
Journal of the Operations Research Society of China
https://doi.org/10.1007/s40305-023-00480-6

A Best Possible Online Algorithm For Parallel-Batch
Scheduling with Kind Release Times and Job
Compatibilities

Li-Yun Miao1 · Ji Tian1 · Ru-Yan Fu1

Received: 25 May 2022 / Revised: 25 February 2023 / Accepted: 26 February 2023
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We investigate the problem of the online scheduling with kind release times and job
compatibilities on a single unbounded parallel-batch machine to minimize makespan.
The kind release times (KRT) means that under the online setting no jobs can be
released when the machine is busy. What associated with each job J j are its normal
processing time p j and release time r j . Two jobs Ji and J j are called compatible if
max{pi , p j } � (1+ a)min{pi , p j }, where a is a given positive constant. Compatible
jobs could be processed in the same batch. We derive a best possible online algorithm
with a competitive ratio of 1 + √

λ2 − λ + 1 − λ, where λ = a
1+a .

Keywords Online scheduling · Kind release time · Compatibility · Batch machine ·
Competitive ratio

Mathematics Subject Classification 90B35

1 Introduction

Online scheduling problems have been extensively studied in the last three decades.
In this paper, “online” means that all jobs arrive over time. Each job is completely
unknown until its release time. Here, we consider an onlinescheduling problem with

This work was supported by the National Natural Science Foundation of China (No. 61573362).

B Ji Tian
jitian@cumt.edu.cn

Li-Yun Miao
ts19080036a31@cumt.edu.cn

Ru-Yan Fu
furuyan@cumt.edu.cn

1 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-023-00480-6&domain=pdf

L. Miao et al.

kind release times (KRT). KRT means that under the online setting no jobs can be
released if the machine is busy. There are differences between the KRT environment
and the traditional online setting. In the former, an online algorithm deals with job
instances depending on its own strategy, while there is no such limitation in the latter
model.

As in the work of traditional online scheduling, under KRT assumption, the quality
of an online algorithm H is also measured by its competitive ratio

ρH = sup{H(L)/OPT(L)},

where L is any job instance depending on the online algorithm H , H(L) denotes the
objective value of the schedule obtained by algorithm H for L , and OPT(L) denotes
the corresponding objective value of some offline optimal schedule. With regard to
the above definition, the following two points should be noted. One is that L is an
instance depending on the online algorithm H , not arbitrary. The other is that the KRT
assumption is a requirement of online setting, which is not taken into account when
discussing the offline optimal value OPT(L).

Parallel-batch scheduling problems have been widely and deeply researched in
recent years. An unbounded parallel batch machine can handle arbitrary number of
jobs simultaneously in a batch. All jobs in a batch start and finish at the same time,
and they have the same actual processing time, which is usually defined as the longest
normal processing time of all jobs in it. In the literature on unbounded parallel-batch
scheduling problems, most researchers commonly assume that the actual job process-
ing time of a job has no upper bound (see [1–11]). However, an overlength actual
processing time on a job may cause defects in practical production [12]. In this paper,
we assume that a job’s actual processing time cannot exceed 1 + a times its normal
value, where a is a given positive number.

Nowwe state our problem in detail: There are n jobs J1, J2, . . . , Jn to be scheduled
on an unbounded batch machine. Each job J j has a normal processing time p j and a
release time r j . The characteristics of each job become known at its release time. Jobs
have a kind release time (KRT) in online setting and satisfy compatibility constraints.
Two jobs Ji and J j are compatible if max{pi , p j } � (1 + a)min{pi , p j }. Here, the
job compatibility relations can be described by an specific interval compatibility graph
G = (V , E), where V = {1, 2, . . . , n} is the vertex set, and there is an edge (i, j) ∈ E
if and only if jobs Ji and J j are compatible (i.e., [pi , (1+a)pi]∩[p j , (1+a)p j] �= ∅).
The batch machine can handle any number of jobs in a batch as long as these jobs
are pairwise compatible. All jobs in a batch B have the same actual processing time,
which is equal to max{p j : J j ∈ B}. The goal is to find a feasible schedule of the
jobs to minimize the maximum completion time, or makespan. The problem can be
denoted by 1|online,KRT-r j , p-batch,G = a-INT|Cmax, where KRT-r j denotes the
arrival of jobs follows KRT assumption in online setting, and G = a-INT denotes the
job compatibility relations.

In the literature, most of the work on batch scheduling problems with job com-
patibilities characterized by compatibility graphs are about offline scheduling (see
[12–15]). In online setting, for problem 1|online, r j , p-batch,G = a-INT|Cmax, Li et
al. [16] provided a class of online algorithms with competitive ratio of 2. Fu et al. [17]

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

designed a best possible online algorithm with a competitive ratio of 1 +
√

λ2+4−λ
2 ,

where λ = a
1+a .

There is not a lot of the literature study online scheduling problems with
KRT assumption. For problem P2|online,KRT-r j |Cmax, Li and Yuan [18] showed
that LPT rule is best possible and has a competitive ratio of 5

4 . For problem
1|online,KRT-r j , p-batch, b = ∞, f -family|Cmax, where f -family denotes the num-
ber of job families (any two jobs belonging to distinct families cannot be processed
in the same batch), Li et al. [19] established a best online algorithm with competitive

ratio of 1 +
√

f 2− f+1−1
f .

In this paper, we will study the online scheduling problem 1|online,KRT-r j ,
p-batch,G = a-INT|Cmax. It is organized as follows: In Sects. 2 and 3, we will
introduce our online algorithm and show that its competitive ratio is not greater than
1+√

λ2 − λ + 1−λ. In Sect. 4, by deriving a lower bound on the competitive ratio of
any online algorithm with KRT assumption, we will prove that our online algorithm
is best possible.

2 An Online Algorithm

For the offline problem 1|p-batch,G = a-INT|Cmax, Bellanger et al. [12] presented
a BCLPT rule to solve it in O(n log n) time.Given that this rulewill be a sub-procedure
of our online algorithm, we describe it as follows:

BCLPT rule
Step 1 Index all jobs in a job set J by nonincreasing normal processing time, i.e.,
p1 � p2 � · · · � pn .
Step 2 Do the following:

• Put jobs J1, J2, · · · , Ji1 in batch B1 until a certain i1 satisfies that (1+ a)pi1+1 <

p1. If such an i1 does not exist, set B1 = J and stop.
• Put jobs Ji1+1, Ji1+2, · · · , Ji2 in batch B2 until a certain i2 satisfies that (1 +
a)pi2+1 < pi1+1. If such an i2 does not exist, set B2 = J \B1 and stop.

• Continue the above procedure until job Jn is placed in Bk for some k and stop.

Step 3 Sequence the batches B1, B2, · · · , Bk in an arbitrary order.

For a job set, the BCLPT rule may produce more than one batches, and we call
them BCLPT batches. To facilitate the description of our online algorithm, we will
use the following notation.

J (B) denotes the representative job in a BCLPT batch B which has the longest
normal processing time and arrives as late as possible. Given that the batch capacity
b = ∞, we suppose that there is only one such job in a batch. Its normal processing
time and release time are denoted by p(B) and r(B), respectively;

U (t) is the set containing all jobs that have arrived at or before time t and that have
not been scheduled by time t ;

A(t) is the set of all BCLPT batches produced by applying BCLPT rule on U (t);
V (t) is the set of all the representative jobs in BCLPT batches of A(t);
r(X) denotes the minimum release time of all jobs in a job set X ;

123

L. Miao et al.

P(X) denotes the total normal processing time of all jobs in a job set X .
Now we begin to describe our online algorithm. The main difference between our

algorithm and the algorithm presented by Fu et al. [17] is the value of parameter β.
Here, β = √

λ2 − λ + 1 − λ, where λ = a
1+a .

Algorithm H

Step 0 Set t = 0.
Step 1 If U (t) = ∅, go to Step 3. Otherwise, call BCLPT rule on U (t). Determine
A(t) and V (t).
Step 2 If t ≥ β · P(V (t)), choose the longest waiting batch in A(t) and process
it immediately; reset t to the completion time of this batch. Otherwise, reset t =
β · P(V (t)). Go to Step 1.
Step 3 Reset t to the next time (if any) at which a new job arrives. Go to Step 1.

In online algorithm H , at each decision time t , we assume that A(t) =
{B1, B2, · · · , Bmt }, where mt is the number of BCLPT batches in A(t). Then
V (t) = {J (B1), J (B2), · · · , J (Bmt)}, r(V (t)) = min{r(Bi) : 1 � i � mt } and
P(V (t)) = ∑mt

i=1 p(Bi). Without loss of generality, we suppose that p(B1) >

p(B2) > · · · > p(Bmt). According to the algorithm H and BCLPT rule, we obtain
following Lemma 1.

Lemma 1 Suppose that B is a batch starting at time t in the schedule generated by
algorithm H. Then the following properties hold:

(a) B = B1 is the longest waiting BCLPT batch in A(t) at time t ;
(b) Any two jobs in V (t) are incompatible, i.e., (1+ a)p(Bi+1) < p(Bi) for 1 � i �

mt − 1;
(c) t � β · P(V (t)). Furthermore, if there is an idle time directly before time t, then

t = max{r(V (t)), β · P(V (t))}.

3 Analysis of Algorithm H

In this section we show that the competitive ratio of algorithm H is not greater than
1+ √

λ2 − λ + 1− λ. Here, β = √
λ2 − λ + 1− λ satisfies the equation x2 + 2λx +

(λ−1) = 0, where λ = a
1+a . Note that the above equation is equivalent to the equation

(1 + a)x2 + 2ax = 1. Then β is also the positive root of the later, and we have

1

β(1 + a) + 2a
= β, (1)

which will be repeatedly used in the analysis to be presented in this section. Given an
input job instance, let σ be the schedule produced by algorithm H , and π be an offline
optimal schedule. We also use Con and Copt to denote the makespan of the schedules
σ and π , respectively.

Our proof is by contradiction. Suppose the competitive ratio of algorithm H exceeds
1 + β, then there exists a job instance I, which we call counter-example, such that

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

Con/Copt > 1 + β. (2)

Let rl be the release time of the last job in instance I. Suppose that τ � rl
be the minimum starting time such that the machine is busy in the interval
[τ,Con]. Without causing confusion, let A(τ) = {B1, B2, · · · , Bk} and V (τ) =
{J (B1), J (B2), · · · , J (Bk)}. According to the definition of τ and algorithm H , we
know that all BCLPT batches in A(τ) are consecutively processed from time τ to
Con. Then we have

Con = τ + P(V (τ)) = τ +
k∑

i=1

p(Bi). (3)

Furthermore, by Lemma 1(b), we obtain the following claim.

Claim 1 All jobs in V (τ) are pairwise incompatible, and (1+a)p(Bi+1) < p(Bi) for
1 � i � k − 1.

Claim 1 implies that all jobs in V (τ) should be processed independently in k distinct
batches in any feasible schedule. Then we have

Copt � r(V (τ)) + P(V (τ)) = r(V (τ)) +
k∑

i=1

p(Bi). (4)

Claim 2 There does not exist an idle time immediately before time τ in σ .

Proof Suppose to the contrary that σ does not have this form. Then, by Lemma 1(c),
we have τ = max{r(V (τ)), β · P(V (τ))}. From (3) and (4), we get Con − Copt �
τ − r(V (τ)) � max{0, β · P(V (τ)) − r(V (τ))} � β · P(V (τ)) � βCopt. This
contradicts (2). The claim follows.

Claim 2 implies that τ is the completion time of some batch, say, B0. Let τ0 be the
starting time of batch B0 in σ . Then τ = τ0 + p(B0). By the definition of rl and the
choice of τ , we can deduce that rl > τ0. Given that the machine is busy from time τ0 to
τ , then the KRT assumption implies that no jobs arrive in the interval (τ0, τ). Note that
rl � τ . Then rl = τ , and we can divide V (τ) into two sets, say, Q and R, such that

Q = {J (Bi) : r(Bi) � τ0, 1 � i � k} and R = {J (Bi) : r(Bi) = τ, 1 � i � k}.

Then P(V (τ)) = P(Q) + P(R), and by (3), we have

Con = τ0 + p(B0) + P(Q) + P(R). (5)

Since r(R) = τ = τ0+ p(B0), we haveCopt � r(R)+P(R) = τ0+ p(B0)+P(R),
where the case R = ∅ is included since Copt � rl = τ = τ0 + p(B0). Then, com-
bining (5), we have

Con − Copt � P(Q). (6)

123

L. Miao et al.

From inequalities (2) and (6), we have P(Q) > βCopt, and so Q �= ∅. Suppose that
Q = {J (Bi1), J (Bi2), · · · , J (Biq)} such that p(Bi j+1) < p(Bi j) for 1 � j � q − 1.
Then we have following Observation 1.

Observation 1 (a) (Q ∪ J (B0)) ⊆ U (τ0); (b) Every two jobs in Q ∪ J (B0) are
incompatible; furthermore, (1 + a)p(Bi j+1) < p(Bi j) for 1 � j � q − 1, and
(1 + a)p(Bi1) < p(B0); (c) P(V (τ0)) � p(B0) + P(Q).

Proof The definitions of set Q and batch B0 imply (a) holds. Since Q ⊆ V (τ), by
Claim 1, we have that any pair of jobs fromQ are incompatible and (1+a)p(Bi j+1) <

p(Bi j) for 1 � j � q − 1. From Lemma 1(a), we know that B0 is the longest waiting
BCLPT batch in A(τ0). Note thatQ ∩ B0 = ∅. Then, by the BCLPT rule, any job in
Q is incompatible with J (B0), and so (1 + a)p(Bi1) < p(B0). Hence, (b) holds. (a)

and (b) together imply that the jobs from Q ∪ J (B0) are in distinct BCLPT batches
at time τ0. Note that V (τ0) is the set of all the representative jobs of BCLPT batches
in A(τ0). Then P(V (τ0)) � p(B0) + P(Q). Hence, (c) holds.

From Observation 1(b), we can deduce that

P(Q)=
q∑

j=1

p(Bi j) <

(
1

1+a
+ 1

(1+a)2
+ · · · + 1

(1+a)q

)

p(B0) <
1

a
p(B0).

(7)

Claim 3 The starting time of J (B0) is smaller than τ in π .

Proof Suppose to the contrary that π does not have this form. Then Copt � τ +
p(B0) = τ0 +2p(B0). Furthermore, by Lemma 1(c) and Observation 1(c), we obtain
Copt � β · (p(B0) + P(Q)) + 2p(B0). Then, together with inequalities (6) and (7),
we have

Con−Copt
Copt

� P(Q)

β · (p(B0)+P(Q))+2p(B0)
<

1
a p(B0)

β · (p(B0)+ 1
a p(B0))+2p(B0)

= 1

β(1 + a) + 2a
= β.

The last equality follows from (1). This contradicts (2) again. The claim follows.

Claim 4 Every two jobs from Q ∪ R ∪ J (B0) are processed in distinct batches in π .

Proof The fact r(R) = τ reveals that the starting time of each job from R is not
smaller than τ in π . Then, by Claim 3, any job belonging toRwill not be processed in
the batch containing J (B0) in π . From Claim 1 and Observation 1(b), we know that
every two jobs fromQ∪R orQ∪ J (B0) are incompatible. Therefore, every two jobs
from Q ∪ R ∪ J (B0) cannot be processed in a same batch in π . The claim follows.

Note that r(Q) � τ0 < τ = r(R). From Claim 3 and Claim 4, we have

Copt � min{r(B0), r(Q)} + p(B0) + P(Q) + P(R). (8)

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

Claim 5 There does not exist an idle time immediately before time τ0 in σ .

Proof Suppose to the contrary that σ does not have this form. Then, by Lemma 1(c),
we have τ0 = max{r(V (τ0)), β · P(V (τ0))}.

If τ0 = β · P(V (τ0)), by inequalities (5) and (8), together with the fact Copt �
P(V (τ0)), we have Con − Copt � τ0 � βCopt, a contradiction.

If τ0 > β · P(V (τ0)), then τ0 = r(V (τ0)). In this case, by the implementation
of algorithm H , we further deduce that all jobs in U (τ0) arrive at time τ0. From
Observation 1(a), we have r(B0) = r(Q) = τ0. Then, by inequalities (8) and (5), we
have that Copt � τ0 + p(B0) + P(Q) + P(R) = Con, a contradiction. The claim
follows.

Claim 5 implies that τ0 is the completion time of some batch, say, B∗. Let τ ∗ be
the starting time of batch B∗ in σ . Then τ0 = τ ∗ + p(B∗), and by (5), we have

Con = τ ∗ + p(B∗) + p(B0) + P(Q) + P(R). (9)

Recall that rl = τ = τ ∗ + p(B∗) + p(B0). From lemma 1(c), we have

Copt � rl � β · P(V (τ ∗)) + p(B∗) + p(B0). (10)

Claim 6 r(Q) � τ ∗.

Proof Firstly, we assert min{r(B0), r(Q)} � τ ∗. Otherwise, min{r(B0), r(Q)} > τ ∗.
Since the machine is busy from time τ ∗ to τ0, the KRT assumption implies that no
jobs arrive in the interval (τ ∗, τ0). From Observation 1(a), we have r(B0) = τ0 and
r(Q) = τ0. By (8) and (5), we have that Copt � τ0 + p(B0)+ P(Q)+ P(R) = Con.
This contradicts (2) again. The assertion follows.

Suppose to the contrary that r(Q) > τ ∗. Given that no jobs arrive in the interval
(τ ∗, τ0) and r(Q) � τ0, we obtain r(Q) = τ0. Recall that r(R) = τ and V (τ) =
Q ∪ R. Then r(V (τ)) = τ0. Then, by (4), we have Copt � τ0 + P(Q) + P(R).
Furthermore, by (5), we obtain Con − Copt < p(B0). From the above assertion,
we have r(B0) � τ ∗. Note that B∗ is the longest waiting BCLPT batch in A(τ ∗)
and J (B0) /∈ B∗. Then, by the BCLPT rule, J (B0) and J (B∗) are incompatible and
belong to twodistinct BCLPTbatches inA(τ ∗), and so P(V (τ ∗)) � p(B∗)+p(B0) �
2p(B0).Using inequality (10),we candeduce thatCopt � 2(1+β)p(B0).Weconsider
two cases as follows.
Case 1 0 < a � 1. Then (1 + a)β � 2β and 2a � 2, and so we have

Con − Copt
Copt

� p(B0)

2(1 + β)p(B0)
= 1

2β + 2
� 1

(1 + a)β + 2a
= β.

Case 2 a > 1. Then 1 + a < 2a. From (6) and (7), we have Con − Copt < 1
a p(B0),

and so

Con − Copt
Copt

�
1
a p(B0)

2(1 + β)p(B0)
= 1

2a · β + 2a
<

1

(1 + a)β + 2a
= β.

123

L. Miao et al.

In conclusion, we deduce that Con/Copt � 1 + β, which contradicts (2) again. This
completes our argument.

Claim 6 implies that at least one job from Q arrives at or before time τ ∗. Given
that no jobs arrive in the interval (τ ∗, τ0) and r(Q) � τ0, then we can further divide
Q into two subsets Q1 and Q2 such that

Q1 = {J (B) : r(B) � τ ∗, J (B) ∈ Q} and Q2 = {J (B) : r(B) = τ0, J (B) ∈ Q}.

Then P(Q) = P(Q1) + P(Q2), and by (9), we have

Con = τ ∗ + p(B∗) + p(B0) + P(Q1) + P(Q2) + P(R). (11)

Suppose that Q1 = {J (Bi11), J (Bi12), · · · , J (Bi1 l)} and p(Bi1(j+1)) < p(Bi1 j) for
1 � j � l − 1. Then we have following Observation 2 (similarly to Observation1).

Observation 2 (a) (Q1 ∪ J (B∗)) ⊆ U (τ ∗); (b) Every two jobs in Q1 ∪ J (B∗) are
incompatible; furthermore, (1 + a)p(Bi1(j+1)) < p(Bi1 j) for 1 � j � l − 1, and
(1 + a)p(Bi11) < p(B∗); (c) P(V (τ ∗)) � p(B∗) + P(Q1).

From Observation 2(b), we can deduce that

P(Q1)=
l∑

j=1

p(Bi1 j) <

(
1

1+a
+ 1

(1+a)2
+ · · ·+ 1

(1+a)l

)

p(B∗) <
1

a
p(B∗).

(12)

Claim 7 r(B0) � τ ∗.

Proof Suppose to the contrary that r(B0) > τ ∗. Given that no jobs arrive in the interval
(τ ∗, τ0) and J (B0) ⊆ U (τ0), then r(B0) = τ0. Note that r(Q2) = τ0, r(R) = τ and
Q = Q1∪Q2. FromClaim4,we can deduce thatCopt � τ0+ p(B0)+P(Q2)+P(R).
Combining (5), we have Con − Copt � P(Q) − P(Q2) = P(Q1). Write δ1 =
min{p(B0), p(B∗)}. From (7) and (12), we have P(Q1) < 1

a min{p(B0), p(B∗)} =
1
a δ1. From Observation 2(c) and inequality (10), we have that Copt � β · (p(B∗) +
P(Q1)) + p(B∗) + p(B0), and so

Con − Copt
Copt

� P(Q1)

β(p(B∗) + P(Q1)) + p(B∗) + p(B0)
<

1
a δ1

β(δ1 + 1
a δ1) + 2δ1

= 1

(1 + a)β + 2a
= β.

The last equality follows from (1). This contradicts (2) again. The claim follows.

Claim 7 implies that J (B0) ⊆ U (τ ∗). Note that Q1 ⊆ U (τ ∗), J (B∗) ⊆ U (τ ∗)
and (Q1 ∪ J (B0)) ∩ B∗ = ∅. Then, by the BCLPT rule, any job in Q1 ∪ J (B0) is

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

incompatible with J (B∗). Note that B∗ is the longest waiting BCLPT batch at time τ ∗.
From Observation 2 and Observation 1(b), we can further get following Observation
3.

Observation 3 (a) (Q1 ∪ J (B0) ∪ J (B∗)) ⊆ U (τ ∗); (b) every two jobs in Q1 ∪
J (B0) ∪ J (B∗) are incompatible; furthermore, (1 + a)p(Bi1(j+1)) < p(Bi1 j) for
1 � j � l−1, (1+a)p(Bi11) � (1+a)p(Bi1) < p(B0) and (1+a)p(B0) < p(B∗);
(c) P(V (τ ∗)) � p(B∗) + p(B0) + P(Q1).

From Observation 3(b), we can deduce that

p(B0) + P(Q1) <

(
1

1 + a
+ 1

(1 + a)2
+ · · · + 1

(1 + a)l+1

)

p(B∗) <
1

a
p(B∗).

(13)

By Observation 3(c) and inequality (10), we have that

Copt � β · (p(B∗) + p(B0) + P(Q1)) + p(B∗) + p(B0). (14)

Recall that every two jobs from Q ∪ R are incompatible. Note that r(Q2) = τ0,
r(R) = τ and Q2 ⊆ Q. Then we have Copt � τ0 + P(Q2) + P(R). And so, by (5),
we obtain Con −Copt � p(B0) + P(Q1). Write δ2 = min{P(Q), p(B0) + P(Q1)}.
Then, combining (6), we obtain Con −Copt � δ2. Note that p(B0) < p(B∗). By (7)
and (13), we have δ2 < 1

a p(B0). From (14), we have Copt > βδ2 + (2 + β)p(B0),
and so

Con − Copt
Copt

<
δ2

βδ2 + (2 + β)p(B0)
<

1
a p(B0)

(
β
a + 2 + β)p(B0)

= 1

(1 + a)β + 2a
= β.

This contradicts (2) again.
The above discussions imply that I is not a counter-example. Then following The-

orem 1 holds:

Theorem 1 For problem 1|online,KRT, p-batch,G = a-INT|Cmax, the competitive
ratio of algorithm H is not greater than 1 + β, where β = √

λ2 − λ + 1 − λ and
λ = a

1+a .

4 AMatching Lower Bound

In this section we prove that, because of the lack of information concerning the
future, there cannot exist any online algorithm with competitive ratio smaller than
1+β. Recall that β = √

λ2 − λ + 1−λ satisfies the equation x2+2λx+(λ−1) = 0,
where λ = a

1+a . Since a > 0, then 0 < λ < 1 and 0 < β < 1.

Theorem 2 For problem 1|online,KRT, p-batch,G = a-INT|Cmax, there does not
exist any online algorithm with a competitive ratio strictly smaller than 1 + β.

123

L. Miao et al.

Proof To prove the lower bound 1+β, we introduce the following instance presented
by Fu et al. [17] for problem 1|online, r j , p-batch,G = a-INT|Cmax. However, in
order to satisfy the KRT assumption, we appropriately revise this instance. The proof
is based on an adversary argument.

The initial instance consists of k jobs J1, J2, · · · , Jk that arrive at time 0 with
normal processing times

p1 = 1, p2 = 1
1+a (p1 − ε), p3 = 1

1+a (p2 − ε), · · · , pk = 1
1+a (pk−1 − ε),

where k is a sufficiently large positive integer and ε = a
k! . We can readily observe

that 0 < pi < 1
1+a pi−1 for 2 � i � k. Then, by the definition of job compatibility,

we know that any pair of these k jobs are incompatible, and they will independently

form a batch processed in any schedule. Let P = ∑k
j=1 p j and βk =

√
P2−P+1−1

P

(satisfying the equation Px2 +2x = P −1). If an online algorithm starts processing a
job Ji with 1 � i � k in time interval [0, βk P), then the adversary releases a new copy
of Ji , i.e., a job with the same normal processing time as Ji , at the completion time of
job Ji (satisfying the KRT assumption). If one job’s starting time is equal to or greater
than βk P , no jobs will come and the job sequence terminates. We use Ai to denote
the set containing job Ji and its replicas (the number of jobs inAi may be larger than
two). Suppose that the jobs with the starting times in time interval [0, βk P) belong to
h job sets Ai1 ,Ai2 , . . . ,Aih (if there does not exist any job with the starting time in
the interval [0, βk P), we define h = 0), and the remaining (k−h) job sets are denoted
byAih+1 ,Aih+2 , · · · ,Aik . For any j ∈ {1, 2 · · · , h}, let S j be the largest starting time
of all jobs in Ai j in the time interval [0, βk P). Then, according to the adversary’s
strategy, we know that the maximum release time of the jobs in Ai j with 1 � j � h
is equal to S j + pi j . Furthermore, we may suppose that S1 < S2 < · · · < Sh . Then
we have

S j+1 � S j + pi j for 1 � j � h − 1. (15)

Given that 0 < βk < 1 and
∑k

i=1 pi = P , there does exist at least one job from
Ai j with 1 � j � k which has a completion time not smaller than βk P . Let Je be a
such job with the minimum starting time, and its starting time is denoted by S. Then
S � βk P − pe. We will distinguish two cases depending on the value of S.
Case 1 S � βk P . In this case, we can observe that there still exist k mutu-
ally incompatible jobs unprocessed at time S (the case h = 0 is included). Then
Con � S + ∑k

i=1 pi = S + P � (1 + βk)P . We consider two subcases as follows.
Subcase 1.1 h = 0. In this case, no job has the starting time smaller than βk P , and
the job instance consists of the first k jobs. Recall that these k jobs arrive at time 0 and
any pair of them are incompatible. Then it can be easily obtained that Copt = P .
Subcase 1.2 h �= 0. In this case, by the definitions of h job sets Ai1 ,Ai2 , · · · ,Aih ,
we know that Sh + pih < βk P = √

P2 − P + 1 − 1 < P − 1; the last inequality
follows from P > 1. Recall that the maximum release time of the jobs in Ai j with
1 � j � h is equal to S j + pi j (strictly smaller than P − 1), and the only one
job in Ai j with h + 1 � j � k arrives at time 0. Since inequality (15) holds and

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

max
1�l�k

{pil } = max
1�i�k

{pk} = 1, we can obtain an optimal schedule π : ∀ j ∈ {1, · · · , k},
all jobs in Ai j form a single batch and start at time S j (π), where

⎧
⎪⎨

⎪⎩

S j (π) = 0, if j = k,

S j (π) = ∑k
l= j+1 pil , if h + 1 � j � k − 1,

S j (π) = P − ∑h
l= j pil , if 1 � j � h.

Note that
∑k

l=h+1 pil + ∑h
l=1 pil = ∑k

l=1 pil = ∑k
j=1 p j = P . Then Copt =

∑k
l=1 pil = P .

In both subcases, we get Copt = P , which, together the fact that Con � (1+βk)P
in Case 1, leads to Con/Copt � 1 + βk .
Case 2 S ∈ [βk P − pe, βk P). In this case, we can find that Je ∈ Aih , pe = pih ,
Sh = S, and there are still k unprocessed jobs at time S + pe such that they are
mutually incompatible. Then we have Con � S + pe + ∑k

i=1 pi = S + pe + P . We
consider two subcases as follows.
Subcase 2.1 h = k. In this case, for each j ∈ {1, 2, · · · , k}, the maximum release time
of the jobs inAi j is S j + pi j (not larger than S j +1). Given that inequality (15) holds,
a feasible schedule π ′ can be established in the following way: ∀ j ∈ {1, · · · , k}, all
jobs Ai j form a single batch and start at S j (π

′) = S j + 1. Then we have Copt �
Cmax(π

′) = Sh(π ′) + pih = Sh + 1 + pih = S + 1 + pe.
Subcase 2.2 h < k. Note that the release time of the only one job inAi j with h + 1 �
j � k is 0, and the maximum release time of the jobs in Ai j with 1 � j � h is
S j + pi j (not larger than S j + 1). Given that inequality (15) holds, a feasible schedule
π ′ can be constructed as follows: ∀ j ∈ {1, · · · , k}, all jobs Ai j form a single batch
and start at S j (π

′), where

⎧
⎪⎨

⎪⎩

S j (π
′) = 0, if j = k,

S j (π
′) = ∑k

l= j+1 pil , if h + 1 � j � k − 1,

S j (π
′) = max{S j + 1,

∑k
l=h+1 pil + ∑ j−1

l=1 pil }, if 1 � j � h.

Then we have

Cmax(π
′) = Sh(π

′) + pih = max{Sh + 1,
k∑

l=h+1

pil +
h−1∑

l=1

pil } + pih .

Recall that Sh = S, pih = pe and
∑k

l=1 pil = ∑k
j=1 p j = P . Therefore, we have

Copt � Cmax(π
′) = max{S + 1 + pe, P}.

In both subcases, we can deduce Copt � max{S + 1+ pe, P}. Recall that Con �
S + pe + P . If Copt � S + 1 + pe, noting that pe � max

1�i�k
{pk} = 1 and S < βk P ,

123

L. Miao et al.

then we obtain

Con
Copt

� S + pe + P

S + 1 + pe
= 1 + P − 1

S + 1 + pe
> 1 + P − 1

βk P + 1 + 1
= 1 + βk,

where the last equality follows from that βk satisfies the equation Px2 + 2x = P − 1.
If Copt � P , noting that S � βk P − pe, we have

Con
Copt

� S + pe + P

P
� βk P − pe + pe + P

P
= 1 + βk .

In conclusion, we can finally obtain Con/Copt � 1+ βk . Note that P = ∑k
j=1 p j =

∑k−1
i=0

1
(1+a)i

− ∑k
i=1

k−i
(1+a)i

ε. Then lim
k→∞

P = 1+a
a = 1

λ
, and so βk =

√
P2−P+1−1

P

tends to β = √
λ2 − λ + 1 − λ as k tends to ∞. Thus we get

Con
Copt

� 1 + βk → 1 + β, as k → ∞.

This completes the proof.

Combining Theorem 1 with Theorem 2, we have established the following theorem.

Theorem 3 For problem 1|online,KRT, p-batch,G = a-INT|Cmax, algorithm H is
a best possible online algorithm with a competitive ratio of 1 + β, where β =√

λ2 − λ + 1 − λ and λ = a
1+a .

Conclusions

In this paper, we study the problem of the online scheduling with kind release times
and job compatibilities on a single unbounded parallel-batch machine to minimize
makespan. We present a best possible online algorithm with competitive ratio of 1 +√

λ2 − λ + 1 − λ, where λ = a
1+a .

Acknowledgements The authors would like to thank the editor and two anonymous referees for their
helpful suggestions which have significantly improved the presentation of this paper.

Author Contributions All authors contributed equally to this paper.

Conflict of interest The authors declare that they have no conflict of interest.

References

[1] Lee, C.Y., Uzsoy, R., Martin-Vega, L.A.: Efficient algorithms for scheduling semiconductor burn-in
operations. Oper. Res. 40, 764–775 (1992)

[2] Brucker, P., Gladky, A., Hoogveen, H., Kovalyov, M.Y., Potts, C.N., Tautenhahn, T., van de Velde,
S.L.: Scheduling a batching machine. J. Sched. 1, 31–54 (1998)

123

A Best Possible Online Algorithm for Parallel-Batch · · ·

[3] Zhang,G.C.,Cai,X.Q.,Wong,C.K.:On-line algorithms forminimizingmakespanonbatch processing
machines. Nav. Res. Log. 48, 241–258 (2001)

[4] Dobson, G., Nambimadom, R.S.: The batch loading and scheduling problem. Oper. Res. 49, 52–65
(2001)

[5] Deng, X.T., Poon, C.K., Zhang, Y.Z.: Approximation algorithms in batch processing. J. Comb. Optim.
7, 247–257 (2003)

[6] Poon, C.K., Yu,W.C.: Aflexible on-line scheduling algorithm for batchmachinewith infinite capacity.
Ann. Oper. Res. 133, 175–181 (2005)

[7] Liu, P.H., Lu,X.W., Fang,Y.:Abest possible deterministic on-line algorithm forminimizingmakespan
on parallel batch machines. J. Sched. 15, 77–81 (2012)

[8] Tian, J., Fu, R.Y., Yuan, J.J.: Online over time scheduling on parallel-batch machines: a survey. J.
Oper. Res. Soc. China 2, 445–454 (2014)

[9] Li,W.H., Chai, X.:Online scheduling on bounded batchmachines tominimize themaximumweighted
completion time. J. Oper. Res. Soc. China 6, 455–465 (2018)

[10] Yuan, J.J., Ren, L.L., Tian, J., Fu, R.Y.: Online scheduling on two uniform unbounded parallel-batch
machines to minimize makespan. J. Oper. Res. Soc. China 7, 303–319 (2019)

[11] Liu, H.L., Lu, X.W.: Online scheduling on a parallel batch machine with delivery times and limited
restarts. J. Oper. Res. Soc. China 10, 113–131 (2022)

[12] Bellanger, A., Janiak, A., Kovalyov,M.Y., Oulamara, A.: Scheduling an unbounded batchingmachine
with job processing time compatibilities. Discrete Appl. Math. 160, 15–23 (2012)

[13] Boudhar, M., Finke, G.: Scheduling on a batch machine with job compatibilities. Belg. J. Oper. Res.
Stat. Comput. Sci. 40, 69–80 (2000)

[14] Boudhar, M.: Scheduling a batch processing machine with bipartite compatibility graph. Math.
Method. Oper. Res. 57, 327–513 (2003)

[15] Finke, G., Jost, V., Queyranne, M., Sebo, A.: Batch processing with interval compatibilities between
tasks. Discrete Appl. Math. 156, 556–568 (2008)

[16] Li, S.S., Cheng, T.C.E., Ng, C.T., Yuan, J.J.: Single-machine batch scheduling with job processing
time compatibilities. Theor. Comput. Sci. 583, 57–66 (2015)

[17] Fu, R.Y., Tian, J., Yuan, J.J., Li, S.S.: An optimal online algorithm for the parallel-batch scheduling
with job processing time compatibilities. J. Comb. Optim. 34, 1187–1197 (2017)

[18] Li, W.J., Yuan, J.J.: LPT online strategy for parallel-machine scheduling with kind release times.
Optim. Lett. 10, 159–168 (2016)

[19] Li,W.J., Li, S.S., Feng, Q.: Online batch scheduling with kind release times and incompatible families
to minimize makespan. Optim. Lett. 12, 301–310 (2018)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A Best Possible Online Algorithm For Parallel-Batch Scheduling with Kind Release Times and Job Compatibilities
	Abstract
	1 Introduction
	2 An Online Algorithm
	3 Analysis of Algorithm H
	4 A Matching Lower Bound
	Conclusions
	Acknowledgements
	References

