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Abstract
In this paper, we address the k-Chinese postman problem under interdiction bud-
get constraints (the k-CPIBC problem, for short), which is a further generalization
of the k-Chinese postman problem and has many practical applications in real life.
Specifically, given a weighted graph G = (V , E;w, c; v1) equipped with a weight
function w : E → R

+ that satisfies the triangle inequality, an interdiction cost
function c : E → Z

+, a fixed depot v1 ∈ V , an integer k ∈ Z
+ and a budget

B ∈ N, we are asked to find a subset Sk ⊆ E such that c(Sk) = ∑
e∈Sk c(e) � B

and that the subgraph G\Sk is connected, the objective is to minimize the value
minCE\Sk max{w(Ci ) |Ci ∈ CE\Sk } among such all aforementioned subsets Sk , where
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CE\Sk is a set of k-tours (ofG\Sk) starting and ending at the depot v1, jointly traversing
each edge in G\Sk at least once, and w(Ci ) = ∑

e∈Ci
w(e) for each tour Ci ∈ CE\Sk .

We obtain the followingmain results: (1) Given anα-approximation algorithm to solve
theminimization knapsack problem, we design an (α+β)-approximation algorithm to
solve the k-CPIBC problem, where β = 7

2 − 1
k −� 1

k �. (2)We present a β-approximation
algorithm to solve the special version of the k-CPIBC problem, where c(e) ≡ 1 for
each edge e in G and β is defined in (1).

Keywords Combinatorial optimization · Arc routing · k-Chinese postman problem ·
Interdiction · Approximation algorithms

Mathematics Subject Classification 90C27 · 68W25

1 Introduction

The problems to be discussed in this paper are all defined on undirected graphs. Arc
routing problems are very active and interesting topics in operations research fields,
due to their many applications in our reality, such as routings of street sweepers, mail
delivery, snow plows and the inspection of electric power lines. In most arc routing
problems, the objective is to determine a least-weight traversal of a set of specified
edges in a graph. Guan [1] in 1960 considered the Chinese postman problem (the CP
problem, for short), which is one of the arc routing problems specialized to weighted
graphs, and it is defined as follows. Given a weighted graph G = (V , E;w) with a
weight function w : E → R

+, it is asked to find a tour C traversing each edge e ∈ E
at least once, the objective is to minimize the total weight w(C) = ∑

e∈E t(e)w(e)
among all possible tours mentioned above, where t(e) denotes the number of times
that the edge e in G is traversed by the tour C . For the CP problem, using an algorithm
to solve the maximum weighted matching problem [2], Edmonds and Johnson [3]
designed an exact polynomial-time algorithm.

Frederickson et al. [4] in 1978 introduced the k-Chinese postman problem (the
k-CP problem, for short), which is a generalization of the CP problem, and it is
defined as follows. Given a weighted graphG = (V , E;w; v1)with a weight function
w : E → R

+, a fixed depot v1 ∈ V and an integer k ∈ Z
+, it is asked to find a set

Ck = {C1,C2, · · · ,Ck} of k tours starting and ending at the same depot v1, jointly
traversing each edge in G at least once. The objective is to minimize the weight
wmax(Ck) = max{w(Ci ) |Ci ∈ Ck} among all k tours, wherew(Ci ) = ∑

e∈Ci
c(e) for

each i = 1, 2, · · · , k. Although the CP problem is solvable by the exact algorithm due
to Edmonds and Johnson [3], Frederickson et al. [4] showed that the k-CP problem
is NP-complete for the case k � 2, and using a splitting technique, they designed a
(2 − 1

k )-approximation algorithm to solve the k-CP problem. For other different arc
routings and related problems, we can find considerable number of approximation
algorithms in these references [5–11].

In network design, it is often of interest to know how sensitive a particular property
of a network is with respect to changes in the graph structure, like the removal or
failure of edges or vertices. One natural measure of sensitivity is to compute the
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maximum change of the property when some limited set of edges or vertices is being
removed, which leads to a class of problems referred to as the interdiction problems.
The interdiction problems have been employed in a wide variety of settings, these
problems involve many practical applications in real life, such as military planning
[12], hospital infection control [13], drug interdiction [14], infrastructure protection
[15] and electric power grids protection [16].

Many edge interdiction problems may be formulated as follows. Given a weighted
graph G = (V , E;w, c) with a weight function w : E → R

+, an interdiction cost
function c : E → Z

+, and a budget B ∈ N, it is asked to determine a subset E ′ ⊆ E
satisfying c(E ′) = ∑

e∈E ′ c(e) � B. The objective is to maximize the change of some
existing property (i.e., the optimal value of some optimization problem) between the
original graph G and the residual subgraph G\E ′, where G\E ′ is the subgraph of G
only by deleting the edges in E ′ fromG. Similarly, the interdiction problems of vertices
in undirected graphs may be formulated in the view to use a certain set of vertices
to substitute for a subset of edges in the edge interdiction problems. Given many
different existing properties, these interdiction problemshave been studied extensively,
including the minimum spanning tree interdiction problem [17–21], the maximum
matching interdiction problem [22–24], the shortest path interdiction problem [25–
27], the maximum s-t flow interdiction problem [14, 28, 29] and the connectivity
interdiction (minimum cut interdiction) problem [30]. It is well known that most of
these problems are NP-complete [18, 22, 26, 29, 30], even in some special versions.

In recent years, many approximation algorithms have been designed to solve some
aforementioned interdiction problems. Using linear programming and rounding tech-
niques, Dinitz and Gupta [23] in 2013 presented an O(1)-approximation algorithm
to solve the maximum matching interdiction problem. Employing an algorithm for
solving the budgeted minimum cut problem [31], Zenklusen [30] in 2014 gave a
polynomial-time approximation scheme (PTAS) to solve the connectivity interdiction
problem. Using a greedy algorithm for extracting a good interdiction set from one that
exceeds the interdiction budget, Zenklusen [20] in 2015 designed a 14-approximation
algorithm to solve the minimum spanning tree interdiction problem. Considering the
tree knapsack problem [32] to extract a good interdiction set, Linhares and Swamy [21]
in 2017 designed a 4-approximation algorithm to resolve the minimum spanning tree
interdiction problem. In particular, Smith and Song [33] in 2020 presented a survey of
network interdiction models and algorithms. However, as far as we know, there are no
approximation algorithms with constant performance ratios to solve the interdiction
versions of the arc routing problems.

In real life, it is necessary to rescue persons on some roads of a network who are
about to suffer from natural disasters. Now, we may consider the question as follows.
Given k vehicles that are used to rescue persons on some roads of a network, it is
necessary to arrange these k vehicles starting and ending at the same depot such that
they jointly traverse each road of this network at least once. In order to minimize
the rescuing-time span as short as possible, we would choose a limited set of roads
from this network, whose removal causes to decrease maximum of rescuing-time
span, equivalently, these k vehicles do not need to jointly traverse these limited roads
removed. And then, we determine k routings of these k vehicles to jointly traverse
each road in this residual network, transfer persons in need to the fixed depot, avoid
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traversing these limited roads removed. The question must be raised in the following
way: which limited roads of this network are chosen for removal?

Motivated by this interesting question, the aforementioned interdiction problems
and the k-CP problem, we want to find a limited set of edges for removal so that the
optimal value of the k-CP problem on the remaining graph is as small as possible,
then we address the k-Chinese postman problem under interdiction budget constraints
(the k-CPIBC problem, for short). Specifically, given a weighted connected graph
G = (V , E;w, c; v1) equipped with a weight function w : E → R

+ that satisfies the
triangle inequality, an interdiction cost function c : E → Z

+, a fixed depot v1 ∈ V ,
an integer k ∈ Z

+ and a budget B ∈ N, we are asked to find a subset Sk ⊆ E such that
c(Sk) = ∑

e∈Sk c(e) � B and that the subgraphG\Sk is connected, whereG\Sk is the
subgraph of G only by deleting all edges in Sk from G. The objective is to minimize
the value minCE\Sk max{w(Ci ) |Ci ∈ CE\Sk } among all aforementioned subsets Sk ,
i.e., minSk minCE\Sk max{w(Ci ) |Ci ∈ CE\Sk }, where CE\Sk is a set of k-tours starting
and ending at the same depot v1, jointly traversing each edge in G\Sk at least once,
and w(Ci ) = ∑

e∈Ci
c(e) for each tour Ci ∈ CE\Sk . For convenience, such a set of

these k-tours, denoted by CE\Sk , is called as a k-tours covering of the subgraph G\Sk .
Now, there are three comments to be presented: (1) Whenever the budget B is less

than the value min{c(e) | e ∈ E}, the k-CPIBC problem reduces to the k-CP problem,
implying that the k-CPIBC problem is NP-complete for the case k � 2. (2) We can
prove that the 1-CPIBC problem is NP-complete (see Theorem 1). (3) Whenever a
cost function c(·) satisfies c(e) ≡ 1 for each edge e in the connected graph G, we
refer to this version of the k-CPIBC problem as the k-Chinese postman problem under
interdiction cardinality constraints (the k-CPICC problem, for short).

As far as we know, the k-CPIBC problem and the related problems have not been
considered in the literature works. We shall design some approximation algorithms
to solve this new problem and its special version in the sequel. We hope that these
problems will have many further practical applications in real life.

The remainder of this paper is organized into the following sections. In Sect. 2,
we present some terminologies and notations to state descriptions of approximation
algorithms and some fundamental lemmas to ensure the correctness of our algorithms.
In Sect. 3, given an α-approximation algorithm to solve the minimization knapsack
problem, we design an (α + β)-approximation algorithm to solve the k-CPIBC prob-
lem, where � 1

k � is the greatest integer less than or equal to 1
k and β = 7

2 − 1
k − � 1

k �.
In Sect. 4, we present a β-approximation algorithm to solve the k-CPICC problem,
where β is defined as mentioned above. In Sect. 5, we provide our conclusion and
further research.

2 Preliminaries

In order to clearly present our approximation algorithms to solve the k-CPIBC
problem, we provide some terminologies, notations and fundamental lemmas in the
sequel, most of which are standard.
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If no confusion, given a graph G = (V , E), we may denote n = |V | and m = |E |
to be the numbers of vertices and edges in G, respectively. For a real number r , denote
�r� to be the greatest integer less than or equal to r .

Given a graph G = (V , E), a graph G ′ = (V ′, E ′) is called as a subgraph of G if
V ′ ⊆ V and E ′ ⊆ E . In addition, if V ′ = V , then G ′ = (V ′, E ′) is called a spanning
subgraph of G. If E ′ = {uv ∈ E | u, v ∈ V ′}, the subgraph G[V ′] = (V ′, E ′) is
called as the subgraph induced by V ′. Similarly, if V ′ = {u, v ∈ V | uv ∈ E ′}, we call
G[E ′] = (V ′, E ′) as the subgraph induced by E ′. For a subset E ′ ⊆ E in G, denote
G\E ′ = (V , E \ E ′).

Given two vertices vi1 , vik+1 in the graph G = (V , E), a walk P connecting vi1 and
vik+1 is an alternating sequence π = vi1ei1vi2ei2vi3 · · · vik eikvik+1 such that, for each
integer 1 � j � k, two end-vertices of edge ei j are vi j and vi j+1 . A walk P is called
as a tour with k edges if vi1 = vik+1 . A walk P is said to be a path if the vertices in P
are all distinct. Similarly, we call a tour C a cycle if the vertices in C are all distinct.
In addition, a Hamiltonian cycle C is a cycle that traverses each vertex v ∈ V exactly
once, and an Euler tour C is a tour that traverses each edge e ∈ E exactly once. We
call a graph G to be an Eulerian graph if G admits an Euler tour.

A graph G = (V , E) is called to be connected if, for each pair of distinct vertices
x, y ∈ V , there exists a path Pxy connecting x and y. For a vertex v ∈ V , the degree
dG(v) of vertex v is the number of edges which are incident to v. We call v an even-
degree vertex if dG(v) is even, otherwise v is said to be an odd-degree vertex. In
addition, a matching M is a set of vertex-disjoint edges, and M is called a perfect
matching if the vertices in V are all covered by M . Moreover, for a weighted graph
G = (V , E;w), M is called a minimum-weight perfect matching if M is a perfect
matching and w(M) = ∑

e∈M w(e) is minimized among all perfect matchings in G.
Given a weighted graph G = (V , E;w; v1) with a fixed depot v1 ∈ V and an

integer k ∈ Z
+, a k-tours covering in G is a set of k tours starting and ending at the

same depot v1, jointly traversing each edge in G at least once. An optimal k-tours
covering in G is a k-tours covering such that the maximum value of the weights of
such k tours is minimized among all k-tours coverings in G. Given a set S ⊆ E ,
we then denote CkS as an optimal k-tours covering in the induced subgraph G[S] and
wmax(CkS) = max{w(Ci ) |Ci ∈ CkS} as the weight of such a k-tours covering CkS for
G[S]. In particular, we have w(C1S) = wmax(C1S).

For convenience,wedenote an instance of the k-CPIBCproblemas agivenweighted
graph G = (V , E;w, c; v1) with an integer k ∈ Z

+ and a budget B ∈ N, where
w : E → R

+ is a weight function that satisfies the triangle inequality, c : E → Z
+

is an interdiction cost function and v1 ∈ V is a fixed depot. If there exists a subset
Sk ⊆ E such that c(Sk) � B and that the subgraph G \ Sk is connected, implying
that there exists a k-tours covering in G \ Sk , then we call the subset Sk ⊆ E to be a
feasible solution to the graph G for the k-CPIBC problem.

Whenwe design approximation algorithms to solve the k-CPIBC problem, we shall
use the following lemmas.

Lemma 1 Given a weighted connected graph G = (V , E;w, c; v1) as an instance
of the k-CPIBC problem and the m-CPIBC problem, respectively, if k � m, then the
k-CPIBC problem is equivalent to the m-CPIBC problem, where m = |E |.
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Proof Given an instance G = (V , E;w, c; v1) of the k-CPIBC problem and the m-
CPIBC problem, respectively, we may first prove that S′ is a feasible solution to G
for the k-CPIBC problem with the value wmax(CkE\S′) if and only if S′ is a feasible
solution to G for the m-CPIBC problem with the value wmax(CmE\S′). In fact, if S′ is
a feasible solution to G for the k-CPIBC problem, we have c(S′) � B and that the
subgraph G\S′ is connected, implying that there exists an m-tours covering in G \ S′
by the fact that there is an optimal tour to G \ S′ for the Chinese postman problem
[3], then S′ is a feasible solution to the graph G for the m-CPIBC problem. And vice
versa.

Secondly, we may prove that wmax(CkE\S′) = wmax(CmE\S′). For each integer k′ �
|E \ S′|, since Ck′

E\S′ is an optimal k′-tours covering in the subgraph G \ S′, it is easy to
conclude that wmax(Ck′

E\S′) = max{w(P ′
v1,vi

) + w(viv j ) + w(P ′
v j ,v1

) | viv j ∈ E\S′},
where P ′

x,y is a shortest path from x to y in G \ S′. By the assumption k � m =
|E | � |E\S′|, we obtain wmax(CkE\S′) = wmax(CmE\S′) = max{w(P ′

v1,vi
)+w(viv j )+

w(P ′
v j ,v1

) | viv j ∈ E\S′}. Thus, the k-CPIBC problem is equivalent to the m-CPIBC
problem.

This completes a proof of the lemma.

For convenience, using Lemma 1, we may assume that k � m in each instance of
the k-CPIBC problem.

For a weighted connected graph G = (V , E;w) with two distinct vertices
vi , v j ∈ V , using the Dijkstra algorithm [34] to solve the shortest path problem,
we can construct a shortest vi -v j path in G.

Lemma 2 [34] Given a weighted graph G = (V , E;w) with two vertices vi , v j ∈ V ,
the Dijkstra algorithm can either produce a shortest vi -v j path in G or show no such
a path, and this algorithm runs in time O(n2).

Given aweighted connected graphG = (V , E;w) and a subset F1 ⊆ E , modifying
the MST algorithm in [34, 35] to solve the minimum spanning tree problem, we
can determine a minimum-weight subset F2 ⊆ E such that the induced subgraph
G[F1 ∪ F2] is a connected spanning subgraph of G.

Lemma 3 [34, 35] Given a weighted connected graph G = (V , E;w) and a subset
F1 ⊆ E, the MST algorithm can determine a minimum-weight subset F2 ⊆ E such
that G[F1 ∪ F2] is a connected spanning subgraph of G, and this algorithm runs in
time O(n2).

Given a weighted connected graphG = (V , E;w), we can use the Floyd algorithm
[36] to construct all shortest paths among all vertices in G.

Lemma 4 [36] The Floyd algorithm can produce all shortest paths among all vertices
in G, and this algorithm runs in time O(n3).

Given a weighted connected graph G = (V , E;w), using a simple shrinking tech-
nique, Edmonds [2] in 1965 designed an exact algorithm in time O(n3) to produce a
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minimum-weight perfect matching in G. In addition, using a complicated data struc-
ture for blossom creation, Gabow [37] in 2018 presented an exact algorithm in lower
time O(n(m + n log n)) to determine a minimum-weight perfect matching in G. It is
sufficient for us to use the Edmonds algorithm [2] as a subroutine to solve the k-CPIBC
problem.

Lemma 5 [2] The Edmonds algorithm can produce a minimum-weight perfect match-
ing in G, and this algorithm runs in time O(n3).

Given an Eulerian graph G = (V , E), we can use the Euler algorithm [3] to
determine an Euler tour in G.

Lemma 6 [3] Given an Eulerian graph G = (V , E), the Euler algorithm can produce
an Euler tour in G, and this algorithm runs in time O(m).

We need the definition of K -tree in a connected graph G = (V , E) [38]. For a
nonnegative integer K , a spanning K -tree in G is a connected spanning subgraph
TK = (V , EK ) with |EK | = n + K − 1 edges in G. In fact, one 0-tree is exactly a
spanning tree of G. Given a weighted connected graph G = (V , E;w) with a weight
function w : E → R

+ and an integer B ∈ N, using the Fisher algorithm [38] to
construct a minimum-weight spanning K -tree with K = max{m − B − (n − 1), 0},
we can determine a minimum-weight connected spanning subgraph TK = (V , EK )

with |EK | � m − B.

Lemma 7 [38] Given a weighted connected graph G = (V , E;w) and an integer
B ∈ N, the Fisher algorithm can produce a minimum-weight connected spanning
subgraph TK = (V , EK ) with |EK | � m − B in G, and this algorithm runs in time
O(n2).

3 The k-Chinese Postman ProblemUnder Interdiction Budget
Constraints

In this section, we consider the k-CPIBC problem. By using the definition of the
k-CPIBC problem, whenever the budget B is less than the value min{c(e) | e ∈ E}, the
k-CPIBC problem reduces to the k-CP problem, implying that the k-CPIBC problem
is NP-complete for the case k � 2.

However, unlike the 1-CP problem (i.e., Chinese postman problem), which is solv-
able in polynomial time [3], we have the following result for the 1-CPIBC problem.

Theorem 1 The 1-CPIBC problem remains NP-complete, even if an interdiction cost
function c : E → Z

+ satisfies c(e) ≡ 1 for each edge e in a weighted connected
graph G = (V , E;w, 1; v1), where v1 is a fixed vertex in G.

Proof The reduction is transformed from the Hamiltonian cycle (HC) problem, where
the HC problem is to determine whether a given connected graph G = (V , E) would
contain a cycle traversing each vertex in G exactly once. However, the HC problem
is NP-complete [39].
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Without loss of generality, we may assume thatm � n, otherwise G is a tree by our
assumption, implying thatG is a “NO”-instance. Given an instanceG = (V , E) of the
HC problem, we construct an instance H = (V , E;w, c; v1) of the 1-CPIBC problem
by adding a weight function w : E → {1}, an interdiction cost function c : E → {1}
and a budget B = m − n, where v1 ∈ V is a fixed vertex. It is straightforward to
obtain the fact that G is a “YES”-instance if and only if the optimal value OPT to the
instance H for the 1-CPIBC problem is exactly n, i.e., OPT= n. Thus, the 1-CPIBC
problem is NP-complete.

This completes a proof of the theorem.

In order to efficiently design an approximation algorithm to solve the k-CPIBC
problem, we intend to consider the minimization knapsack problem (theMinKP prob-
lem, for short) [40, 41], which is defined as follows. Given a set X = {x1, x2, · · · , xq}
of q items with a weight function u : X → R

+, a cost function s : X → R
+, and a

constant D, it is asked to find a subset X ′ ⊆ X to have u(X ′) = ∑
x∈X ′ u(x) � D,

the objective is to minimize s(X ′) = ∑
x∈X ′ s(x). For convenience, we always use

I = (X; u, s) to denote an instance of the MinKP problem.
Given a weighted connected graph G = (V , E;w, c) with a weight function w :

E → R
+, an interdiction cost function c : E → Z

+, and an integer B ∈ N, we
construct an instance I = (X; u, s) of the MinKP problem in the following ways.
Denote X = {xe | e ∈ E} and a constant D = c(E)− B. For each item xe ∈ X , denote
u(xe) = c(e) and s(xe) = w(e), respectively. Using an α-approximation algorithm
Aα in [40–43] to solve the MinKP problem, we can determine a subset X ′ ⊆ X with
u(X ′) � c(E) − B and s(X ′) � α · s(X∗), where X∗ is an optimal solution to the
instance I for the MinKP problem.

Given a subset X ′ of the aforementioned instance I = (X; u, s) for the MinKP
problem, we can construct an edge-subset F1 = {e | xe ∈ X ′} of the weighted con-
nected graph G = (V , E;w, c) to have c(F1) � c(E) − B and w(F1) � α · w(F∗

1 ),
where F∗

1 is a minimum-weight edge-subset of G such that c(F∗
1 ) � c(E) − B.

Lemma 8 LetG = (V , E;w, c)bea connectedgraphwith aweight functionw : E →
R

+, a cost function c : E → Z
+ and an integer B ∈ N. Given an α-approximation

algorithm Aα to solve the MinKP problem, we can determine a subset F1 ⊆ E with
c(F1) � c(E) − B and w(F1) � α · w(F∗

1 ), where F∗
1 is a minimum-weight edge-

subset such that c(F∗
1 ) � c(E) − B.

Proof For a weighted graphG = (V , E;w, c), we construct an instance I = (X; u, s)
for theMinKP problem as mentioned above. Suppose that X∗ is an optimal solution to
the instance I for the MinKP problem and that F∗

1 is a minimum-weight edge-subset
of G such that c(F∗

1 ) � c(E)− B. Using the algorithmAα , we can determine a subset
X ′ ⊆ X with u(X ′) � c(E)− B and s(X ′) � α · s(X∗). Denoting F1 = {e | xe ∈ X ′},
we obtain c(F1) = u(X ′) � c(E) − B.

Since F∗
1 is a minimum-weight edge-subset such that c(F∗

1 ) � c(E) − B, we
obtain the fact that X∗

1 = {xe | e ∈ F∗
1 } is an optimal solution to the instance I for the

MinKP problem. Otherwise, we may suppose, to the contrary, that we obtain s(X∗
1) >

s(X∗). Then, there exists an edge-subset F∗ = {e | xe ∈ X∗} to have the properties
c(F∗) = u(X∗) � c(E) − B; however, w(F∗) = s(X∗) < s(X∗

1) = w(F∗
1 ), which
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contradicts that F∗
1 is a minimum-weight edge-subset such that c(F∗

1 ) � c(E) − B.
Indeed, X∗

1 is an optimal solution to the instance I for the MinKP problem, implying
s(X∗

1) = s(X∗).
Since s(X ′) � α · s(X∗) by the algorithm Aα to solve the MinKP problem, we

obtain the following:

w(F1) = s(X ′) � α · s(X∗) = α · s(X∗
1) = α · w(F∗

1 ).

This completes a proof of the lemma.

We now consider the tour augmentation (TA, for short) problem, which is defined as
follows. Given a weighted connected graph G = (V , E;w; v1) with a depot v1 ∈ V ,
a weight function w : E → R

+, an integer k ∈ Z
+ and a tour C = v1vi1vi2 · · · vit v1

that traverses each vertex v in G at least once, it is asked to find a subset F4 ⊆ E such
that the weight of the optimal k-tours covering in the induced subgraph G[E(C)∪ F4]
is minimized, i.e., minF4 wmax(CkE(C)∪F4

).
Using a splitting technique in [4] to solve the k-CP problem,we design an algorithm,

denoted by the TA algorithm, to solve the TA problem, which is described as follows.

Algorithm 1 : TA
Input: A connected graph G = (V , E; w; v1) with a depot v1 ∈ V , a function w : E → R

+, an integer
k ∈ Z

+, and a tour C = v1vi1vi2 · · · vit v1 that traverses each vertex v ∈ V at least once;

Output: A subset F4 ⊆ E such that wmax(CkE(C)∪F4
) is as small as possible.

Begin
Step 1 For each vertex u ∈ V , use the Dijkstra algorithm [34] to find a shortest path Pv1,u connecting v1

and u in G, depending on the function w(·). Denote P = {Pv1,u | u ∈ V }, w0 = max{w(Pv1,u) | u ∈ V }
and F4 = ∅;

Step 2 For j = 1 to k − 1 do:
(2.1) Denote L j = j

k (w(C) − 2w0) + w0;
(2.2) Find the last vertex viq( j) on C such that w

(
C[v1, viq( j) ]

)
� L j ,

where C[v1, viq( j) ] := v1vi1vi2 · · · viq( j) ;

(2.3) Denote R j = L j − w
(
C[v1, viq( j) ]

)
;

(2.4) If R j + w
(
Pviq( j)

,v1

)
� w

(
viq( j) viq( j)+1

) − R j + w
(
Pviq( j)+1

,v1

)
then

denote vi p( j) = viq( j) ;
Else

denote vi p( j) = viq( j)+1 ;
(2.5) Set F4 := F4 ∪ E(Pv1,vi p( j)

);

Step 3 Output “the subset F4.”
End

Executing the TA algorithm, we obtain the following.

Lemma 9 Given an instance of the tour augmentation problem, the TA algorithm
can produce an edge-subset F4 such that there exists a k-tours covering {C j | j =
1, 2, · · · , k} in G[E(C) ∪ F4] satisfying w(C j ) � 1

k · (w(C) − 2w0) + 4w0 for each
integer j ∈ {1, 2, · · · , k}, where w0 is defined at Step 1 in the TA algorithm, and this
algorithm runs in time O(n3).
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Proof When k = 1, using the TA algorithm, we have F4 = ∅ and that C is still a
1-tour covering inG[E(C)∪F4], then we obtainw(C) � w(C)+2w0 = 1

1 ·(w(C)−
2w0) + 4w0.

When k � 2, using the TA algorithm, we construct a k-tours covering {C j | j =
1, 2, · · · , k} in the subgraph G[E(C) ∪ F4] induced by E(C) ∪ F4 as follows.

(1) We construct k walks in the following ways: Q1 = C[v1, vi p(1) ] = v1vi1 · · · vi p(1) ,
Q2 = C[vi p(1) , vi p(2) ]= vi p(1) · · · vi p(2) , · · · ,Qk = C[vi p(k−1) , v1] = vi p(k−1) · · · vit v1;

(2) Denote C1 = Q1 ◦ Pvi p(1) ,v1
, Ck = Pv1,vi p(k−1)

◦ Qk , and for each integer j ∈
{2, · · · , k − 1}, we can augment Q j , adding two shortest paths Pv1,vi p( j−1)

and
Pv1,vi p( j)

from P = {Pv1,u | u ∈ V } to connect v1 to the initial vertex vi p( j−1)

and the terminal vertex vi p( j) of the walk Q j , to become a tour C j , i.e., C j =
Pv1,vi p( j−1)

◦ Q j ◦ Pvi p( j) ,v1
. It is easy to verify that {C j | j = 1, 2, · · · , k} is a

k-tours covering in G[E(C) ∪ F4].
Now, we first consider the tour C j for each integer j ∈ {2, · · · , k − 1}. Since the

weight function w(·) on set of edges in G satisfies the triangle inequality, depending
on the definition of w0, which is maximum weight of paths in P defined at Step 1 of
the TA algorithm, we obtain the following:

w(viq( j)viq( j)+1) � w
(
Pviq( j) ,v1

) + w
(
Pv1,viq( j)+1

)
� 2w0,

implying

w(Pv1,viq( j)
) + w(viq( j)viq( j)+1) + w(Pviq( j)+1 ,v1) � 4w0.

Then, we obtain the following:

min
{
w(Pv1,viq( j)

) + R j , w(viq( j)viq( j)+1) − R j + w(Pviq( j)+1 ,v1)
}

� 2w0.

Similarly, we obtain the following:

min
{
w(Pv1,viq( j−1)

) + R j−1, w(viq( j−1)viq( j−1)+1) − R j−1 + w(Pviq( j−1)+1 ,v1)
}

� 2w0.

Using the TA algorithm, we obtain the worst case where the weight of C j is maxi-
mized only when this tour C j starts at the depot v1, reaching the vertex viq( j−1) along
the shortest path Pv1,viq( j−1)

, going to viq( j)+1 along C , and finally ends at the depot v1
along the shortest path Pviq( j)+1 ,v1 .

In the worst case, it is easy to see that w(Pv1,viq( j−1)
) + R j−1 � 2w0 and

w(viq( j)viq( j)+1) − R j + w(Pviq( j)+1 ,v1) � 2w0, then we obtain the following:

w(C j ) � 2w0 + 1

k
· (w(C) − 2w0) + 2w0

= 1

k
· (w(C) − 2w0) + 4w0.
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Similarly, we consider C j for each j ∈ {1, k}, and we obtain the following:

w(C j ) � w0 + 1

k
· (w(C) − 2w0) + 2w0

� 1

k
· (w(C) − 2w0) + 4w0.

Combining the aforementioned arguments, for each j ∈ {1, 2, · · · , k}, we obtain
the following:

w(C j ) � 1

k
· (w(C) − 2w0) + 4w0.

The running time of the TA algorithm can be determined as follows. (1) By
Lemma 2, since it needs time O(n2) to execute the Dijkstra algorithm [34] per circu-
lation, Step 1 constructs the set P and the maximum weight w0 in time O(n3). (2)
Since k � m by Lemma 1, Steps 2–3 execute in time O(mn). Hence, the TA algorithm
needs whole time O(n3).

This establishes the lemma.

Using the TA algorithm, we design an approximation algorithm to solve the k-
CPIBC problem using the following strategies:

(1) Find a subset F1 ⊆ E , having c(F1) � c(E) − B, such that w(F1) is minimized;
(2) Find aminimum-weight subset F2 ⊆ E , such that the induced subgraphG[F1∪F2]

is a connected spanning subgraph in G;
(3) Determine a minimum-weight subset F3 ⊆ E such that the induced subgraph

G[F1 ∪ F2 ∪ F3] is an Eulerian graph;
(4) Find a subset F4 ⊆ E such that the weight of the optimal k-tours covering in the

induced subgraph G[F1 ∪ F2 ∪ F3 ∪ F4] is minimized;
(5) Output the subset Sk = E\(F1 ∪ F2 ∪ F3 ∪ F4).

Our approximation algorithm, denoted by the k-CPIBC algorithm, to solve the
k-CPIBC problem is described as follows.
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Algorithm 2 : k-CPIBC
Input: A connected graph G = (V , E;w, c; v1) with a depot v1 ∈ V , a function w : E → R

+, an integer
k ∈ Z

+ and a budget B ∈ N;
Output: A subset Sk ⊂ E such that minCE\Sk max{w(Ci ) |Ci ∈ CE\Sk } is as small as possible.

Begin
Step 1 Given a weighted connected graph G = (V , E;w, c) as an instance of the k-CPIBC problem,

we construct an instance I = (X; u, s) of the MinKP problem, where X = {xe | e ∈ E}, a constant
D = c(E) − B, u(xe) = c(e) and s(xe) = w(e) for each item xe ∈ X ;

Step 2 Using an α-approximation algorithm Aα on this instance I = (X; u, s) of the MinKP problem,
determine a subset X ′ ⊆ X with u(X ′) � c(E) − B and s(X ′) � α · s(X∗), where X∗ is an optimal
solution to the instance I for the MinKP problem;

Step 3 For the subset X ′ ⊆ X produced at Step 2, construct a subset F1 = {e | xe ∈ X ′} (⊆ E), having
c(F1) = u(X ′) � c(E) − B and w(F1) = s(X ′) � α · s(X∗);

Step 4 For the subset F1, use the MST algorithm [34, 35] to find a minimum-weight subset F2 ⊆ E such
that G[F1 ∪ F2] is a connected spanning subgraph in G; and denote F3 = ∅;

Step 5 If (there exists an odd-degree vertex in G[F1 ∪ F2]) then
(5.1) Denote by Vo the set of all odd-degree vertices in G[F1 ∪ F2]. Construct a complete subgraph

H = (Vo, EH ; wH ) on Vo, where weight wH (viv j ) of edge viv j ∈ EH is the weight of a shortest path
Pvi ,v j connecting vi and v j in G;

(5.2) Using the Edmonds algorithm [2], find a minimum-weight perfect matching M in H ; Denote
F3 = ⋃

vi v j∈M E(Pvi ,v j ), where E(Pvi ,v j ) denotes the set of all edges locating on the shortest path

Pvi ,v j ;
Step 6 If (k = 1) then

Output the subset S1 = E \ (F1 ∪ F2 ∪ F3), and STOP.
Step 7 Using the Euler algorithm [3], determine an Euler tour C in G[F1 ∪ F2 ∪ F3] that starts and ends at

the depot v1, where we may assume C = v1vi1vi2 · · · vit v1;
Step 8 Using the TA algorithm, determine a subset F4 ⊆ E such that the weight of the optimal k-tours

covering in G[E(C) ∪ F4] is as small as possible;
Step 9 Output the subset Sk = E \ (F1 ∪ F2 ∪ F3 ∪ F4).
End

Theorem 2 Given an α-approximation algorithmAα for solving the MinKP problem,
the k-CPIBC algorithm is an (α + β)-approximation algorithm to solve the k-CPIBC
problem, and this algorithm runs in time O(n3 + f (n,m)), where f (n,m) is the
running time of the algorithm Aα and β = 7

2 − 1
k − � 1

k �.
Proof Given an instance G = (V , E;w, c; v1) of the k-CPIBC problem, we may
assume that S∗

k is an optimal solution with an optimal k-tours covering CkE\S∗
k
inG \ S∗

k

and the optimal value OPTk = wmax(CkE\S∗
k
). And let Sk (= E\(F1 ∪ F2 ∪ F3 ∪ F4))

denote the edge-subset produced by the k-CPIBC algorithm with a k-tours covering
CkE\Sk in the subgraph G\Sk and the output value OUTk = wmax(CkE\Sk ).

For each integer k ∈ Z
+, by Steps 1–4 of the k-CPIBC algorithm, we obtain the

facts c(F1) � c(E) − B and that G[F1 ∪ F2] is a connected spanning subgraph in G,
then we have c(Sk) = c(E\(F1∪F2∪F3∪F4)) � c(E\F1) � c(E)−(c(E)−B) = B
and G\Sk ⊇ G[F1 ∪ F2], which implies that G \ Sk is connected. This shows that
Sk produced by the k-CPIBC algorithm is a feasible solution to the instance G =
(V , E;w, c; v1) of the k-CPIBC problem.We shall prove that OUT1 � (α+ 3

2 )·OPT1

for the case k = 1 and OUTk � (α + 7
2 − 1

k ) · OPTk for the case k � 2.
We consider the following two cases.
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Case 1 k = 1
For each optimal solution S∗

1 to the graphG as an instance of the 1-CPIBC problem,
we have the facts c(E\S∗

1 ) � c(E)−B and thatG\S∗
1 is connected. Suppose that F

∗
1 is

a minimum-weight edge-subset with c(F∗
1 ) � c(E)− B in G. Since E\S∗

1 is an edge-
subsetwith c(E\S∗

1 ) � c(E)−B inG, i.e., c(S∗
1 ) � B, we obtainw(F∗

1 ) � w(E\S∗
1 ).

Since the k-CPIBC algorithm executes the algorithm Aα for the MinKP problem to
find a subset with F1 ⊆ E , using Lemma 8, we obtain c(F1) � c(E) − B and
w(F1) � α · w(F∗

1 ), respectively. Then, we obtain the following:

w(F1) � α · w(F∗
1 ) � α · w(E \ S∗

1 ) � α · w(C1E\S∗
1
).

For the subgraphG[F1], theMST algorithm [34, 35] at Step 4 produces aminimum-
weight edge-subset F2 such that G[F1 ∪ F2] is a connected spanning subgraph in G.
Since G \ S∗

1 is connected, we obtain the fact w(F2) � w(E\S∗
1 ) � w(C1E\S∗

1
).

Using the similar arguments as in [44], we can use the tour C1E\S∗
1
to construct a

Hamiltonian cycle Co = v j1v j2 · · · v j|Vo |v j1 in H = (Vo, EH ; wH ), i.e., the Hamil-
tonian cycle Co may be constructed by visiting each vertex in the orders of their
occurrences first in the tour C1E\S∗

1
, satisfying wH (Co) � w(C1E\S∗

1
). Knowing the

fact that the Hamiltonian cycle Co has even vertices, we can choose alternating
edges from the even cycle Co to construct two perfect matchings in H , denoted by
M1 = {v ji v ji+1 | i = 1, 3, · · · , |Vo| − 1} and M2 = {v ji v ji+1 | i = 2, 4, · · · , |Vo| −
2} ∪ {v j|Vo |v j1}. Since Step 5 produces a minimum-weight perfect matching M in H ,
we obtain the fact wH (M) � min{wH (M1), wH (M2)} � 1

2wH (Co), implying that
w(F3) = wH (M) � 1

2wH (Co) � 1
2w(C1E\S∗

1
).

By Steps 3–5, we see that G[F1 ∪ F2 ∪ F3] is an Eulerian graph. Since S1 =
E\(F1 ∪ F2 ∪ F3), it follows that OUT1 = w(C1E\S1) � w(F1) + w(F2) + w(F3).
Thus, we obtain the following:

OUT1 � w(F1) + w(F2) + w(F3)

� α · w(C1E\S∗
1
) + w(C1E\S∗

1
) + 1

2
w(C1E\S∗

1
)

= (α + 3

2
) · w(C1E\S∗

1
)

= (α + 3

2
) · OPT1.

Case 2 k � 2
Using the similar arguments in Case 1, we have F1 ∪ F2 ∪ F3 = E(C) andw(C) =

w(F1) + w(F2) + w(F3) � (α + 3
2 ) · w(C1E\S∗

1
). We shall prove OUTk � (α + 7

2 −
1
k ) · OPTk in the sequel.

Since F1 ∪ F2 ∪ F3 = E(C) by the k-CPIBC algorithm, we obtain G[F1 ∪ F2 ∪
F3 ∪ F4] = G[E(C) ∪ F4]. Using the proof of Lemma 9, we can construct a k-tours
covering {C j | j = 1, 2, · · · , k} in G[F1 ∪ F2 ∪ F3 ∪ F4], i.e., this k-tours covering
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is in G \ Sk , and for each integer j ∈ {1, 2, · · · , k}, this k-tours covering satisfies
w(C j ) � 1

k · (w(C) − 2w0) + 4w0.
Since S∗

1 is an optimal solution to the graph G as an instance of the 1-CPIBC
problem and S∗

k is an optimal solution to the graph G as an instance for the k-CPIBC
problem, implying that S∗

k is a feasible solution to the graph G as an instance for the
1-CPIBC problem, we obtain w(C1E\S∗

1
) � w(C1E\S∗

k
). Since all tours in the k-tours

covering CkE\S∗
k
start and end at the depot v1, we can easily transform them into 1-

tour covering in G\S∗
k . Since C1E\S∗

k
is an optimal 1-tour covering in G \ S∗

k , we obtain

w(C1E\S∗
k
) � w(CkE\S∗

k
) � k ·wmax(CkE\S∗

k
), which shows thatw(C1E\S∗

1
) � w(C1E\S∗

k
) �

k · wmax(CkE\S∗
k
).

Since S∗
k is an optimal solution to the graph G as an instance of the k-CPIBC

problem, we have the fact that G\S∗
k is a connected spanning subgraph in G, which

implies that the union of all tours in CkE\S∗
k
must traverse each vertex v ∈ V at least

once, then we have w0 � 1
2wmax(CkE\S∗

k
). Thus, for each j ∈ {1, 2, · · · , k}, we obtain

the following:

w(C j ) � 1

k
· (w(C) − 2w0) + 4w0

= 2 ·
(

2 − 1

k

)

· w0 + 1

k
· w(C)

� 2 ·
(

2 − 1

k

)

· w0 + 1

k
·
(

α + 3

2

)

· w(C1E\S∗
1
)

�
(

2 − 1

k

)

· wmax(CkE\S∗
k
) +

(

α + 3

2

)

· wmax(CkE\S∗
k
)

=
(

α + 7

2
− 1

k

)

· wmax(CkE\S∗
k
)

=
(

α + 7

2
− 1

k

)

· OPTk,

implying OUTk = wmax(CkE\Sk ) � max{w(C j ) | j = 1, 2, · · · , k} � (α + 7
2 − 1

k ) ·
OPTk .

Combining the aforementioned arguments in Cases 1 and 2, we obtain the follow-
ing:

OUTk � (α + β) · OPTk,

where β = 7
2 − 1

k − � 1
k � for each integer k ∈ Z

+. This shows that the k-CPIBC
algorithm is an (α + β)-approximation algorithm to solve the k-CPIBC problem.

The complexity of the k-CPIBC algorithm can be determined as follows: (1) Step 1
needs time O(m + n) to construct an instance I = (X; u, s) of the MinKP problem
as mentioned above. (2) Step 2 executes the algorithm Aα in time f (n,m) to find
a subset X ′ ⊆ X . (3) Step 3 constructs a subset F1 = {e | xe ∈ X ′} (⊆ E) in time
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O(m). (4) By Lemma 3, the MST algorithm [34, 35] at Step 4 needs time O(n2)
to compute a minimum-weight subset F2 ⊆ E such that G[F1 ∪ F2] is a connected
spanning subgraph in G. (5) For the case where there exists an odd-degree vertex in
G[F1 ∪ F2], using the Floyd algorithm [36], we can construct the graph H at Step 5
in time O(n3) due to Lemma 4, and the Edmonds algorithm [2] at Step 5 needs time
O(n3) to produce a minimum-weight perfect matching M in H due to Lemma 5. (6)
By Lemma 6, the Euler algorithm [3] at Step 7 needs time O(m) to construct an Euler
tour C in G[F1 ∪ F2 ∪ F3]. (7) The TA algorithm at Step 8 needs at most time O(n3).
Hence, the k-CPIBC algorithm needs whole time O(n3 + f (n,m)).

This establishes the theorem.

4 The k-Chinese Postman ProblemUnder Interdiction Cardinality
Constraints

In this section, we consider the k-CPIBC problem specialized to connected graphs
with unit costs, i.e., the special version of the k-CPIBC problem where an interdiction
cost function c(·) ≡ 1 holds. For convenience, we refer this version as the k-Chinese
postman problem under interdiction cardinality constraints (the k-CPICC problem).

Given a graph G = (V , E;w, 1; v1) as an instance of the k-CPICC problem,
we can choose m − B least-weight edges F ′

1 from E in time O(m logm). And it is
easy to verify that F ′

1 is a minimum-weight edge-subset with |F ′
1| � m − B in E ,

implying that we may choose α = 1 in the k-CPIBC algorithm for an interdiction cost
function c(·) ≡ 1. Using Theorem 2, we obtain the fact that there exists a (β + 1)-
approximation algorithm in running time O(n3) to solve the k-CPICC problem, where
β = 7

2 − 1
k − � 1

k �.
In addition, we use the Fisher algorithm [38] to solve theminimum-weight spanning

K -tree problem, then we design a better approximation algorithm to solve the k-
CPICC problem using the following strategies: (1) Determine a minimum-weight
subset F1,2 ⊆ E , such that |F1,2| � m − B and that G[F1,2] is a connected spanning
subgraph in G; (2) find a minimum-weight subset F3 ⊆ E , such that G[F1,2 ∪ F3] is
an Eulerian graph; (3) compute a subset F4 ⊆ E , such that the weight of the optimal
k-tours covering in G[F1,2 ∪ F3 ∪ F4] is as small as possible; and (4) output the subset
Sk = E\(F1,2 ∪ F3 ∪ F4).

Our approximation algorithm, denoted by the k-CPICC algorithm, for the k-CPICC
problem is described as follows.

Theorem 3 The k-CPICC algorithm is a β-approximation algorithm to solve the k-
CPICC problem, and this algorithm runs in time O(n3), where β = 7

2 − 1
k − � 1

k �.

Proof Given an instance G = (V , E;w, 1; v1) of the k-CPICC problem, we may
assume that S∗

k is an optimal solution with an optimal k-tours covering CkE\S∗
k
inG \ S∗

k

and the optimal value OPTk = wmax(CkE\S∗
k
). And let Sk (= E \ (F1,2 ∪ F3 ∪ F4))

denote the edge-subset produced by the k-CPICC algorithm with a k-tours covering
CkE\Sk in the subgraph G \ Sk and the output value OUTk = wmax(CkE\Sk ).
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Algorithm 3 : k-CPICC
Input: A connected graph G = (V , E;w, 1; v1) with a depot v1 ∈ V , an integer k ∈ Z

+ and a budget
B ∈ N;

Output: A subset Sk ⊂ E such that minCE\Sk max{w(Ci ) |Ci ∈ CE\Sk } is as small as possible.

Begin
Step 1 Use the Fisher algorithm [38] to find a connected spanning subgraph G[F1,2] in G, having |F1,2| �

m − B, such that w(F1,2) is minimized;
Step 2 If (there exists an odd-degree vertex in G[F1,2]) then

(2.1) Denote by Vo the set of all odd-degree vertices in G[F1,2]; Construct a complete subgraph
H = (Vo, EH ; wH ) on Vo, where weight wH (viv j ) of edge viv j ∈ EH is the weight of a shortest path
Pvi ,v j connecting vi and v j in G;

(2.2) Use the Edmonds algorithm [2] to find a minimum-weight perfect matching M in H ;
(2.3) Denote F3 = ⋃

vi v j∈M E(Pvi ,v j ), where E(Pvi ,v j ) denotes the set of all edges that lie on the

shortest path Pvi ,v j ;
Step 3 If (k = 1) then

Output the subset S1 = E \ (F1,2 ∪ F3), and STOP.
Step 4 Use the Euler algorithm [3] to determine an Euler tour C in G[F1,2 ∪ F3] that starts and ends at the

same depot v1, where we may assume C = v1vi1vi2 · · · vit v1;
Step 5 Use the TA algorithm to compute a subset F4 ⊆ E , such that the weight of the optimal k-tours

covering in G[E(C) ∪ F4] is as small as possible;
Step 6 Output the subset Sk = E \ (F1,2 ∪ F3 ∪ F4).
End

For each integer k ∈ Z
+, executing Step 1, we have that |Sk | = |E\(F1,2 ∪

F3 ∪ F4)| � |E\F1,2| � m − (m − B) = B and G\Sk ⊇ G[F1,2], implying that
G \ Sk is connected. This shows that Sk is a feasible solution to the instance G of
the k-CPICC problem. We shall prove OUT1 � 3

2 · OPT1 for the case k = 1 and
OUTk � ( 72 − 1

k ) · OPTk for the case k � 2, respectively.
Case 1 k = 1

For each optimal solution S∗
1 to the graphG as an instance of the 1-CPICC problem,

we have that G \ S∗
1 is a connected spanning subgraph in G with |E\S∗

1 | � m − B.
Since G[F1,2] produced at Step 1 is a minimum-weight connected spanning subgraph
with |F1,2| � m − B in G, we obtain the following:

w(F1,2) � w(E \ S∗
1 ) � w(C1E\S∗

1
).

Using the similar arguments as in [44] and in the proof of Theorem 2, we can
use C1E\S∗

1
to construct a Hamiltonian cycle Co = v j1v j2 · · · v j|Vo |v j1 in H =

(Vo, EH ;wH ) satisfying wH (Co) � w(C1E\S∗
1
). In addition, we can construct two

perfect matchings in H , denoted by M1 = {v ji v ji+1 | i = 1, 3, · · · , |Vo| − 1}
and M2 = {v j|Vo |v j1} ∪ {v ji v ji+1 | i = 2, 4, · · · , |Vo| − 2}. Since M produced
at Step 2 is a minimum-weight perfect matching in H , we have wH (M) �
min{wH (M1), wH (M2)} � 1

2wH (Co). This implies w(F3) = wH (M) � 1
2wH (Co)

� 1
2w(C1E\S∗

1
).

Using Steps 1–2, we have that G[F1,2 ∪ F3] is an Eulerian graph. And by the fact
S1 = E \ (F1,2 ∪ F3) produced by the k-CPICC algorithm, we have that OUT1 =
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w(C1E\S1) � w(F1,2) + w(F3). Thus, we obtain the following:

OUT1 � w(F1,2) + w(F3) � w(C1E\S∗
1
) + 1

2
w(C1E\S∗

1
) = 3

2
· w(C1E\S∗

1
) = 3

2
· OPT1.

Case 2 k � 2
Using the similar arguments in Case 1, we obtain F1,2 ∪ F3 = E(C), and w(C) =

w(F1,2) + w(F3) � 3
2 · w(C1E\S∗

1
). We shall prove OUTk � ( 72 − 1

k ) · OPTk .

Since F1,2 ∪ F3 = E(C) produced by the k-CPICC algorithm, we have G[F1,2 ∪
F3 ∪ F4] = G[E(C) ∪ F4]. Using Lemma 9, we can construct a k-tours covering
{C j | j = 1, 2, · · · , k} in G[F1,2 ∪ F3 ∪ F4], i.e., this k-tours covering is in G\Sk ,
and for each integer j ∈ {1, 2, · · · , k}, this k-tours covering satisfies w(C j ) � 1

k ·
(w(C) − 2w0) + 4w0.

Using the similar arguments in the proof of Case 2 of Theorem 2, we have that
w(C1E\S∗

1
) � w(C1E\S∗

k
) � k · wmax(CkE\S∗

k
) and w0 � 1

2wmax(CkE\S∗
k
). Thus, for each

j ∈ {1, 2, · · · , k}, we obtain the following:

w(C j ) � 1

k
· (w(C) − 2w0) + 4w0

= 2 ·
(

2 − 1

k

)

· w0 + 1

k
· w(C)

� 2 ·
(

2 − 1

k

)

· w0 + 1

k
· 3
2

· w(C1E\S∗
1
)

�
(

2 − 1

k

)

· wmax(CkE\S∗
k
) + 3

2
· wmax(CkE\S∗

k
)

=
(
7

2
− 1

k

)

· wmax(CkE\S∗
k
)

=
(
7

2
− 1

k

)

· OPTk,

implying OUTk = wmax(CkE\Sk ) � max{w(C j ) | j = 1, 2, · · · , k} � ( 72 − 1
k ) ·OPTk .

Combining the aforementioned arguments in Cases 1 and 2, we obtain the follow-
ing:

OUTk � β · OPTk,

where β = 7
2 − 1

k − � 1
k � for each integer k ∈ Z

+.
The complexity of the k-CPICC algorithm can be determined as follows: (1) By

Lemma7, the Fisher algorithm [38] at Step 1 needs timeO(n2) to compute aminimum-
weight connected spanning subgraph G[F1,2]with |F1,2| � m− B. (2) By the similar
arguments of the complexity of the k-CPIBC algorithm in Theorem 2, Steps 2–5 need
at most time O(n3) to obtain F3 and F4, respectively. Hence, the k-CPICC algorithm
needs the whole time O(n3).

This establishes the theorem.
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5 Conclusion and Further Research

In this paper, we consider the k-Chinese postman problem under interdiction budget
constraints (the k-CPIBC problem) and its special version (the k-CPICC problem) and
obtain the following two main results:

(1) Given an α-approximation algorithm Aα for solving the minimization knapsack
problem, we design an (α + β)-approximation algorithm to solve the k-CPIBC
problem, where β = 7

2 − 1
k − � 1

k �;
(2) We present a β-approximation algorithm to solve the k-CPICC problem, where

c(e) ≡ 1 for each edge e in G = (V , E;w, 1; v1) and β is defined in (1).

In further research, we shall consider some interdiction versions of other arc routing
problems.
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