determining the entire efficiency. Therefore, in
this survey, we investigate how to speed up the solution of a given MILP from two
corresponding perspectives as follows.

The first way is to speed up the solving process of the LP relaxation for different
subproblems. Specifically, for the simplex algorithm, a crucial factor for improving the
solving efficiency is to find a suitable initialization method. A good starting point can
lead to fewer iterations or less computation time within each iteration, thus achieving
a faster solution process. In this survey, we provide an overview of the initialization
methods in the simplex approach.

The second way is to improve the tree search strategies of the B&B algorithm.
A recent research trend is to utilize some advanced machine learning (ML)-based
techniques to improve decision making during the tree search. In this survey, we
summarize the related works which focus on improving four components of the B&B
algorithm, namely the branching rule, the node selection, the node pruning, and the
cutting-plane selection. In general, a supervised learning method helps to generate a
policy that mimics an expert but significantly improves the speed. An unsupervised
learningmethod helps to choose different methods based on the features. Furthermore,
models trained with reinforcement learning can defeat the expert policy, given enough
training and a supervised initialization.

To the best of our knowledge, this is the first survey that provides these two perspec-
tives together for accelerating the solution of the MILP. At the end of the survey, we
also provide some potential future directions to further improve the existing methods.
We propose several learning-based designs in simplex initialization and present some
extensions of the B&B algorithm. These designs and extensions can further accelerate
the solution of the MILP.

The remainder of the survey is organized as follows. In Sect. 2, we present the
preliminary knowledge of the simplex method and the B&B approach. In Sect. 3,
we summarize the simplex initialization methods from the perspective of the primal
simplex and the dual simplex, respectively. In Sect. 4, we provide a survey of the
learning techniques to deal with the four critical components in B&B algorithms for
the MILP. In Sect. 5, we provide suggestions for future work to further improve the
existing methods for accelerating the solution of MILPs.
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Notations: For a matrix A, Ai• and A• j denote the i th row and j th column of A,
respectively, and Ai j represents the element at i th row and j th column in A. AT and
A−1, respectively, denote the transpose and inverse of A. rank(A) denotes the rank of
A. For a vector b, bi denotes the i th element of b. R is the set of real numbers, and R

n

is the n-dimensional Euclidean space. Rm×n denotes the space ofm×n real matrices.
Given two sets C1 and C2, C1\C2 = {s ∈ C1 | s /∈ C2}. ∪ denotes the intersection
of sets. ‖ · ‖2 and | · |, respectively, denote the Euclidean norm of a vector and the
absolute value of a scalar. Im denotes an m × m identity matrix.

2 Preliminary

2.1 The Simplex Method

2.1.1 Standard and Dual Forms of LPs

Given a general LP problem, it can be formulated into the standard form as

min
x

cTx

s.t. Ax = b,
x � 0,

(Standard)

where c ∈ R
n , b ∈ R

m , and A ∈ R
m×n are parameters and x ∈ R

n is the decision
variable. Without loss of generality, we assume rank(A) = m. Although LP problems
may appear in other forms, trivial approaches can be applied to transform them into
this standard form [8]. There is an associated LP problem, called its dual, in the form
of

max
y,s

bTy

s.t. ATy + s = c,
s � 0,

(Dual)

where y ∈ R
m is the dual decision variable associated with x and s ∈ R

n is the
introduced slack variable.

The mathematical relationship between the standard and the dual problems is given
in the following theorems.

Theorem 1 (Weak Duality) Given arbitrary feasible solutions x to (Standard) and
(y, s) to (Dual), we have cTx � bTy.

Theorem 2 (Strong Duality) If one of the problems admits an optimal solution, the
optimal solution exists for the other problem, and for any optimal solution pair x∗ and
(y∗, s∗), the duality gap is zero, i.e., cTx∗ = bTy∗.
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2.1.2 Basic Solutions

As rank(A) = m, A can be permuted into a partitioned matrix form, i.e., A =
[AB, AN ], where AB ∈ R

m×m is a nonsingular submatrix of A.

Definition 3 Any column collection of AB is called a basis of (Standard).

Let B and N be the associated column indices of AB and AN , respectively.
(Standard) can then be rewritten in the canonical form as follows:

min
xB ,xN

cTBxB + cTN xN

s.t. ABxB + AN xN = b,
xB, xN � 0,

(1)

where cT = [cTB, cTN ] and xT = [xTB, xTN ] are permuted and partitioned, respectively.
The basic solution, which satisfies the equality constraints, is obtained by setting non-
basic variables to zero. Thus, the primal basic solution based on the current partition
is {

xB = (AB)−1b,

xN = 0.
(2)

Analogously, (Dual) can be written as

max
y,sB ,sN

bTy

s.t. AT
B y + sB = cB,

AT
N y + sN = cN ,

sB, sN � 0.

(3)

Since the primal non-basic variables are complementary to the dual basic variables,
the associated dual basic solution is obtained by letting sB = 0, i.e.,

⎧⎪⎨
⎪⎩

y = (AT
B)−1cB,

sB = 0,

sN = cN − AT
N y.

(4)

In the literature, b̄ := A−1
B b is called the right-hand side (RHS) coefficient, π :=

(AT
B)−1cB is the simplex multiplier, and c̄ := cN − AT

Nπ is referred to as the reduced
cost. Given the basis AB , the basic solution is said to achieve primal feasibility if and
only if xB � 0, while it achieves dual feasibility if and only if sN � 0. Furthermore, if
a basic solution is both primal feasible and dual feasible, then it is an optimal solution.
Additionally, a basis is said to be degenerate if there exists an element in xB that is
equal to 0. Degeneracy will cause cycling or stalling in practice, so as to influence the
performance of the simplex.
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2.1.3 The Primal and Dual Simplex Algorithms

Starting with a feasible basis, the simplex method moves from one basis to a neigh-
boring one, i.e., a basis that differs from the previous one by only one element, while
preserving the feasibility. The selection of such entering/leaving (basis) variable is
called the pivot rule. Geometrically, since the feasible basic solution is associated
with a vertex of the feasible region, the simplex method goes through a vertex-to-
vertex path to the optimum. After the pivoting operation, the newly generated bases
have three features in common:

(1) Exactly one column of AB is changed;
(2) The feasibility is preserved;
(3) The objective function decreases/increases monotonically.

According to the type of feasibility preserved during the iteration, the simplex
method can be categorized into two classes, i.e., the primal simplex and the dual
simplex. The primal simplex method is initialized with a primal feasible basis. The
feasibility remains within iterations until optimality or unboundedness is detected.
Instead of starting with a primal feasible basis, the dual simplex method requires a
dual feasible one.

For both the primal and dual simplex algorithms, an appropriate initialization
method can lead to a better starting point, which may result in a shorter computa-
tion time. In Sect. 3, we summarize different initialization methods in the simplex
algorithm to accelerate the solution of a given LP.

2.2 Branch and Bound Algorithms

Define an MILP problem as P = (D, f ), where D (search space) is denoted as
a set of valid solutions to the problem and f : D → R is denoted as the objective
function. The problem P aims to find an optimal solution x� ∈ argminx∈D f (x). A
search tree T of subproblems is built by the B&B algorithm in order to solve problem
P . Moreover, a feasible solution x̂ ∈ D is stored globally. At each iteration, the B&B
algorithm selects a new subset of the search space S ⊂ D for exploration from a queue
L of unexplored subsets. Then, if a solution x̂ ′ ∈ S (candidate incumbent) has a better
objective value than x̂ , i.e., f (x̂ ′) < f (x̂), the incumbent solution is updated. On the
other side, the subset is pruned or fathomed if there is no solution in S with a better
objective value than x̂ , i.e., f (x) � f (x̂),∀x ∈ S. Otherwise, the subsetS is branched
into subproblems S1,S2, · · · ,Sr , which are then pushed into L. Once there are no
unexplored subsets in the queue L, the best incumbent solution is returned, and the
algorithm is terminated. The pseudocode for the generic B&B is given in Algorithm 1.

Many decisions affect the performance of the B&B by guiding the search to a
promising space and improving the chance of quickly finding an exact solution. These
decisions are the variable selection (i.e., which of the fractional variables to branch
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Algorithm 1 Branch and Bound (D, f )
1 Set L = D and initialize x̂
2 while L �= ∅ do
3 Select a subproblem S from L to explore
4 if a solution x̂ ′ ∈ {x ∈ S | f (x) < f (x̂)} can be found then
5 Set x̂ = x̂ ′
6 end if
7 if S cannot be pruned then
8 Partition S into S1,S2, · · · ,Sr
9 Insert S1,S2, · · · ,Sr into L
10 end if
11 Remove S from L
12 end while
13 return x̂

on), the node selection (i.e., which of the current nodes to explore next), the pruning
rules (i.e., rules that prevent exploration of the suboptimal space), and the cutting rules
(i.e., rules that add constraints to find cutting planes). In terms of Algorithm 1, the
variable selection strategy (branching rules) affects how the subproblem is partitioned
in Line 7 of Algorithm 1; the node selection strategy affects the order in which nodes
are selected to explore (Line 3 of Algorithm 1), and the pruning rule in Line 6 of
Algorithm 1 determines whether S is fathomed.

Figure 1illustrates a concrete example of the B&B algorithm for a minimization
integer linear programming. The optimization problem is shown in the upper right
corner of Fig. 1. The original upper bound is 0, which is calculated at x1 = 0, x2 = 0.

Fig. 1 Adopting the B&B algorithm to solve a minimization integer linear programming
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At each node, the local lower bound based on the LP relaxation problem is computed
by the LP solver. A local upper bound is updated when an integer solution is found. At
each iteration, we first solve the current LP relaxation and then compare the solution
with the minimum upper bound found so far. If it is larger than the minimum upper
bound for a certain subproblem, the solution cannot be improved, and the node can be
fathomed. In Fig. 1, the fathomed nodes are shown in red rectangles.

In order to enhance the above enumeration framework, MILP solvers tend to adopt
cutting planes (linear inequalities), especially at the root node. By adding cuts to the
original linear programming, the studied region narrows, whichwill reduce the solving
time for the LP relaxation. More details of these four key components in the B&B are
introduced as follows.

Branching Variable Selection: As a critical task in brand-and-bound, branching
variable selection decides how to partition a current node into two child nodes recur-
sively. Specifically, it decides which fractional variables (also known as candidates)
to branch on. Branching on a bad variable that does not simplify subproblems doubles
the size of the B&B tree, thus reducing the efficiency of the algorithm. The ultimate
objective of an effective branching strategy is to minimize the number of explored
nodes before the algorithm terminates. To indicate the quality of a candidate variable,
the score of this variable is used to measure its effectiveness, and the candidate with
the highest score is selected to branch on. The pseudocode for the generic variable
selection is presented in Algorithm 2.

Algorithm 2 Branching Variable Selection
Input: Subproblem of the current node S with its optimal LP solution x̂ /∈ XMILP
Output: A subscript i ∈ I of an integer variable with fractional value x̂i /∈ Z

1 Define branching candidates set C = {i ∈ I | x̂i /∈ Z}
2 For each candidate i ∈ C , calculate its score value si ∈ R

3 return i = argmini∈C si

The difference among various branching policies is how the score is computed.
Making high-quality branching decisions is usually nontrivial and time-consuming.
Although a good branching method should produce trees as small as possible, the
primary goal of solving large-scale optimizations is to spend as little time as possible.
Therefore, great branching strategies should compromise the quality of decisions to
reduce the time taken to make each decision.

Node Selection: After a subproblem has been produced by constraining some
integer variables in MILP, the solving process can continue with any subproblem that
is a leaf of the current search tree. We refer to the subproblems as nodes. The node
selection designs which node to process in the next step. The existing literature always
selects the next node based on the following two goals:

1. Finding good feasibleMILP solutions to improve the primal (upper) bound, which
helps to prune the search tree by bounding;

2. Improving the global dual (lower) bound.
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Node Pruning: Pruning suboptimal branches is an important part of B&B algo-
rithms since it keeps the B&B tree and the computing steps small, reducing the solving
time and the requiredmemory. In a standardB&Balgorithm, the pruning policy prunes
a node only if one of the following conditions is met:

1. Prune by bound: a lower bound on the objective value is computed at each node.
If the lower bound of the node is larger than the optimal objective value obtained,
the node will be pruned, i.e., ž > ẑ.

2. Prune by infeasibility: if the relaxed problem of a node is infeasible, which means
that the lower bound of this node is∞, the node will be pruned. This can be viewed
as a special case of prune by bound.

3. Prune by integrality: if the obtained solution for the relaxed problem satisfies the
integer constraints, it is unnecessary to search the children of this node.

We call the nodes satisfying one of the above conditions as fathomed nodes.
Cutting-Plane Selection: Cutting planes are additional linear constraints violated

by the current LP solution, but do not cut off integer feasible solutions. Specifically,
cutting-plane (sometimes called valid inequalities) methods repeatedly add cuts to the
LPs, excluding some part of the feasible region while conserving the integral optimal
solution so that the LP relaxation can be tightened. The difference between tightening
LP relaxation by branching and by cutting planes is illustrated in Fig. 2.

Depending solely on cutting-plane methods is intractable for solving MILPs, and
thus, they are always combined with the B&B algorithm to further tighten the bound
for pruning the tree. According to where cutting planes are generated, at the root or at
the subproblems in the B&B tree, there are two algorithms called cut-and-branch and
branch-and-cut, respectively. The former only generates cutting planes at the root of
the B&B tree, while the latter also produces cutting planes at the subproblems. The
branch-and-cut is the core of state-of-the-art commercial integer programming (IP)
solvers. Moreover, in branch-and-cut, globally valid cuts and locally valid cuts should
be distinguished, since cuts locally generated at a particular node may be invalid for
other nodes, while valid global inequalities can be used for all subproblems.

A well-designed decision strategy in the four components of B&B algorithms can
help to reduce the search space and significantly speed up the search progress of the
B&B algorithm. In Sect. 4, we present a survey on ML-based techniques for improv-
ing the decisions in the B&B algorithm to accelerate the solution process. Note that

(a) Feasible region of original
LP relaxation

x̂ x̂

(b) Branch and bound

x̂

(c) Cutting-plane

Fig. 2 Tightening LP relaxation by branching and cutting planes
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a family of related LPs will be solved during B&B algorithms. A warm start which
allows the algorithm to make fast initial progress would also speed up the solving pro-
cess. One special initialization method to accelerate the B&B algorithm is to utilize
the previous optimal basis for each member of the partition to aid in obtaining the
basis of the new nodes. The detailed implementation can be referred to [9]. However,
in some cases, utilizing the previous node’s solution as the initial point for the LP
relaxation subproblem of the current node may not be the best option. For example,
if the previous node’s solution is far from optimal, it can slow down the convergence
of the algorithm. Another case is when there is a difference in the objective function
between the current and previous nodes, making the solution from the previous node
not directly applicable to the current node’s LP relaxation subproblem. Moreover,
for some learning-based MILP methods, the subproblems considered may not have
a strong relationship, necessitating the use of alternative simplex initialization tech-
niques to expedite the solving process. More initialization methods in the simplex
algorithm are reviewed in Sect. 3.

3 Simplex InitializationMethods

The initialization methods in the simplex algorithm can be divided into two parts
based on the form (standard or dual) of the LP problem. For accelerating the solving
of MILPs, the simplex initialization is not limited to the root node and can also aid in
solving nodes throughout the tree. An overview of the related simplex initialization
methods summarized in this survey is illustrated in Fig. 3.

3.1 Initialization in Primal Simplex

The initialization methods in the primal simplex can be classified into three types.
The first type concentrates on “optimality” and tries to find a near-optimal basis. The
second type focuses on “computation efficiency” and attempts to construct a basis with

Fig. 3 Overview of the initialization methods in simplex
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a special structure, e.g., sparse, triangular, or near-triangular. The structure can help to
speed up the computing process, such as inverse calculation. The third type, however,
pays attention to “feasibility” and tries to create a feasible or near-feasible basis. To
implement the primal simplex algorithm, a primal feasible basis is required. Therefore,
the methods belonging to the first two types can be followed by some methods in the
third type to obtain a primal feasible basis. In the following subsections, methods
belonging to these three types will be investigated, respectively.

3.1.1 Generate a Basis Based on Optimality

The Cosine Criterion: The cosine criterion is inspired by the observation that the
optimal vertex is usually formed by the constraints that make the minimum angle with
the objective function (Fig. 4). Although a similar idea has been studied in [10, 11],
these algorithms cannot be implemented efficiently due to the existence of redundant
constraints. [12] and [13] proposed new algorithms that can handle the redundant con-
straints. In these algorithms, though the cosine criterion cannot guarantee an optimal
solution, the obtained vertex turns out to be a near-optimal point. Starting from such
a vertex can reduce the number of iterations required by the simplex method, thus
speeding up the solution process.

With a bit of abuse of notations, we initialize B = ∅ and let N = {1, · · · , n} be
the corresponding complementary set. At each time, one variable is moved from N to
B, i.e., B = B ∪ {q} and N = N\{q}, where q is selected based on the angle and the
rank of AB , i.e.,

q = argmax
j∈N {α j | ∥∥ ¯(N2)• j

∥∥∞ �= 0}, (5)

where α j = (A• j )Tb
/ ∥∥A• j

∥∥ is named the dual pivoting index, which is proportional
to the cosine of the angle between A• j (the i th constraint of (Dual)) and b (the objective
function of (Dual)), and N̄2 is a matrix calculated based on the LU factorization. The
condition

∥∥N̄2
∥∥∞ �= 0 ensures that the constructed basis AB is nonsingular. According

to the feasibility of the obtained basis, either the primal simplex or the dual simplex is
applied to solve the problem. Nevertheless, if the basis is infeasible, other initialization
methods introduced in this section can be performed to generate a feasible one.

1.0

1.0 1.0

1.0

Fig. 4 Illustration of the observation, plotted using Plot 2D/3D region [14]. The bold lines represent the
constraints that make the minimum angle with the objective function, which is denoted by the dashed line
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The advantage of the cosine criterion is that it can significantly reduce the number
of iterations, up to 40% on Netlib problems. However, the calculation of N̄2 requires
the LU factorization, which unfortunately tends to be time-consuming. Furthermore,
as the obtained basis is not likely to be sparse, the computation time per iteration may
increase. Therefore, the overall efficiency may not be improved much.

TheMost-Obtuse-Angle Column Rule: The most-obtuse-angle column rule [15]
combines, to some degree, the work of finding a feasible basis with the work of
finding an optimal one [16]. In detail, thismethod suggests achieving primal feasibility
by iteratively using a modified dual pivot rule. Geometrically, the leaving variable
specifies the most obtuse angle with the uphill direction determined by the entering
variable. If the uphill direction is close to the direction of the dual objective function,
from Fig. 4 we can conclude that the basis constructed in this way is more favorable
from the perspective of the objective function. The complete procedure for this method
is shown in the following:

(1) Select the entering index q = argmini∈B xi . If xp � 0, the basis is already feasible
and go to step 4.

(2) Compute �sN = (A−1
B AN )Tep. Here, ep is a unit vector whose pth element

is 1 and the other elements are 0. If �sN � 0, the algorithm terminates with
infeasibility. Otherwise, select the leaving index p = argmini∈N �si .

(3) Perform pivoting B ← B ∪ {q}\{p} and go to step 1.
(4) Apply the primal simplex to compute the optimum.

Since the feasibility of other variables cannot be maintained in this method, cycling
may occur even without degeneracy. Although [17] provides a cycling example, this
problem may rarely appear in practice.

IdiotCrashAlgorithm (ICA):Themain idea of the ICA [18] is to relax the original
LP problem to an approximate problem with “soft” constraints, and then solve this
relaxed problem to obtain a near-optimal point. This point is later used as the starting
point of the simplex method for solving the original problem.

Recall the standard LP defined in (Standard), the ICA obtains the relaxed problem
by replacing the equality constraint with two additional terms in the objective function,
i.e., a linear Lagrangian term and a quadratic penalty term, as follows:

min
x

cTx + λT(Ax − b) + 1
2μ‖Ax − b‖22

s.t. x � 0,
(6)

where λ is the Lagrange multiplier and μ is a penalty weight. This relaxed problem
can be easily solved by existing methods, such as IPMs. As λ goes to infinite, the
optimal solution of this relaxed problem will converge to the optimal solution of the
original LP problem. To obtain a near-optimal point of the original problem, in each
iteration, the ICA updates the parameters λ and μ by some heuristic rules and then
solves the corresponding relaxed problem. The total iteration number of the ICA is
finite and is predefined heuristically.

As shown in the previous part, the primal simplex method begins with a basic
feasible solution (a vertex of the feasible region). However, after finite iterations, the
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near-optimal point obtained by ICAmay be an interior point of the feasible region. To
obtain a basic feasible solution near the point given by ICA, a crossover procedure is
added. For some LP problems with special structures, the crossover procedure can be
further accelerated to improve efficiency. These methods will be discussed later.

The advantage of ICA is that it can transform the original problem into a more
tractable problem without the equality constraint and obtain a near-optimal point
quickly. Nevertheless, one challenge of ICA is how to design the heuristic rules for
updating the parameters. If the rules are not chosen properly, the obtained point will
not be a good starting point and the efficiency of the algorithm will not be improved
much. In [18], the authors tested the efficiency of the ICA on a dataset with 30 public
LP problems. The numerical results show that the ICA can achieve a speed-up in 28
problems. In particular, for 10 problems of the dataset, a speed-up of more than 2.5
times can be obtained.

ε-Optimality Search Direction: The ε-optimality search direction algorithm was
proposed in [19]. This algorithm was motivated by the fact that the IPM can approach
the neighborhood of the optimal solution faster than the simplex method. In this
algorithm, an improved point is obtained by moving in a proposed direction. This
point is later used as the starting point of the simplex method to calculate the optimal
solution to a given LP problem. The proposed direction combines an interior direction
of the feasible region with the negative direction of the objective.

This algorithm focuses on a normalized LP problem where ‖c‖22 = 1, ‖Ai•‖22 =
1,∀i ∈ {1, 2, · · · ,m}. Any LP problem can be easily transferred to the normalized
version by choosing c = c

‖c‖22
, Ai• = Ai•

‖Ai•‖22
, bi = bi

‖Ai•‖22
. This normalization process

will not change the optimal solution of the original LP problem.

Definition 4 Given a feasible point x , if ∀ δ > 0, the set {x ′ | ‖x ′ − x‖22 < δ} does not
belong to the feasible region, then x is called a boundary point.

Given a boundary point x , this algorithm defines two sets as follows:

	1 = {i | Ai•x = bi },
	2 = { j | x j = 0}. (7)

These two sets collect the indices of active constraints at the given boundary point x .
Based on these two sets, the algorithm calculates a vector h as follows:

h =
∑

i∈	1
AT
i• + ∑

j∈	2
e j∥∥∥∑

i∈	1
AT
i• + ∑

j∈	2
e j

∥∥∥
2

, (8)

where e j is a unit vector whose j th element is 1 and the other elements are 0. The
dimension of e j is consistent with AT

i . Then, based on h, the direction for obtaining
an improved point starting from the given point x is defined as

g =
{

0, if h = c,

Proj
(

h−c
‖h−c‖2

)
, if h �= c,

(9)
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where c is the vector of the objective function. The projection operation Proj(·) is
used to guarantee the feasibility of the direction, and its mathematical form can be
found in [19]. Starting from the current boundary point x , the direction g points to the
interior of the feasible region.

Since the LP problem attempts to minimize the objective, this algorithm also con-
structs a proper step size η and proves that the objective can be reduced when moving
in the direction of g with the step size η. In addition, with this specific step size, the
new point obtained after one iteration, i.e., x ′ = x + ηg, is also a boundary point of
the feasible range. This iteration can then be repeated based on this new point x ′.

An important detail in the implementation of this algorithm is that the search direc-
tion given in (9) will be replaced by Proj(c)when the step size is less than a predefined
value. This is done to improve the efficiency of the algorithm when the current point
is close to the optimal point. According to the experimental results given in [19], the
ε-optimality search direction algorithm can reduce the iteration number of the simplex
method by about 40%.

An extension work of this algorithm was introduced in [20]. In this extension work,
a special example is given to show that the denominator term in (8) can be zero.
Therefore, to handle the anomaly where the denominator is 0, the new algorithm
changes the definition of h as follows:

h =

⎧⎪⎨
⎪⎩
0,

∑
i∈	1

AT
i• + ∑

j∈	2
e j = 0,∑

i∈	1
AT
i•+

∑
j∈	2

e j∥∥∥∑
i∈	1

AT
i•+

∑
j∈	2

e j
∥∥∥
2

,
∑

i∈	1
AT
i• + ∑

j∈	2
e j �= 0.

(10)

The new algorithm also shows that if the initial direction is chosen as −c, the
algorithm efficiency can be further improved. In addition, the extension work corrects
several mathematical errors in [19].

The ε-optimality search direction algorithm and its improved version given in [19,
20] can be regarded as auxiliary tasks before the basic simplex method. An interesting
issue to be investigated is how to find the optimal number of iteration steps to reduce
the total computation time.

Hybrid-LP Method: The hybrid-LP method was introduced in [21]. The idea of
the hybrid-LP is similar to the ε-optimality search direction algorithm, but it differs in
that instead of designing the iterative direction to acquire an improved starting point
based on a given point, it obtains the direction according to the non-basic variables
(NBVs). The hybrid-LPmethod experimentally shows a reduction in both the iteration
number and the total computation time. The process of the hybrid-LP method can be
divided into five steps:

(1) Select k NBVs to construct the iterative direction. The value of k is chosen as

k = αmin(m, n − m),

where m is the number of constraints and n − m is the number of NBVs. The
variable α ∈ [0, 1] is a predefined parameter.
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(2) Divide these k selected variables into two sets based on whether a change in the
variable will result in an increase or decrease in the objective function. Denote
these two sets by sI and sD , respectively.

(3) Construct the iterative direction as d = ζdI + (1− ζ )dD where dI is generated by
NBVs in sI , while dD is given by NBVs in sD . The parameter ζ is selected based
on the rule that the direction can lead to an improved objective value.

(4) Given the current point x , find the maximum step size θ such that the point x ′
obtained after one iteration along the direction d, i.e., x ′ = x + θd, is still within
the feasible range.

(5) Find a nearby basic feasible solution (vertex) of x ′ by the reduction process or
some crossover methods, and treat it as the starting point of the basic simplex
method to solve the original LP problem.

In the experiments, the parameters α, ζ , etc., are chosen heuristically. Therefore,
one possible way to improve the hybrid-LP method is to optimize the parameters
In [21], the hybrid-LP method was tested on some randomly generated LP problems
and the standard Netlib test problems. For the former, Hybrid-LP saved 34.4% in the
number of iterations and 24.9% in the total running time. For the latter, the savings in
the number of iterations and the running time were 22.7% and 11.2%.

3.1.2 Generate a Basis Based on Computing Efficiency

CrashBasis:Comparedwith an extremely sophisticated algorithm that can provide
a good initial basis, a crude algorithm that can provide a reasonably good initial
basis quickly is favored. Therefore, some heuristic algorithms, called crashing, have
emerged. These crash algorithms are used to quickly find a good initial basis with
as many decision variables as possible. Usually, the obtained basis is a triangular
basis due to some irreplaceable benefits. First, there will be no fill-in in the inverse
calculation of the basis. Second, it is numerically accurate to calculate the inverse of
a triangular matrix. Third, it is easy to create a triangular basis. Last but not least,
operations with triangular matrices are less time-consuming. In the LP context, there
are two types of triangular basis: the lower triangular basis and the upper triangular
basis. Both types have zero-free diagonals.

Most triangular crash procedures are based on the same conceptual framework as
follows. First, partition the coefficient matrix A into [ Â, I ], where Â corresponds to
the decision variables and I corresponds to the logical variables. Then, define the row
and column counts, Ri and C j , as the number of nonzeros in the i th row of Â and that
in the j th column of Â, respectively. For the lower triangular basis, select a pivot row
i = argmink{Rk}. If Ri = 1, the pivot column is unique; otherwise, the column with
the smallest column count should be selected to keep the number of nonzero elements
in AB small. All the columns with nonzero in the i th row will not be considered in
the subsequent selection process. Then, update the row and column counts for the
remaining rows and columns of Â and repeat the above procedure. The main idea for
the upper triangular basis is similar.

In practice, the triangular crash procedures include more other considerations, such
as feasibility (CRASH(LTSF)) and degeneracy (CRASH(ADG)). More details can
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be found in [22, 23]. In [23], the authors selected 30 larger problems from Netlib
and observed that CRASH(LTSF) can make considerable improvements when all the
constraints are equalities (iterations of Phase I can be reduced to 0) or inequalities
(iterations of Phase I can be reduced by about 40%). Moreover, the performance of
CRASH(LTSF) is well balanced over a wide variety of problems.

Triangular and Fill-Reducing Basis: One computation difficulty of the simplex
method lies in the calculation of the basis inverse. In computational practice, the LU
factorization is used. To further improve efficiency, [24] intended to find a sparse and
near-triangular basis so that the factorization becomes easier. In this case, though the
number of iterations may increase, the computation time per iteration is reduced, and
the overall efficiency is improved.

The first step of this algorithm is to permute the matrix A and find its maximal
diagonal submatrix A11. If rank(A11) = m, i.e., A11 is large enough to form an initial
basis, the algorithm stops. Otherwise, the algorithm permutes the matrix A as

A =
[
A11 A12
0 A22

]
, (11)

where A22 is subsequently ordered by a fill-reducing order and the firstm− rank(A11)

columns are selected in completion of the basis.
Note that with A11, the constructed basis will be as triangular as possible. Addition-

ally, as A22 is ordered based on the fill-in effect, the sparsity will be preserved during
iterations. Therefore, the computation time per iteration is greatly reduced. However,
since both the objective function and the constraints are completely ignored, the initial
vertex may be far from optimal, thus requiring more iterations to terminate.

Compared with the cosine criterion, which aims to reduce the number of iterations
by providing a near-optimal starting point, this algorithm tends to speed up the iteration
process by obtaining a sparse and near-triangular basis.

CPLEX Basis: CPLEX basis was proposed by [25]. The essential purpose is to
construct a sparse and well-behaved basis with as few artificial variables and as many
free variables as possible. The objective of the CPLEX basis is not to find the variables
in the optimal basis, but to reduce the work of removing artificial variables. To find
such a CPLEX basis, a preference order of the variables should be constructed first.
Consider the given LP problem in the following form:

min
x,s1,s2

cTx

s.t. A1x + s1 = b1,
A2x − s2 = b2,
A3x = b3,
l � x � u,

s1 � 0, s2 � 0,

(12)

where x = (x1, · · · , xn)T are decision variables and s1 = (xn+1, · · · , xn+m1)
T and

s2 = (xn+m1+1, · · · , xn+m1+m2)
T are slack variables. All the indices of variables can
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be divided into four sets:

C1 = {n + 1, · · · , n + m1 + m2},
C2 = { j : x j is a free variable},
C3 = { j � n : exactly one of l j and u j is finite},
C4 = { j : −∞ < l j , u j < +∞},

whereCi will be preferred toCi+1 (i = 1, 2, 3). Note thatC1 is just the set of indices of
all the slack variables, which is themost preferred set due to the sparsity and numerical
properties.

Then, define a penalty q̄ j for j ∈ {1, · · · , n + m1 + m2}:

q̄ j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if j ∈ C2,

l j , if j ∈ C3 and u j = +∞,

− u j , if j ∈ C3 and l j = −∞,

l j − u j , if j ∈ C4.

(13)

Let c = max{| c j |: 1 � j � n} and define

cmax =
{
1 000c, if c �= 0,

1, otherwise.
(14)

Finally, for j ∈ {1, · · · , n}, define

q j = q̄ j + c j/cmax. (15)

The indices in sets C2, C3, and C4 are sorted in an ascending order of q j . The lists
are concatenated into a single ordered set C = { j1, · · · , jn} with the most “freedom”
variable in the front. Now, the basis AB can be constructed according to the steps
in [25].

The construction of the CPLEX basis is quite simple and fast. It is considered as
a good choice of the default initial basis. The computational results indicate that the
CPLEX basis performs well in easy problems, but it is generally less effective for
difficult ones. In [25], the computational results showed that the CPLEX basis leads
to slower solution times in 20 of 90 cases. Of those, 12 is by 10% or less and only 1 by
more than 30%. The average improvement of CPLEX over the slack basis (consisting
of all available slack variables) is about 35%.

3.1.3 Generate a Basis Based on Feasibility

Two-Phase Method: The simplex method usually proceeds in two phases. Phase I
ends with either a feasible basic solution or an evidence that the problem is infeasible.
If in Phase I, a feasible basic solution is successfully found, then in Phase II, starting
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from the obtained solution, the simplex algorithm can be executed in search of the
optimum.

In the two-phase method, Phase I proceeds similarly to Phase II, except that it
instead deals with an auxiliary problem, i.e.,

min
x,xa

1Tmxa

s.t. Ax + xa = b,
x, xa � 0,

(16)

where xa ∈ R
m is the introduced artificial variable and 1m ∈ R

m denotes the vector
of ones. Since for any row with bi < 0, we can obtain bi > 0 by multiplying both
sides by−1, without loss of generality, we can assume b � 0. Therefore, the auxiliary
problem has a straightforward feasible basic solution, i.e., x = 0 and xa = b. Starting
from this solution, we can solve (16) with the simplex algorithm and encounter two
different cases at optimality:

Case A xa �= 0: The original problem (Standard) is infeasible;
Case B xa = 0: There are two possibilities:

Sub-case B.1 No artificial variable remains in the basis: The basis of (16) is
immediately a feasible basis of (Standard);

Sub-case B.2 At least one artificial variable remains in the basis: Without loss of
generality, assume the variable is in the i th row, where b̄i=0. Select a
column j with (A−1

B AN )i j �= 0. Perform the pivoting with x j as the
entering variable and the basic artificial variable in the i th row as the
leaving variable. After that, go to Sub-case B.1.

Although the two-phase method can guarantee a feasible basic solution or evidence
of infeasibility in Phase I, it introduces extra artificial variables, thus increasing the
dimension, as well as the complexity of the problem. It has been proved that the
problem of determining a feasible solution is of the same complexity degree as solving
the LP problem itself. Therefore, Phase I can be very time-consuming in practice,
usually even more time-consuming than Phase II. To further speed up Phase I in the
two-phase method, the quick simplex method [26] can be utilized. The idea of the
quick simplex method is to perform the pivoting based on multiple pairs of variables
instead of only one pair.

Big-M Method: The big-M method is a well-known method to initialize the sim-
plex algorithm. It constructs a feasible basis by introducing artificial variables into the
constraints and eliminates them from the optimal basis by placing a large penalty term
in the objective function. Specifically, the auxiliary problem is

min
x,xa

cTx + M1Tmxa

s.t. Ax + xa = b,
x, xa � 0,

(17)

where xa ∈ R
m is the introduced artificial variable and M � 0 is a very large

number. Similar to the two-phase method, (17) has a trivial feasible basis, i.e., xa = b
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and x = 0. With this basis, the primal simplex method can be applied to solve the
problem. It should be noted that since M is large, a high cost will be paid for any
xa �= 0. Therefore, though we start with the basic variable xa = b, it will be removed
from the basis and pushed to zero in the optimal solution. When xa = 0, (17) degrades
to (Standard) and the obtained solution is directly an optimal solution to (Standard).
If we have xa �= 0 in the solution, the original problem is infeasible.

The pivoting procedure of the big-M method is the same as that of the two-phase
method. Hence, it is time-consuming as well. However, the introduction of M results
in two more disadvantages. First, it is difficult to determine how large M should be
to eliminate the artificial variables in practice successfully. Second, a numerical issue
will occur when dealing with an extremely large M .

Logical Basis: The logical basis is the simplest initial basis [22, 27, 28]. To form
such a basis, all constraints (equality and inequality) add a distinct logical variable
after the decision variables. Then, the corresponding column vectors of all the logical
variables form a unit matrix that can be used as an initial basis, i.e., AB = I .

The logical basis has three main advantages. First, its creation is trivial. Second, the
inverse of AB is just the identity matrix I , which is available without any computation.
Third, the first iterations are very fast, as the LU factorization is sparse. However, the
logical basis generally leads to substantially more iterations, and thus, more advanced
initial bases are expected.

Algebraic Simplex Initialization: In 2015, Nabli and Chahdoura [29] developed
a new initialization method based on the notion of linear algebra and Gauss pivoting
(hereinafter referred to as algebraic simplex initialization). This method can find a
nonsingular initial basis, i.e., AB is nonsingular, but not necessarily feasible. Therefore,
the authors combined this method with NFB [30] to achieve feasibility. In addition, a
new pivot rule for the NFB was proposed in this paper [29], which is advantageous in
reducing the number of iterations and the computational time.

The algebraic simplex initialization consists of at most four consecutive steps.
Before executing these steps, pre-processing is needed for anLPproblem in the general
form. Without loss of generality, the right-hand side b of the constraints is supposed
to be non-negative. First of all, the constraints should be re-ordered in such a way
that inequalities of type � appear at first, then the inequalities of type �, and finally
the equality constraints. Next, the problem should be transformed into the standard
form by adding slack variables. The first step of the algebraic simplex initialization
is to select all the slack variables as the basic variables and put their corresponding
columns in the coefficient matrix into the formed matrix AB , which is empty before
this step. If the LP problem contains no equality constraint, then the obtained basis has
been valid, i.e., the obtained AB is nonsingular; otherwise, the subsequent steps need
to be executed. The second and the third steps are straightforward. Their main purpose
is to continue to select variables from the decision variables as new basic variables
and fill the columns of the matrix AB accordingly, so that all columns of the formed
matrix AB are linearly independent. After these two steps, if the formed matrix AB

is still nonsingular, the last step is required. In order to complete the basis AB , some
so-called pivoting variables need to be introduced in this step. Finally, the obtained
matrix AB has the following form, as shown in Fig. 5.
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Fig. 5 The form of the obtained
matrix AB . The symbol ‘×’
indicates that the corresponding
entry is nonzero, whereas ‘*’
means that the entry is arbitrary

Note that the pivoting variables are different from the artificial variables. The piv-
oting variables will be driven outside the basic variable set by some pivoting steps.
Therefore, the algebraic simplex initialization is also artificial-free. Moreover, the
redundant constraints and infeasibility can be detected during the pivoting steps.

CostModifications:Themain idea of costmodifications is similar to the two-phase
method. It starts with an auxiliary problem that has a straightforward feasible basis
and generates a feasible basis of the original problem by solving the auxiliary one.

Recall the LP problem formulated as (Standard). Given an initial basis AB that is not
necessarily feasible, the auxiliary problem is constructed by modifying the objective
function, i.e.,

ĉ j =
{
AT• j (AT

B)−1cB + δ j , if j ∈ J ,

c j , otherwise,
(18)

where J = { j ∈ N | s j < 0} denotes the set of infeasible variables in the dual problem
and δ j is a small positive perturbation to alleviate the problem of degeneracy. It is easy
to verify that the basis of (18) is dual feasible, i.e., s j∈J = δ j � 0. After applying the
dual simplex method, we obtain xB � 0 at optimality. Therefore, the optimal basis of
(18) is immediately a feasible basis to (Standard), and the primal simplex method can
be applied subsequently to compute the optimal solution of the original problem. For
a detailed review of this method, as well as its implementation, readers may refer to
[31] and [32].

Tearing Algorithm: Gould and Reid [33] proposed a remarkable initialization
algorithm for large-scale and sparse LP problems, which can find an initial basis as
feasible as possible with a reasonable computational cost. This algorithm is called
the tearing algorithm. Its main idea is to break the initialization problem into several
smaller pieces and solve each of them. There are two main assumptions of the tear-
ing algorithm. First, the coefficient matrix A can be transformed into a lower block
triangular matrix with small blocks by permuting its rows and columns. Second, an
efficient simplex solver is available to solve dense LP problemswith fewer than t rows,
where t is a small number. It is assumed that after some row and column permutations,
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the permuted matrix has the following form:

⎡
⎢⎢⎢⎢⎢⎣

A11
A21 A22
...

...
. . .

Ar1 Ar2 · · · Arr

A(r+1)1 A(r+1)2 · · · A(r+1)r 0

⎤
⎥⎥⎥⎥⎥⎦ , (19)

where Ai j ∈ R
mi×n j . Note that mi and n j are positive integers for all i, j ∈

{1, 2, · · · , r}, but mr+1 may be zero and thus non-negative. Generally, the size mi

of the blocks is very small. Such a block lower triangular form can be obtained by the
algorithm proposed by [34]. Then, the following problem is considered:

min
v,w

1Tm(v + w) (20a)

s.t.

⎡
⎢⎢⎢⎢⎢⎣

A11

A21 A22
.
.
.

.

.

.
. . .

Ar1 Ar2 · · · Arr

A(r+1)1 A(r+1)2 · · · A(r+1)r 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
x2
.
.
.

xr
xr+1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

v1
v2
.
.
.

vr
vr+1

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣

w1

w2
.
.
.

wr

wr+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

b1
b2
.
.
.

br
br+1

⎤
⎥⎥⎥⎥⎥⎦ , (20b)

li � xi � ui , vi � 0, wi � 0, i = 1, · · · , r + 1, (20c)

where xi ∈ R
ni , vi , wi , bi ∈ R

mi , and li and ui are the lower bound and the upper
bound of xi , respectively.Note that a feasible solution can be reachedwith1Tm(v+w) =
0. Although sometimes the feasibility may not be achieved, a basis near the feasible
region can be obtained. It is easy to see that the first block of (20b) requires that the
following conditions are satisfied:

A11x1 + v1 − w1 = b1, l1 � x1 � u1, v1, w1 � 0, (20)

and it is expected that both v1 andw1 are driven to zero. Assuming thatmi � t for all i ,
this can be achieved by minimizing 1Tm1

(v1 + w1) subject to (20), which produces the
optimal solution x̂1, v̂1, ŵ1 and a set ofm1 basic variables that probably include some
of v1 and w1. The obtained solution v̂1 and ŵ1 will be zero if the original problem is
feasible.

Moving to the kth stage (1 < k � r ) of this algorithm, the optimal solution
x̂i , v̂i , ŵi ,∀1 � i < k and a set of m1 + · · · + mk−1 basic variables have been
obtained. Then, the following conditions need to be satisfied:

Akkxk + vk − wk = bk −
k−1∑
i=1

Aik x̂i , lk � xk � uk, vk, wk � 0, (21)
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and vk and wk had better be zero. Similarly, this can be achieved by minimizing
1Tmk

(vk + wk) subject to (21). Last, as the (r + 1)th block is 0, v̂r+1 and ŵr+1 can be
calculated as

v̂r+1 = max

{
0, br+1 −

r∑
i=1

A(r+1)i x̂i

}
, (22)

ŵr+1 = max

{
0,−br+1 +

r∑
i=1

A(r+1)i x̂i

}
, (23)

where themaximum is taken by elements. The variables in v̂r+1 and ŵr+1 with nonzero
value are chosen to be basic. To form a full basis, some variables should be arbitrarily
selected to cover the remaining rows at the end of the process.

For all k > 1, if v̂k �= 0 or ŵk �= 0, the backtracking will be executed; if m j +
m j+1 +· · ·+mk � t holds for some j , then the subproblems in stage j, j +1, · · · , k
can be integrated as one problem, which can be solved by the solver.

Non-feasible Basis Method: The so-called non-feasible basis method (NFB) was
proposed by Nabli in 2009 [30]. This method is used to construct an initial feasible
basis from an infeasible one. It can be easily employed without artificial variables
and without any perturbation in the objective function. The feasibility of the obtained
basis is achieved bymodifying the selection rules of the entering and leaving variables.
This method is completely new and different from the dual simplex algorithm and the
criss-cross method [35]. In the same paper [30], Nabli introduced the notion of the
formal tableau. By combining the NFB with the formal tableau, he proposed another
new method, called the formal non-feasible basis method (FNFB).

As mentioned above, the NFB is used to handle the cases with an infeasible initial
basis, i.e., the RHS vector b̄ has at least one negative component. For such scenarios,
the matrix β = A−1

B AN is supposed to satisfy the following condition:

∀i ∈ {i | b̄i < 0}, ∃ j s.t. βi j < 0. (24)

If this condition cannot be satisfied, then the LP problem is infeasible. Considering
the standard form in (Standard), the procedure of the NFB is given as follows:

(1) Determine k = argmin
i

{b̄i | b̄i < 0}.
(2) Build the set K = { j | βk j < 0}. If K = ∅, end the process and the original

problem is infeasible.
(3) Calculate c̄ = cN − AT

N (AT
B)−1cB .

(4) Select the entering variable index q = argmin j∈K {− c̄ j
βk j

}.
(5) Select the leaving variable index p = arg max

i∈{1,··· ,m}{
b̄i
βiq

| b̄i < 0 and βiq < 0}.
(6) Repeat the process until b̄i � 0,∀i ∈ {1, · · · ,m} (the feasible basis has been

obtained).
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In [30], the authors compared the NFB method with two-phase and big-M methods.
In terms of the iteration number, the performance gain is about 78% and 64% in
comparison with two-phase and big-M methods, respectively.

Infeasibility-Sum Method: This method is named the infeasibility-sum method
because it involves an auxiliary problem that intends to minimize the infeasibility-
sum [36], i.e., the negative sumof the infeasible variables.When all infeasible variables
are eliminated in a certain iteration, a feasible basis is obtained.

Let I = {i ∈ B | xi < 0} denote the set of infeasible basic variables and construct
the auxiliary problem as

min
x

−
∑
i∈I

xi

s.t. ABxB + AN xN = b,
xB\I , xN � 0.

(25)

Note that here wemerely impose non-negativity on the variables which already satisfy
the non-negative constraints. Therefore, the basic solution (2) is feasible to (25) and
the primal simplex method can be applied to minimize the infeasibility-sum, so as to
compute a feasible basis of (Standard). It should be noted that, as we only impose non-
negative constraints on part of the variables, the selection of leaving index is slightly
different from the original algorithm.

Theorem 3 [36, Theorem 13.1.1] Let {ȳB, s̄B, s̄N } be the dual basic solution of the
auxiliary problem. The original problem is infeasible if s̄N � 0.

Based on the above theorem, the detailed procedure of the infeasibility-summethod
is shown as follows:

(1) If xB � 0, the basis is feasible and go to step 3.
(2) Form an auxiliary problem with respect to the current basis and compute s̄N . If

s̄N � 0, stop with infeasibility. Otherwise, apply one iteration of the modified
primal simplex method and go to step 1.

(3) Apply the primal simplex to compute the optimum of the original problem.

For more details on the procedure of this method as well as the modified primal
simplex algorithm, readers can refer to [36].

Smart Crossover:Most simplex methods begin with a basic feasible point (vertex)
to solve the LP problem. To obtain such a starting point, the crossover operation is
needed in some simplex initialization methods, such as the ICA mentioned before.
However, the crossover operation can be very time-consuming. Therefore, it is nec-
essary and meaningful to propose some smart crossover methods which are more
efficient.

Ge et al. [37] introduced two network crossover methods that can deal with the
minimum cost flow (MCF) problem and the optimal transport (OT) problem. These
two problems are two special types of LPs. Specifically, the MCF problem can be
easily transformed into an equivalent OT problem.

Column Generation Method: Given a directed graph G = (N ,A), N and A are
the entire node set and the arc set, respectively. The node set I(i),∀i ∈ N includes all
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nodes that have an arc from the node i , while the node setO(i),∀i ∈ N is comprised
of all nodes that have an arc pointing to the node i . The general form of the MCF
problem is given as follows:

minx
∑

(i, j)∈A
ci j xi j

s.t. bi +
∑
j∈I(i)

x ji =
∑

j∈O(i)

xi j ,∀i ∈ N ,

0 � xi j � ui j ,∀(i, j) ∈ A,

(26)

where ci j and ui j denote the cost and the capacity limit on the arc (i, j) ∈ A,
respectively. The variable bi represents the external supply of the node i ∈ N .

The goal of the MCF problem is to design the amount of flow on each arc, i.e.,
xi j ,∀(i, j) ∈ A, to minimize the total flow cost while satisfying the node flow balance
and the arc capacity constraint. Given the amount of flow on each arc, the maximal
flow of a node i is defined as

x f
i =

∑
j∈O(i)

xi j +
∑
j∈I(i)

x ji ,∀i ∈ N . (27)

Given an arc (i, j), the flow ratio of the arc is defined as

fi j = max

⎧⎨
⎩ xi j

x f
i

,
xi j

x f
j

⎫⎬
⎭ ,∀(i, j) ∈ A. (28)

In [37], the authors provide an important property of the MCF problem, which can
help to select the basis based on an approximate solution of (26). The property claims
that the arcwith a larger value of the flow ratio ismore likely to be included in the basis.
Therefore, given an approximate solution, we can sort all the arcs according to their
flow ratio values and select the first | N | arcs to create a set as {s1, s2, · · · , s|N |},
where | N | is the number of elements in the set N . Intuitively, this set gives the
potential arcs that should be included in the basis based on the current approximate
solution.

With this potential set, a column generation basis identification process is used to
obtain the feasible basis of the original problem. First, the original problem should be
converted into an equivalent problem in the standard form. Then, the artificial variable
is added based on the big-M method mentioned before. After that, at each iteration,
an index set Dk is constructed as

Dk ← Dk−1 ∪ D{s1,s2,··· ,snk }, (29)

where nk is a monotonously increasing sequence of integers. The set D{s1,s2,··· ,snk }
includes the indices of the first nk arcs in the potential basis set. With the column
generation method, the problem at each iteration has the following form:
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minx
∑
i∈Dk

c j x j

s.t.
∑
i∈Dk

A• j x j = b,

x j /∈Dk = 0,
x � 0.

(30)

Once there is no artificial variable in the basis at a particular iteration, the feasible
basis for the original problem near the approximate solution is obtained.

This method can be further implemented to obtain an ε-optimal feasible solution
by changing the update rule of the index set Dk as follows:

Dk ← Dk−1 ∪ D{s1,s2,··· ,snk } ∪ { j : c j < −ε}, (31)

where ci is the reduced cost.
Spanning TreeMethod: Given anMCF problem, the basic feasible solution of the

MCFproblem is directly related to a spanning tree of the associatedgraph.Therefore, in
the spanning treemethod, the task of finding the basic feasible solution can be replaced
by the task of building a spanning tree with the largest sum of flow ratios. However,
if the approximate solution is not accurate, the tree solution may be infeasible. Thus,
one more step to take under this condition is to push the infeasible tree solution to a
feasible one. For the OT problem, this step can be easily implemented.

Considering the OT problem, the nodes in a directed graph can be divided into the
supplier set S and the consumer set C. Each node in S has arcs pointing to the nodes
in C. The target of the OT problem is to design the amount of flow on each arc to
minimize the total cost under given constraints. The general form of the OT problem
is given by

minx
∑

(i, j)∈S×C
ci j xi j

s.t.
∑
j∈C

xi j = si ,∑
i∈S

xi j = d j ,

xi j � 0,∀(i, j) ∈ S × C,

(32)

where ci j is the cost of the arc (i, j). The variable si represents the supply value of a
given node i ∈ S, while d j is the demand value of a node j ∈ C.

For any OT problem, if the amount of flow on a given arc (i, j) ∈ S × C is out
of the feasible region, there always exists a new flow design that can be feasible. The
detailed method to obtain the new feasible design is given in [37] and is omitted here.
After this step, the spanning tree method can be used to construct the basic feasible
solution as mentioned before.
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3.2 Initialization in Dual Simplex

Other than finding a primal feasible basis, we require a dual feasible point to ini-
tialize the dual simplex algorithm. The initialization method in the dual simplex can
be classified into two types. Methods of the first type solve either the original problem
or an auxiliary one with the conventional simplex method. The obtained solution is
directly a feasible basic solution to the dual problem.Methods of the second type use a
modified simplex method instead. Extra operations are implemented at each iteration
of the conventional simplex method.

3.2.1 Generate a Dual Feasible Basis with Simplex

The Most-Obtuse-Angle Row Rule: The most-obtuse-angle rule was first pro-
posed by Pan in [38] and was later analyzed in [39, 40] for its application in achieving
dual feasibility. It is a dual version of the most-obtuse-angle column rule. It is inspired
by the same observation illustrated in Fig. 4. In each iteration, one dual infeasible
variable is moved from the non-basis into basis, while the leaving variable is selected
according to the angle with the downhill edge determined by the entering variable. If
the downhill direction is close to the negative direction of the objective function, the
newly constructed basis is more likely to be an optimal basis. The detailed process is
shown in the following:

(1) Select the entering index q = argmin j∈N s j . If sq � 0, the basis is already dual
feasible and go to step 4.

(2) Compute �xB = A−1
B ANeq . If �xB � 0, the algorithm terminates with (primal)

unboundedness. Otherwise, select the leaving index p = argmaxi∈B �xi .
(3) Perform pivoting B ← B ∪ {q}\{p} and go to step 1.
(4) Apply the dual simplex to compute the optimum.

Though the feasibility of other variables cannot be preserved and cycling may arise
during iterations, due to the geometrical benefit of this method, the computational
efficiency has been confirmed in [40, 41]. More specifically, Pan [40] showed that by
adopting the most-obtuse-angle row pivot rule, the Phase I process is 2−3 times faster
than conditional ones on Netlib problems.

Right-Hand Side Modifications: This method was proposed by [42] and can be
regarded as the dual version of the cost modification method, thus having a similar
basic idea. Given a basis AB , by modifying the right-hand side (RHS) coefficient
b̄ := A−1

B b, or equivalently b, of the initial problem, the obtained one becomes primal
feasible. After solving this modified problem and recovering the RHS coefficients, a
dual feasible basis can be derived.

Recall I defined in (25), which denotes the set of primal infeasible variables. The
modified RHS takes

ˆ̄bi =
{

δi , if i ∈ I ,

b̄i , otherwise,
(33)

where δi is a small positive number to avoid degeneracy. In this modified problem,
for all i ∈ I , we have xi = δi � 0. Therefore, the basis now becomes primal feasible.
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After solving themodified problem, i.e., sN � 0, the original problem can be recovered
by restoring the value of b. The recovered problem is clearly dual feasible.

To validate the effectiveness of the RHS modification method, Pan [42] compared
it with classical two-phase simplex algorithm on four different types of problems.
Computational results showed that the RHS modification method outperforms the
classical one in terms of required pivot steps for all types on problems.

3.2.2 Generate a Dual Feasible Basis with Modified Simplex

Dual Infeasibility-Sum Method: Though the main idea of dual infeasibility-sum
method is not new [43], its efficiency was reanalyzed in [41, 44]. Starting with a
dual infeasible basis, this method aims to generate a feasible one by minimizing the
infeasibility-sum. Different from the most-obtuse-angle row rule, this method can
guarantee a monotonous decrease in infeasibility-sum during iterations.

Recall the dual basic solution in (4). The basis is said to be infeasible if there
exists an element in sN that is less than zero. The infeasibility-sum method intends to
maximize the second term in the summation of such variables, i.e.,

∑
j∈J

s j =
∑
j∈J

c j −
⎛
⎝∑

j∈J

A• j

⎞
⎠

T

y, (34)

where the objective function is called infeasibility-sum and J is the set of dual infea-
sible variables defined in the cost modification method. Therefore, we can construct
an auxiliary dual problem based on (4) as follows:

maxy,sB ,sN −
⎛
⎝∑

j∈J

A• j

⎞
⎠

T

y

s.t. AT
B y + sB = cB,

AT
N y + sN = cN ,

sB, sN\J � 0.

(35)

Note that (35) is also an LP problem and its basis is exactly the same as that of
the original dual problem (Dual). Nevertheless, as the constraint sN � 0 becomes
sN\J � 0, the basis is dual feasible. Therefore, the dual simplexmethod can be applied
to generate a dual feasible basis for the original problem. One thing to mention is that,
as the constraints are slightly different here, the selection of entering index is slightly
modified as well.

Theorem 4 Let {x̄B, x̄N } be the primal basic solution of the auxiliary problem, i.e.,
x̄B = −A−1

B

∑
j∈J A• j and x̄N = 0. The original problem is (primal) unbounded if

x̄B � 0.

With the above theorem, the dual infeasibility-sum method proceeds in the
following steps:
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(1) If sN � 0, the basis is dual feasible and go to step 3.
(2) Form an auxiliary problem with respect to the current basis and compute x̄B =

−A−1
B

∑
j∈J A• j . If x̄B � 0, stop with primal unboundedness. Otherwise, apply

one iteration of the modified dual simplex method and go to step 1.
(3) Apply the dual simplex to compute the optimum of the original problem.

Artificial Bounds:The artificial boundsmethod is a dual version of the big-M method.
Simply put, this method adds extra upper bounds to the non-basic variables so that the
dual problem has a straightforward feasible basis.

Consider the following problem where there exist newly added artificial bounds for
non-basic variables compared with (Standard):

minxB ,xN cTBxB + cTN xN
s.t. ABxB + AN xN = b,

xB, xN � 0,
xN � M,

(36)

where M � 0 is a large number. Since the artificial bounds can be rewritten as a
constraint, i.e., xN + xa = M with xa � 0, where xa ∈ R

n−m is the introduced
artificial variable, it can be easily verified that the associated dual problem of (36) is

maxy,ya ,sB ,sN bTy + M1Tn−m ya
s.t. AT

B y + sB = cB,

AT
N y + ya + sN = cN ,

sB, sN � 0,
ya � 0,

(37)

where ya ∈ R
n−m is an artificial variable, serving as the counterpart of xa . Recall the

basic solution of the original dual problem, where sN = cN − AT
N y. We note that such

a solution is infeasible if there exists c j − AT• j y < 0 for any j ∈ N . Replacing such
basic variable with ya in (37), we can directly obtain a feasible basis of (Dual).

In this survey, we investigate and summarize existing works related to the simplex
initialization from the aspects of the primal simplex and the dual simplex, respectively.
A comparison of the discussed methods for generating the initial or starting point is
summarized in Table 1.

4 Learning-Based Branch and Bound Algorithms

In this section, we review the learning techniques to deal with the four key compo-
nents in B&B algorithms for the MILP. The contributions and limitations of different
studies are summarized in this section. In addition, we make some comparisons of
different learning methods in these four key components.
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Table 1 Comparison of initialization methods in simplex

Methods Sparsity Triangularity Creation Time Feasibility Optimality

Two phase × × Long
√ ×

Big-M × × Long
√ ×

Logical basis [27]
√ √

Short × ×
Algebraic initialization [29] × √

Long NFB ×
Modifications [32, 42, 45] × × Long

√ ×
Tearing basis [33] × × Long

√ ×
Non-feasible basis method (NFB) [30] × × Long

√ ×
Infeasibility-sum [36, 41, 44] × × Long

√ ×
Smart crossover [37] × × Long

√ ×
Crash basis [23] × √

Short LTSF ×
Triangular & fill-reducing [24]

√ √
Short × ×

CPLEX basis [25]
√ × Short × ×

Cosine criterion [12, 13] × × Long × √
Most-obtuse-angle [15, 38–40] × × Long

√ √
Idiot crash algorithm [18] × × Short Crossover

√
ε-Optimality search [19] × × Long Crossover

√
Hybrid-LP [21] × × Long Crossover

√

4.1 Learn to Branch

With the development of ML, alleviating the computational burden in some tra-
ditional branching strategies with ML has been a hot topic. Some works have used
imitation learning to approximate decisions by observing the demonstrations shown by
an expert, while others capitalize on reinforcement learning to explore better branching
policies.

4.1.1 Supervised Learning in Branching

Strong branching (SB) is the most efficient expert in terms of the number of
expanded nodes till now [46]. However, its main disadvantage is the prohibitive com-
putational cost. Therefore, most works study how to mimic strong branching in an
efficient way. This type of method used in these works is called imitation learning,
which can be regarded as supervised learning for decision making. Some early works
utilize the traditional ML methods [47–49]. They trained different regression mod-
els to efficiently approximate SB scores. Specifically, Alvarez et al. [47, 48] utilized
ExtraTree [50] to approximate the strong branching score function, while [49] chose
the linear regression. The method proposed in [47, 48] consists of two phases to learn
and solve MILPs. In the first phase, the SB decisions are recorded by optimally solv-
ing a set of randomly generated problems, and a regressor is learned to predict SB
scores. In the second phase, the learned function is employed for the instances from
MIPLIB, which is the conventional evaluation benchmark for MILP methods. On the
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other hand, they proposed some significant features including static problem features,
dynamic problem features, and dynamic optimization features, which describe the
current problem and are easy to compute. Alvarez et al. [48] emphasized the size-
independence and invariance property of branching features, followed by many later
works. The experimental results in [48] show that the learned branching strategy com-
pares favorably with SB, but its performance is slightly below that of the reliability
branching (RB) [46].

Inspired by the idea behind RB, Alvarez et al. [49] used online learning to imitate
SB. For a candidate, if its SB score has been computed a certain number of times,
it would be deemed reliable, and its SB score could be approximated by learning.
Otherwise, the feature vectors and scores of unreliable candidates can be put into the
training set. Hence, in contrast to [47, 48], the training data was generated during the
B&B process on-the-fly, and thus, no preliminary phase is required. Khalil et al. [51]
learned SB scores in an on-the-fly fashion, without an upfront offline training phase
on a large set of instances, so no preliminary phase is needed to record the expert
behavior, and the computing time is saved. Moreover, they used binary labels which
relax the definition of “best" branching variables and allow us to consider multiple
good variables that have high scores during the learning process. Thus, the learning
time is further saved. The experimental results show that imitating SB byMLmethods
outperforms SB and pseudocost branching (PB) [52] in terms of the solved instances
and the number of nodes. Although the running time of the learned policy is more than
PB for easy instances, ML runs fastest when solving medium and hard MILPs. These
early works reveal the potential of taking advantage of ML to speed up the solution of
large-scale MILP problems.

Moreover, to tackle tedious parameter tuning, Balcan et al. [53] proposed an ML-
based method to learn the optimal parameter setting for the B&B algorithm. A certain
application domain can be modeled as a distribution over problem instances, and
samples can be accessed by the algorithm designer so that a nearly optimal branching
strategy can be learned. Here, the optimal branching policy means the optimal convex
combination of different branching rules. This work theoretically proved that using a
data-independent discretization of the parameters to find an empirically optimal B&B
configuration is impossible, indicating its intrinsic adaptiveness.

Nowadays, deep learning has achieved huge success in speeding up variable selec-
tions, with the power to process a large amount of data compared with machine
learning. Due to the bipartite graph representing MILP (Fig. 6), it is natural to encode
the branching policies into a graph convolutional neural network (GCNN), which
speeds up the MILP solver by reducing the amount of manual feature engineering.
Moreover, the previous statistical learning of branching strategies is only able to gener-
alize to similar instances, whereas the GNN model has a better generalization ability
since it can model problems of arbitrary size. Gasse et al. [54] adopted imitation
learning to train an exclusive GCNNmodel for addressing the B&B variable selection
problem. In this work, the problem was formulated by the task of searching for the
optimal policy of a Markov decision process (MDP), as illustrated in Fig. 7. Since the
graph structure is the same for all LP relaxation problems in the B&B tree represented
as a bipartite graph with node and edge features, the cost of extraction is reduced to a
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great extent. By adopting imitation learning, a GCNN model was trained to approxi-
mate the SB policy. As shown in Fig. 8, the bipartite representation is taken as the input
of the model. After two half convolutions of a single graph revolution, a probability
distribution over the candidate branching strategies is finally obtained by discarding
the constraints node and adopting a multi-layer perceptron and a softmax activation.
Their resulting branching policy is shown to perform better than previously proposed
methods for branching on several MILP problem benchmarks and generalize to larger
instances.

In order to make the GNN model more competitive on CPU-only machines, Gupta
et al. [55] devised a hybrid branching model that uses a GNN model only at the initial
decision point, and a weak but fast predictor, such as the multi-layer perceptron,

Fig. 6 Bipartite graph presentation of MILP [54]. The bipartite graph consists of two sets of nodes, namely
the variable sets {x1, · · · , xn} and the constraint nodes {δ1, · · · , δm }. The edge connecting the variable
node and the constraint node denotes the coefficients of the MILP

Fig. 7 Variable selection in the B&B integer programming algorithm as an MDP. In the left figure, a state
st includes the B&B tree with a leaf node chosen by the solver to be expanded next (in pink). In the right
figure, a new state st+1 is obtained by branching over the variable at = x1 [54]. (Color figure online)

Fig. 8 The architecture of the GCNN model in [54]
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for subsequent steps. The proposed hybrid architecture improves the weak model by
extracting high-level structural information at the initial point by the GNN model and
preserves the original GNN model’s ability to generalize to harder problems. Nair
et al. [56] adopted imitation learning to obtain an MILP brancher, where the GNN
approachwas improved by implementing a large amount of parallel GPU computation.
By mimicking an ADMM-based expert and combining the branching rule with the
primal heuristic, their work is advantageous over the SCIP [57] in terms of solving
time on five benchmarks in real life.

However, most of the above works specialize the branching rule to distinct classes
of problems, obtaining generalization ability to larger but similar MILP instances
[47–49, 51]. Besides, these works lack a mathematical understanding of branching.
With the hypothesis that parameterizing the underlying space of B&B search trees
can aid in generalization to heterogeneous MILPs, Zarpellon et al. [58] introduced
new features and architectures for branching, making the branching criteria adapt
to the tree evolution and generalizing across different combinatorial class problems.
Specifically, Ct ,Treet are used to describe the search-based features and the state of
the search tree, respectively, which are independent of the specific parameters of the
problem and evolvewith the search. This work first used a baselineDNN (NoTree) that
only uses Ct as inputs to demonstrate the significance of search-based features. The
output layer equipped with the softmax produces a probability distribution over the
candidate set, indicating the probability for each variable to be selected. Then, Treet
was put in the NoTree by gating layers, called the TreeGate models. Considering that
people rarely use SB in practice, this work chose the SCIP default branching scheme,
relpscost [59], a reliable version of HB, as amore realistic expert. In the experiment, 27
heterogeneousMILP problemswere partitioned into 19 train and 8 test problems. Both
NoTree and TreeGate outperform GCNN, RB, and PC in terms of the total number of
nodes explored. Since GCNN struggles to generalize across heterogeneous instances,
it expands around three times as many nodes as this method. On the other hand, the test
accuracy of TreeGate is 83.70%, improving 19% over the NoTree model, while the
accuracy of GCNN is only 15.28%. The comparison between the mentioned methods
is shown in Tables 2 and 3.

4.1.2 Reinforcement Learning in Branching

One of the main limitations of imitation learning is that the expert bounds the
performance of the learned strategy. However, expert knowledge is sometimes not
satisfactory. Sun et al. [61] analyzed why imitating SB for learning branching strategy
is not a wise choice: SB yielding small B&B trees is a consequence of reductions
from solving branch LP instead of its decision quality, and these reductions cannot
be learned by imitating a branching policy. They designed experiments that eliminate
the side-effect of reduction obtained in solving branch LP and found that SB has poor
performance. Thus, researchers hope to propose bettermethods for selecting variables.

Sun et al. [61] designed a novel primal–dual policy network over reduced LP
relaxation and a novel set representation for the branching strategy. To encourage the
agent to solve problems with as few steps as possible, the reward is set to rt = 1 at
each time step. Although the primal–dual policy is similar to GCN, it uses a dynamic
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reduced graph by removing redundant fixed variables and trivial constraints during the
process, which gives a more precise and accurate description of the state. On the other
hand, instead of edge embedding in GCN, primal–dual policy relies on simple matrix
multiplication, which further saves computational time. Here, the set representation
and the optimal transport distance (or Wasserstein distance) are used to define the
novelty score. Given an instance Q, the collection of its subproblems under a branch
policy π can be defined as b(π, Q) = {R1, · · · , RH }. For each subproblem, Ri ,
its feasible region is a polytope. The weight function w(·) represents the number of
feasible points in the associated polytope. The distance between two subproblems Ri

and R j is defined as d(Ri , R j ) := ‖gi − g j‖1, where gi and g j are their mass centers.
Then, the optimal transport distance between two policy representations is computed
as

D(b1, b2) = min
�

∑
i, j

�i jWi j (b1, b2) s.t. �1 = p(b1), �
T1 = p(b2), (38)

where p(b) ∈ �H−1 is a simplex mapped from b by normalizing the weights. There-
fore, given a collection of older policies M and an instance Q, the novelty score is
defined as

N (θ, Q, M) = 1

k

∑
π j∈kNN(M,θ)

D(b(πθ , Q), b(π j , Q)), (39)

where kNN produces the k-nearest neighbors of πθ in M . Equipped with this novelty
score, novelty search evolution strategywas proposed to encourage exploration in rein-
forcement learning (RL). Their experiments compared the proposed RL method with
some existing approaches, including SVM, GCN, and three SCIP’s branching rules
(RPB [62], FSB [57], and VFS [57]). The RL method performs best in terms of the
running time, the number of expanded nodes, and primal bounds. However, in obtain-
ing a higher dual value, the proposed method performs worst initially, but it finally
obtains the best result, indicating its non-myopic property. Different from [63], this
work can further be transferred to larger instances, and its performance is significantly
superior to FSB, RPB, SVM, and GCN.

Although reinforcement learning canpotentially produce a better branching strategy
than the expert, the performance is limited by the length of the episode, and it learns
inefficiently at the beginning due to insufficient data.

4.1.3 Dynamic Approach for Switching Branching Heuristics

Based on the observation of the highly dynamic and sequential nature of the B&B
algorithm, Di Liberto et al. [64] believed that there are no single branching heuristics
that would perform the best on all problems, even on different subproblems induced
from the same MILP. Therefore, the efficiency of the search can be greatly improved
if we adopt the correct branching method at the right time during the B&B search.
Motivated by portfolio algorithms that attempt to predict the best heuristic for a given
instance, this work proposed an algorithm named dynamic approach for switching
heuristics (DASH). Based on the defined features, a clustering of problemswas learned
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with the g-means algorithm at the first step. Then the correct assignment of the branch-
ingmethods to clusters is learned during an offline training phasewith a similarmethod
as in Kadioglu et al. [65]. As the search depth increases, the instance tends to shift
to a different cluster. When such a change occurs, the heuristic would be switched
to a new one that best fits the current cluster. The numerical results show that DASH
outperforms the static and random switching heuristic methods in terms of the running
time, indicating the benefit of dynamics and adaptiveness of the switching methods.
Nevertheless, Lodi and Zarpellon [66] observed that the upfront offline clustering con-
flicts with the ever-changing characteristic of the tree evolution and somehow affects
time efficiency.

4.2 Learn to Select

As shown in [67], the effectiveness of different selection methods depends on the
type of problem. It is preferable to seek a selection strategy that adapts to different
types of problems. We divide the existing learning-based literature into the following
two categories, i.e., one is adaptation in evaluation criteria and the other is learning in
heuristics.

4.2.1 Adaption in Evaluation Criteria

The evaluation criteria of a node during a B&B run are from the following two sides,
the feasibility side and the optimality side. If the selection criteria pay more attention
to the feasibility side, the selection strategy will perform more like the depth-first
search strategy, while on the other side, the selection strategy would perform more
like the best-first strategy.

Borrowing an RL vocabulary, some grade of adaption could be pursued in the com-
bination of best-first and depth-first strategies to balance exploration and exploitation
in the B&B run. Sabharwal et al. [68] exploited the RL framework. The score of a
node N is a weighted sum of two terms,

score(N ) = estimate(N ) + Γ
visits(P)

100visits(N )
, (40)

where estimate(N ) is some measure of the quality of node N , P is the parent node
of N , and visits(·) counts the number of times the search algorithm has visited a
node. The parameter Γ balances the tradeoff between exploitation(first term) and
exploration(second term), and nodes with a higher estimate or have been visited less
time than their siblings will be pursued first. This geometric means of runtime, the
number of searched nodes, and the simplex iterations are improved compared with
three other selection strategies: best-first, breath-first, and CPLEX default heuristic.
The improvement is gained due to a balanced usage of best-first and breath-search-like
schemes. However, this work treats every node of a B&B tree equivalently, ignoring
the uniqueness of each node’s feature during the B&B run. An interesting question
arises about employing the node feature in the scoring system to improve the learning
quality.
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4.2.2 Learning in Heuristics in Selecting

The main idea of learning in heuristics is rating each node based on a weighted
sum of criteria and choosing the node with the highest score. The first heuristic search
procedure by learning methods was proposed by Glover and Greenberg [69, 70] which
adjusts theweights offline using a learning procedure. Ansótegui et al. [71] induced the
hyper-configurable reactive search to learn the parameters of a metaheuristic online
with a linear regression,where the regressionweights are tunedofflinewith theGGA++
algorithm configuration [72].

Daumé et al. [73] and Chang et al. [74] converted the solving problem into a
sequential decision-making problem. The policy for that decision-making problem
is then learned or improved. A fundamental limitation of their work is that there is
no correction due to the greedy search at each test time. Thus, the obtained solution
sequence will have deviations from the optimal one.

He et al. [75] instead proposed a method to learn the node selection strategy in a
B&B run by imitation learning. They categorized their features into three groups:

1. Node features include bounds, estimated objective at a given node, indications of
the current depth, and the (parental) relationship for the proceeded node.

2. Branching features represent the variable branching changes, including pseudo-
costs, variable’s value modifications, and bound improvement.

3. Tree features describe measures, i.e., the number of obtained solutions, global
bounds, and gaps.

They assumed that the training time will have a small set of solved problems and will
solve the problems of the same type at the test time. A learning-based node selection
policy to repeatedly pick a node from the queue of the remaining unexplored nodes
mimics a simple oracle that knows the optimal solution in advance and only expands
nodes that contain the optimal solution. This learning-based selection method obtains
better solutions with a smaller gap, using less time demonstrated on multiple datasets
compared to SCIP. However, the author leaves the seek of certified optimality as the
future work. In addition, this work is problem dependent, which requires the test data
to have the same type of training data. Yilmaz and Smith [76] used a similar method
in [75] to select the direct children at non-leaf nodes.

Hottung et al. [77] proposed a new method that integrates deep neural networks
(DNNs) into a heuristic tree search to choose the next branch, namely the deep learning
heuristic tree search (DLTS). DLTS is capable of achieving better performancewithout
problem-specific knowledge. The problem-specific information is almost exclusively
provided as input to the DNN that is trained offline via supervised learning on given
(near-) optimal solutions. It is shown in [77] that DLTS can find solutions with smaller
gaps to optimality on real-world-sized instances compared to the state-of-the-art meta-
heuristics proposed by Karapetyan et al. [78]. In addition, it does not require extra
training data. However, as a coin has two sides, the system performance relies on the
quality of the provided solutions. In addition, the policy is not adjusted in terms of the
runtime and solution quality. The comparison between the above papers is shown in
Table 4.
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A relatively large amount of literature focuses on embedding learning methods into
primal heuristics, including but not limited to [56, 79–85]. Khalil et al. [79] introduced
binary classification to predict the success of a primal heuristic at a given node. It is
the first systematic attempt to optimize the use of heuristics in tree searching. This
work boosts the performance of SCIP, even on instances for which experts already
fine-tune the solver. However, the learning rules can be refined, taking into account the
running time left to the solver. Hendel [80] formulated a multi-armed bandit approach
to learn to switch nine primal heuristic strategies online. Hottung and Tierney [81],
Addanki et al. [82] and Song et al. [83] adopted learning methods to improve the
neighborhood search to improve the primal performance. The learning methods were
adopted to either select the next modified variables or choose new values to a subset
of variables that have been selected already. However, those methods require at least
a feasible point as input. Xavier et al. [84] proposed three different learning models to
extract information from previously solved instances, which can help to improve the
computational performance of the MILP solvers when dealing with similar instances.
The first model was designed to predict the relaxation and omitted constraints. The
second model was proposed to construct a good warm start point using k-nearest
neighbors. The third model develops an ML model for finding constraints to restrict
the solution without affecting the optimal solution set. These three models boost the
speed to find a solution with optimality guarantees. The main limitation of this work
is that a large number of solved instances must be available. In addition, it requires
that the problem to be solved in future is sufficiently similar to the past sample. Unlike
the above learning primal heuristic works [79–84], Ding et al. [85] and Nair et al.
[56] removed the similarity requirement and built a tripartite graph representation
to extract the relation between variables, constraints, and objective function without
human interaction. Nair et al. [56] proposed a generative modeling problem to model
predicting variable assignments problem, which enables learning from all existing
feasible assignments and generates partial assignments at test time in a principled
way. However, this training method requires GPU. Figure 9demonstrates the main
contributions of the above literature.

Fig. 9 Main studies on learning-based primal heuristics and their main contributions
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4.3 Learn to Prune

When using the B&B algorithm to solve large-scale systems, the number of non-
pruning nodes by traditional pruningmethods is still quitemassive. As a result, it either
requires a large computational cost to solve the problem, or a possible good solution
cannot be obtained within the time limit. Therefore, the question arises of whether
we could use some learning methods to effectively prune a large set of unexplored
nodes as early as possible and achieve a solution with a guarantee of the optimality
gap. There are mainly three ways to accelerate the pruning policy by learning. One is
learning whether to discard or expand the selected node given the current progress of
the solver once the popped node is not fathomed, such as [75]. The second is using
learning methods to achieve better bounds to accelerate the pruning process, such as
[77]. The last one is trimming the neural network by cutting off redundant connections
between weights or neurons of adjacent layers and attaching fine-tuning subsequently
to the pruned model for improving the performance, such as Han et al. [86]. Note
that the third method is not a particular method for the B&B algorithm since it can
be applied to simplify the problem model if it implements the neural network. In this
survey, wewill addmore references related to the first twoways as follows.We call the
first method learning-based node pruning and the second one learning-based bounds.

4.3.1 Learning-Based Node Pruning

Nowadays, learning methods are adopted to prune the non-optimal nodes to accel-
erate the B&B algorithm. He et al. [75] treated the node pruning policy as a binary
classifier that predicts an action in {prune, expand}. The classifier takes a feature-
vector description of the current state and attempts to predict the current action to
mimic the expert action, which prunes a node when it does not belong to the optimal
branch. Thus, it obtains a smaller gap solution using less time than SCIP. However,
when the network scale is large, the computational complexity of [75] is still high
since the state space is quite ample. Shen et al. [87] contributed to improving the
computational efficiency over [75] by exploiting the structure of the B&B algorithm
and problem data. The authors also proposed self-learning, a kind of transfer learning
method without labeling, to cope with the task mismatch problem by only adding a
small set of additional unlabeled training samples. As a result, this method requires
few training samples and shows effectiveness on acceleration compared to the algo-
rithm in [75]. Unfortunately, the above two methods are not required to learn to prune
the fathomed nodes. To cope with this difficulty, Lee et al. [88] proposed to keep
the traditional prune policy and introduce an auxiliary learning-based prune policy to
reinforce the prune task. Different from only keeping the top solution and pruning the
other non-optimal nodes in the above literature, Yilmaz and Smith [76] kept the best
k solutions. Five MIP datasets were included to demonstrate that this policy obtains
solutions more quickly than the methods precedent in the literature. In addition, with
the same time limitation requirement, this algorithm can achieve a better optimality
gap.
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4.3.2 Learning-Based Bounds

Since the MILP is hard to solve, relaxed convex subproblems are solved as the
lower bounds. More nodes can be pruned if the lower bound can be determined much
closer to the original subproblem. Hottung et al. [77] used a DNN to heuristically
determine the lower bounds. The authors then proposed three pruning functions to
determine whether to prune certain branches or nodes based on the output. On the
other hand, if the upper bound is loose, which is often much higher than the actual
objective, then few branches of the search tree can be pruned. In the traditional B&B
algorithm, one usually updates the upper bound along with diving the tree. However,
if a tighter upper bound can be obtained faster, more subproblems can be pruned. The
primal heuristics [56, 79–85] which aim to find a possible solution as fast as possible
give a possible solution with a high-quality upper bound; thus, they will also have a
significant improvement to accelerate the pruning speed. Some special learning-based
upper bounds are derived for some particular MILP problems, such as decision trees
[89] by Again et al. and informative path planning [90] by Binney and Sukhatme.

4.4 Learn to Cut

Existing literature on cutting-plane methods is mainly divided into two categories:
cut generation and cut selection. Cut generation aims to generate valid linear inequal-
ities to further tighten the LP relaxations. Nonetheless, adding all the generated cuts
to the LP relaxation brings a huge computational burden. To improve the computation
efficiency, cut selection emerges to select the valuable generated cuts. Therefore, the
cut selection problem is of significance for the overall performance and thus becomes
themain focus of recentworks. Traditional theoretical analyses limit the understanding
of cutting-plane selections, and they have so far failed to help in practical cutting-plane
selection [91] directly. Applying learning to cut selection has the potential to improve
the solution to MILPs and offer help in understanding and tackling related issues.

4.4.1 Score-Based Cut Selection

To reduce the total running time, Huang et al. [92] proposed a new metric, named
Problem Solvability Improvement, to measure the quality of the selected cut subset.
Since obtaining the problem solvability is infeasible in practice, this metric was sub-
stituted with the reduction ratio of solution time of selecting a cut subset. A score
function that measures this quality was learned as a rank formulation which labels
the top-ranked cuts as positive and the remaining cuts as negative because the main
goal is to differentiate good cuts from poor cuts, rather than to rank all candidate cuts.
Different from Khalil et al. [51], labels for individual cuts are more complicated to
obtain than branching. Therefore, multiple instance learning (MIL) was capitalized
on to tackle this issue. Instead of requiring instances to be labeled individually, in
Babenko [93], MIL receives a set of labeled bags, each including several instances.
In the binary classification, a bag would be labeled negative when all instances are
negative, and positive otherwise. This technique fits the scenario of cut selection since
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the label assignment is determined by more than one instance, and the effect of an
individual cut is very imperceptible for large-scale problems. Experimental results
demonstrate the power of this ranking-based cut selection policy in terms of the qual-
ity, generalization ability, and performance on large-scale real-world tasks, and this
work is the first one that applies the learning-based cut selection strategy to large-scale
MILPs with more than 107 variables and constraints. Moreover, for real-world pro-
duction planning problems, this method improves the efficiency of Huawei’s industrial
MILP solver and solves problems without loss of accuracy, speeding up the ratio of
14.98% and 12.42% in the offline and online settings, respectively.

Balcan et al. [94] provided the first provable guarantees for sample complexity
of learning parameterized cut selection policies, and they showed that this analysis
can be generalized to variable and node selection. Based on the sample complexity
of learning cutting planes, the branch-and-cut (B&C) algorithm can adaptively apply
cuts as it builds the search tree.

Inspired by the widely used imitation learning on the SB expert for learning to
branch, Paulus et al. [95] proposed a powerful expert, called Lookahead rule, and
utilized imitation learning to learn the cutting-plane selection policy. In the spirit of the
SB, the Lookahead cut selector performs a Lookahead step to measure the variation of
the LP bound of each available cut and then select the optimal cut greedily. Therefore,
similar to the SB heuristic, the Lookahead expert is a strong rule for selecting cuts,
which outperforms common heuristics in terms of the integrality gap and the number
of cuts. However, it suffers from a high computational burden, since it needs to solve
all LPs of all cut candidates. Therefore, the authors learn a cut selection policy that
imitates the Lookahead expert. Specifically, the LP relaxation and cut candidates are
formulated as a tripartite graph similar to [54], and the features are extended tofit the cut
selection setup. Then a new neural architecture, NeuralCut, is developed by combining
the graph convolutions and attention. Experimental results illustrate that NeuralCut
outperforms manual heuristics and a competing RL approach in Tang et al. [96] with
a higher average bound fulfillment and a smaller average reversed integrality gap.

The comparison between the mentioned methods is shown in Table 5.

4.4.2 Reinforcement Learning in Cut Selection

Tang et al. [96] first used reinforcement learning to enhance the performance of
heuristics. It formulated the process of sequentially selecting cutting planes as anMDP.
At iteration t , the numerical representation of the state is st = {C(t), c, x∗

LP(t),D(t)},
where C(t) = {aTi � bi }Nt

i=1 is the feasible region with Nt constraints of the current
LP, c is the parameter of the objective function. Solving this new LP yields an optimal
solution x∗

LP(t) and the set of candidate Gomory’s cuts D(t). Thus, the action space at
iteration t isD(t). After taking an action, which is adding one inequality eTi x � di from
D(t), the new feasible region becomes C(t) = C(t) ∪ {eTi x � di }. Then x∗

LP(t + 1) and
D(t+1) can be computed, and the new state st+1 = {C(t+1), c, x∗

LP(t + 1),D(t+1)}
is determined. The gap between the objective values of these LP solutions rt =
cTx∗

LP(t + 1) − cTx∗
LP(t) is the reward for the RL agent at iteration t , encouraging the

agent to approach the optimal integer solution as fast as possible. The trained policy
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specifies a distribution over the action spaceD(t+1) at a given state st . An attention net-
work was adopted to make the policy agnostic to the ordering among the constraints.
Besides, to enable the network to handle IP instances with various sizes, LSTM with
hidden states was utilized, which encoded all information in the original inequalities.
Experiment results illustrate the performance of the RL agent from five perspectives:
efficiency of cuts, integrality gap closed, generalization properties, impact on the effi-
ciency of branch-and-cut, and interpretability of cuts. Compared to some commonly
used human-designed heuristics, the RL agent needs the least number of cuts. For
some larger-scale instances with sizes close to 5000, the agent can close the highest
fraction of integrality. Although trained on smaller instances, the RL agent can still
have extremely competitive performance on 10 times larger test problems. Moreover,
even if the agent is trained on small packing problems, it can be applied to 10 times
larger graph-based maximum-cut problems, indicating its great generation properties.
Compared to the pure B&B method, this learning-based cutting-plane selection sig-
nificantly reduces the number of expanded nodes. However, the running time of the
RL policy is not improved substantially compared with other methods since running
the policy is somehow costly.

Based on the observation that for a specific cut selection method, any finite grid
search will miss all parameters values, and consequently select integer optimal induc-
ing cuts in an infinite family of MILP instances, Turner [97] utilized RL to learn
the parameters of a cut selection scoring rule and make it adaptive with the input
instance. The official SCIP cut scoring rule is a convex combination of four heuristic
measures. Therefore, the action in the MDP formulation corresponds to the choice of
four parameters, and the state is the MILP instance represented by a bipartite graph.
The policy network is parameterized as a GCNN following [54], and the parameter-
ized is represented the weights and biases in the GCNN. Experimental results show
that the learned policy outperforms the random initialized cut scoring rule. However,
the learned scoring parameters are instance dependent, and consequently, the learned
policy suffers some generalization loss when extended to MIPLIB 2017 as a whole.

Recently, [98] found that the order of selected cuts significantly affects the effi-
ciency of solving MILPs from extensive empirical results. Therefore, they proposed
a hierarchical sequence model (HEM) to consider the preferred cuts, the number of
selected cuts, and the order of the selected cuts simultaneously from a data-driven
perspective. The considered MILP solver is regarded as the environment, and the pro-
posed HEM for policy is formulated as the agent. The MDP formulation is similar
to [96]. Specifically, the high-level policy learns how many cuts should be selected by
predicting an appropriate ratio, and the lower-level policy learns what order of selected
cuts should be preferred. The authors’ model is a tanh-Gaussian distribution for the
higher-level policy, whose mean and variance are given by a multi-layer perceptron
(MLP). To embed the sequence of candidate cuts, the LSTM is used. As for the lower-
level policy, it is formulated as a sequence model so that it can capture the interaction
among cuts. A pointer network with attention is used to generalize across different
instances. In a word, the designed NN structure in the HEMmodel captures the under-
lying order information together with the interaction among cuts, which brings new
insights into learning to cut. Experimental results show that the HEM improves the
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efficiency of the MILP solving process compared with human-designed heuristic and
learning-based baselines.

The detailed comparison among the mentioned methods is shown in Table 6.
In addition, several works have applied learning to cut generation in nonlinear

programming, such as Dey et al. [99] and Baltean-Lugojan et al. [100]. This topic is
beyond our scope, and here we do not investigate the related works in detail.

5 FutureWork

5.1 Learning-Based Initial Basis Construction

In Sect. 3, we discuss many approaches to construct the initial basis from different
perspectives. Choosing the appropriate initialization methods for each LP based on its
features is one of the possible ways to improve the overall efficiency. With advanced
ML technologies, we can design a classifier to automatically select the appropriate
simplex initialization method. In addition, we can design a classifier to determine
whether a variable should be included in the basis directly.

For different LPs, we first need to design some features to distinguish them. There
are two types of features, namely self-designed features and graph embedding features.
Self-Designed Features: Considering the LP standard form given in (Standard),
the self-designed features can be further divided into the problem-dependent and
the problem-independent features. The dimension of the problem-dependent features
changes when given different LPs, while the dimension of the problem-independent
features does not change. The details of the features can be designed as follows:

(1) Problem-dependent features: the matrix A, the vectors c, b, the dimensions m, n.
(2) Problem-independent features: the sparsity of the matrix A, which is quantified by

the percentage of zeros in A; the sparsity of the vector b, which is defined by the
percentage of zeros in b; the triangularity of the matrix A, which is designed as:

| zU − zL |
max(zU , zL)

, (41)

where zU and zL are the percentages of nonzero elements in the upper part and
the lower part of the matrix A, respectively.

Graph Embedding Features: Motivated by [54, 85, 104], and [56], we can also
represent an LP as a bipartite graph (see Fig. 6). The bipartite graph representation of
LP enables feature extraction through graph embedding.

5.1.1 Initial Basis Construction with Deep Learning-Based Classification

The first possible future work is to design a deep learning-based classifier that can
divide variables into basic variables and non-basic variables. The input of the classifier
is the feature of each variable node. The output is the probability that the corresponding
variable should be selected as a basic variable. The architecture is given in Fig. 10.
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To train such a neural network, enough training data pairs are required. Each training
data pair consists of the feature of a variable node and the label indicating whether its
corresponding variable is a basic variable, i.e., the label is “1” if it is a basic variable,
otherwise “0.” However, how to obtain the labels of variable nodes can be a tricky
problem. One approach to obtain the labels is to exactly solve the LP problem, then
the type (basic/non-basic) of the variable when reaching the optimality can serve as
its label. Obviously, this approach is very costly. Another approach is to obtain the
label by the initialization methods introduced before, but the obtained label can be
inappropriate since some of these methods cannot guarantee the feasibility or the
nonsingularity of the derived basis. If enough training data have been obtained, the
feature and the label can serve as the input and the output of the deep neural network,
respectively. The architecture of the deep neural network, including the number of
layers, the activation function, the loss function, etc., should be further designed.

The trained neural network can be used to select basic variables for LPs. The main
steps are as follows: first, construct the graph representation for the LP to be solved;
second, learn the low-dimensional features of the variable nodes via graph embedding;
third, input the derived features into the neural network to obtain probability outputs,
then sort all variables in descending order of their corresponding outputs and select
the first m variables as basic variables.

5.1.2 Initialization Method Selection with Deep Learning-Based Classification

Another possible future work is to design a classifier for the initialization method
selection, which is illustrated in Fig. 11.

Fig. 10 Classification of initial basic variable selection

T

Fig. 11 Classification of initialization method selection
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The input of the classifier is the designed features of different LPs. These features
can be the self-designed features, the graph embedding features, or a combination
of different features, depending on the classification performance. The output of the
classifier is a probabilistic distribution of choosing different simplex initialization
methods to construct the initial basis. Given an LP problem, the method with the
highest probability will be selected as the optimal initialization method.

To train the classifier, we first collect the total computation time with different
candidate methods and label the method with the shortest time as “1”. The others can
be labeled as “0”. Then, these labels are regarded as the training dataset to train the
classifier.

5.2 Learning-Based Starting Point Construction

In Sect. 3, we also cover somemethods for finding an improved starting point for the
simplex method. These methods design different interior directions to do the iteration
and obtain the improved point. However, the tradeoff between the iteration steps and
the total computation time has not been well studied. In future work, we can propose
a RL-based method for investigating the tradeoff between the iteration steps and the
total computation time in methods for finding the improved starting point.

In the RL, an action is selected based on the current state. After the action selection,
a reward and the next state will be returned. This process is then repeated in the
following steps. In our problem, the action selection is equivalent to designingwhether
the iteration will continue or stop. The state includes two parts. One is the feature of
the given LP. The feature can be the self-designed one or the graph embedding one.
The other part is the state related to the current improved point. For example, in the
ε-optimality search direction method, the iteration direction is designed based on the
active constraint of the current improved point. Therefore, the active constraint can be
included in the state. The search direction can also be considered as part of the state.
Based on the designed state, the action selection is learned by RL algorithms.

The general process of the RL-based starting point construction is given in Fig.12.
The reward can be designed based on the computation time of each iteration.

According to the dimensionality of the designed state, different RL methods can
be chosen. When the state dimension is small, we can choose a basic learning-based
method such as the Q-learning algorithm. When the state space is large or continuous,
we can choose some advanced algorithms like the deep Q-network algorithm or the
double deep Q-network algorithm, etc.

T

Fig. 12 Learning-based starting point construction
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5.3 Enhanced Learning-Based B&B

As reviewed in Sect. 4, to speed up the solving time of B&B, some learningmethods
are used to obtain a suitable tuning parameter that balances the best-first and depth-
first in the B&B runs or to develop a binary classification of whether primal heuristics
will succeed at a given node. However, most of the literature in this part does not
consider the uniqueness of each node during the B&B run and the time limitation
for implementation. To cope with these problems, two possible enhanced ideas are
proposed as follows.

1. Online Tuning in the B&B
To take into account the uniqueness of each node during the B&B run, we will
adopt an online tuning parameter that balances the best-first and depth-first in the
B&B run taking into account the nodes’ features. For example, it should count
more on the quality of the achieved solution for the root node, since achieving
a solution with high quality would significantly reduce the search space. Other-
wise, it shouldmake a redundant effort to solve non-optimal nodes, as illustrated in
Fig. 13. Therefore, it would be preferable for the root node to assignmoreweight to
the best-first policy. On the other hand, satisfying the feasibility constraints would
be more critical for the near-leaf nodes, since the quality can be adjusted with just
a few backward exploitations. From the above analysis, it would be interesting to
consider the nodes’ features (such as depth) and propose an online tuning learning
method to balance the tradeoff between exploration and evaluation along with the
implementation of the B&B algorithm.
Moreover, we can improve the estimate in [68] using the evaluation criteria. Instead
of using the normalized relaxed LP objective value as the estimate of this node in
[68], we can take into account the feasibility quality alongwith the optimality qual-
ity. We can further introduce a parameter to tune the importance of the feasibility
quality versus optimality quality, and we can learn this parameter online.

2. Extension to Nonbinary Classifications and Adapt Learning Strategies at a Given
Time
To adapt the learning strategies given quality constraints and time limitations, we
could expand the binary classification to a probability of whether to conduct a
primal heuristic [79] (or other problems that have binary classes) with problem
features (A, b, c) or the feature extracted by GCNN [54–56, 85] as shown in

Fig. 13 Illustration that
depth-first would cost redundant
effort to solve non-optimal nodes
(if the optimal node belongs to
the right side tree, it would cost a
lot of effort but is meaningless to
search the whole left side tree)
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Figs. 6 and 8. The learning task is to approximate the probability distribution. We
employ an L-layer multi-layer perceptron, a type of neural network, to learn the
mapping from the input feature vector to the output indicating the probability of
each class. We then adopt the supervised learning, or Data Aggregation [105] to
learn the model parameters by minimizing the weighted loss function. The time
limitation could be considered to tune the threshold. For example, in the standard
classification, if the probability is larger than 0.5 of belonging to the first class, we
cluster this input to the first class; otherwise, it belongs to the second class. Suppose
the first class means conducting primal heuristics, decreasing the threshold leads
to a larger exploration space and obtains a feasible solution with higher quality.
We could iteratively decrease the threshold to satisfy the quality constraints and
time limitations and obtain the learned parameter adaptively.

5.4 Reduce Training Samples

A common limitation of learning-based algorithms in this survey is that in order to
have good predictors, a large number of solved instances must be available, and the
solved instances in most literature must be of the same type as the problem we expect
to solve in future. However, when the problem scale becomes quite large, generating
the training data is costly, let alone training the network by the data.

In order to address this limitation, there are two possible directions. One is gener-
ating the training data along with the problem-solving progress. Dataset Aggregation
(DAGGER), which was proposed by Ross et al. [105], is an iterative algorithm that
trains a deterministic policy that achieves good performance guarantees under its
induced distribution of states. The pseudocode for DAGGER is shown in Algorithm 3,
where π∗ is the presence of the expert in DAGGER and βi ∈ [0, 1] represents the trust
of the expert decisions. The other direction is using transfer learning to exploit the
pre-trained neural network and train a new model with only a few additional samples.
Figure 14 demonstrates the transfer learning method. The essential advantage is that
with transfer learning, the new task can be trained with fewer additional training sam-
ples than the traditional one, since some information can be achieved by transferring
the knowledge from the old task into the new task.

Algorithm 3 DAGGER Algorithm

1 Initialization: D ← ∅, and pruning policy π̂ (0).
2 for i = 0 : N do
3 Let π(i) ← βiπ

∗ + (1 − βi )π̂
(i)

4 Sample T−step trajectories using π(i).
5 Collect dataset Di = {(s, π∗(s))} of visited states by π(i).
6 Aggregate datasets D ← D ∪ Di .
7 Train the policy π(i+1) based on D.
8 end for
9 return best π̂ (i) on validation.
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Fig. 14 Demonstration of the difference between transfer learning and traditional ML

6 Conclusion

In this survey, we summarize the methods to accelerate the MILP solution process
from two aspects. The first is to utilize appropriate simplex initialization approaches
to speed up the solution of LPs. The second way is to improve the B&B algorithms
with machine learning technologies. We also propose several possible future works
that can further improve the efficiency.
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