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Abstract
The double-factored decision theory forMarkov decision processes with multiple sce-
narios of the parameters is proposed in this article. We introduce scenario belief to
describe the probability distribution of scenarios in the system, and scenario expecta-
tion to formulate the expected total discounted reward of a policy. We establish a new
framework named as double-factored Markov decision process (DFMDP), in which
the physical state and scenario belief are shown to be the double factors serving as
the sufficient statistics for the history of the decision process. Four classes of policies
for the finite horizon DFMDPs are studied and it is shown that there exists a double-
factored Markovian deterministic policy which is optimal among all policies. We also
formulate the infinite horizon DFMDPs and present its optimality equation in this
paper. An exact solution method named as double-factored backward induction for
the finite horizon DFMDPs is proposed. It is utilized to find the optimal policies for
the numeric examples and then compared with policies derived from other methods
from the related literatures.
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1 Introduction

TheMarkov decision process (MDP) is an effective tool for modeling and decision-
making in a dynamic environment,which are used inmany disciplines such as robotics,
automatic control, economics, manufactures and so on [1–5]. MDPs consider the
intrinsic uncertainty which is realized by the uncertainty among its future transition.
But the indeterminacy of the parameters (transition probability and reward) in theMDP
is source of uncertainty that is not well addressed in many MDP problems. What’s
more, in reality it imposes significant difficulty in obtaining a precise representation
of the MDP parameters. There are various reasons, such as (i) imprecise or conflicting
information given by the content experts [6]; (ii) insufficient data from which to build
structures for parameter estimation [7]; (iii) non-stationary transition probabilities due
to insufficient and/or hidden state information [7]; and (iv) unpredictable but prevailing
events impacting the system [8].

There are generally two categories of parameter uncertainty in the MDPs. Firstly,
either or both of the parameters are unknown completely. For handling such prob-
lems, the theory of Bayes-adaptive Markov decision process (BAMDP) is established
by utilizing the concept of Bayesian inference [9, 10]. In a BAMDP, prior informa-
tion regarding the unknown parameters is represented by a parameterized distribution
and Bayesian inference is used to incorporate any new information in order to update
the distribution so that the problem of exploration–exploitation is addressed during
learning and sampling. [11] builds a rigorous framework rooted in information theory
for solving the MDPs with unknown transition probabilities. But these theories are
very difficult to implement on real-world problems. Secondly, the parameters lie in a
given range, in another words, there is a pre-defined uncertainty set that the parame-
ters belong to. In this context, there is the more traditional approach of mitigating the
parameter uncertainty inMDPs, known as robust dynamic programming. The standard
robust dynamic programming is a “max–min” approach in which the decision maker
seeks to find a policy that maximizes the worst-case performance when the transition
probabilities are allowed to vary within an uncertainty set [6, 12–15]. One of the key
results is that the max–min problem is tractable for instances that satisfy the rectangu-
larity property [12, 13]. Essentially, rectangularitymeans that observing the realization
of a transition probability parameter gives no information about the values of other
parameters for any other state-action-time triplet. Because each parameter value for
any given state-action-time triplet is independent to each other, the problem can be
decomposed so that each worst-case parameter is found via an optimization problem
called the inner problem. [12, 13] provide algorithms for solving themax–min problem
for a variety of uncertainty sets by providing polynomial-time methods for solving the
corresponding inner problem. While rectangular uncertainty sets are desirable from a
computational perspective, they can give rise to policies that are overly-conservative.

Recently, there has been a line of research on mitigating the impact of the parame-
ter uncertainty by incorporating multiple scenarios of the parameters into the solution
of the MDP. The parameter uncertainty in MDPs is encoded by allowing for multi-
ple scenarios of the rewards and transition probabilities. A scenario is one possible
realization of uncertainty and may result from possible realizations of a system, or
some observation of a system, or from a simulation model. So this model clearly falls
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into the second category of parameter uncertainty above. Each scenario is referred
to as a “model” of the MDP in [4], where all models are defined on the same state
space, action space, and set of decision epochs, but each model may vary in terms of
its rewards and transition probabilities. Such an MDP is known as the multi-model
Markov decision process in [4] and the concurrent Markov decision process in [5]. We
refer to it as the Markov decision process with multiple scenarios of the parameters
or the multi-scenario MDP. [4, 5, 16, 17] propose designing policies that maximize
a weighted value across multiple scenarios. [18] proposes minimizing the maximum
regret with respect to each scenario for the finite horizon multi-scenario MDPs. [17]
and [16, 19] propose a percentile optimization approach for finite horizon and infi-
nite horizon multi-scenario MDPs, respectively. So far, the exact solution methods for
this problem have relied on mixed-integer programming (MIP) formulations where
binary decision variables encode the policy and continuous variables encode the value
functions for each scenario of the multi-scenario MDP [4]. Although the MIP can be
used to find exact solutions, these problems are NP-hard [4, 17], and the MIP solution
methods for this problem have been limited to small multi-scenario MDPs.

The invention of multi-scenario MDPs is motivated by parameters estimated with
statistical uncertainty [4], sometimes the results could be dramatically different or even
conflicting with each other, especially in the field of clinical/medical research, where
MDPs has been successfully used to design optimal treatment and screening protocols,
however, longitudinal observation data used to characterize the MDP model are often
very limited due to the patient population and cost of acquisition. In this context,
there is the need for designing policies that is general favorable for several parameter
possibilities, known as model or scenario among related literatures. Moreover, we
believe when actually implementing the policies to an individual case in practice, there
is information hidden under the realization of state transitions that could be utilized to
make inference on the individual itself, on how likely the individual is following each
scenario. And with an initial set of weights or distribution of the scenarios, the policies
is developed considering all future possibilities so that it’s optimal even before any
information and action being collected or implemented.

So in this article, we propose a new theoretical framework for the weighted value
problem of the multi-scenario MDPs and methods solving for its exact solution. We
introduce the concepts of scenario belief and the scenario expectation to formulate the
expected total discounted reward of a policy, and establish a new framework named as
double-factored Markov decision process (DFMDP). The “double-factored” here are
two factors, i.e., the physical state and the scenario belief of the system, that work as
sufficient statistics for the past history of observations and actions in themulti-scenario
MDPs.Wewill demonstrate that these two factors summarize all the prior information
gained up to the current stage. Thus they provide complete information for future
decision-making. We analyze four classes of policies for the finite horizon DFMDPs.
They are respectivelydouble-factoredhistory-dependent randomized,double-factored
history-dependent deterministic, double-factored Markovian randomized and double-
factored Markovian deterministic policies. It is shown that there exists a double-
factored Markovian deterministic policy which is optimal among all policies above.
An exact solution method for the double-factored Markovian deterministic policies is
proposed. We also formulate the infinite horizon DFMDPs in a later section, but the
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focus of this paper is still on finite horizon problems. With this framework, we are
able to develop algorithms that can be scaled to real-world problems, solving for the
exact solutions to the identical weighted value problem of the multi-scenario MDPs,
with a side benefit of keeping updating the scenario distribution based on all history
observations and actions. So other than solving for the weighted value problem which
is our primary goal, this framework can also be extended and utilized to solve learning
or recognition problems.

Other than clinical justification where there exists multiple well-establish authori-
ties or studies to build up the MDP parameters, in the context of E-commerce where
MDP-based recommendation system has been utilized [20], there is ample amount of
data to characterize the whole customer population into sub-category based on cen-
sus data and shopping behaviors. When a new customer shops online, we can make
tailored recommendation when we have more confidence on the sub-category the cus-
tomer fits, based on his/her history reactions. Yet before the customer performs any
actions, we could still make recommendation considering an initial belief or weights
on all sub-categories that is benefiting the expectation of the objectives measured via
either sales or click-through rate.

This article is organized as follows. In Sect. 2, the definition and notation of the
multi-scenario MDPs are presented. In Sect. 3, the finite horizon and the infinite
horizon DFMDPs are formulated. Four classes of policies are discussed and an exact
solutionmethod is proposed for the finite horizonDFMDPs. The computational exper-
iments involving three sets of test instances for comparing several solutionmethods for
the finite horizon DFMDPs are illustrated in Sect. 4. Section 5 summarizes the work
presented in this article and shares plans for future research on the relevant topics.

2 Background and Notation

2.1 StandardMDP

We denote the standard MDP by a 5-elements-tuple (T , S, A, (p,r), s0) where T
� {0, 1,· · ·, Z − 1} is the finite discrete set of decision epoch, S is the finite state
set, A is the finite action set, (p,r) is the parameter pair in which p is the |S| ×|S| ×
|A| transition probability matrix whose element pas,s′ is the probability of ending in
state s′ ∈ S if the system performs action a ∈ A in state s ∈ S, and r is the |S| ×|S| ×
|A| reward matrix whose element ras,s′ is the reward obtained by ending in state s′ ∈
S if the system performs action a ∈ A in state s ∈ S, and s0 ∈ S is the initial state.

Moreover, we assume that the terminal reward is denoted by r0 �
[
r01 , · · · , r0|S|

]�

and the discounted factor by γ ∈ [0, 1].
Decision epoch t is also called time t. The interval between two successive decision

epochs is called period. We consider the Markov deterministic policy π� (x0, x1, ···,
xZ-1) ∈ �where xt : S → A is the decision rule at epoch t ∈ T , which assign one action
at � xt (st) to each state st ∈ S, and � is the policy set. The goal of the decision maker
is to specify a policy π ∈ � that maximize the expected total discounted rewards over
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the planning horizon [1]

max
π∈�

Eπ
s0

{
Z−1∑
t�0

γ t ratst + γ Zr0sZ

}
,∀ s0 ∈ S, (1)

where ras � ∑
s′∈S

pas,s′r
a
s,s′ . The optimal policy of (1) can be found by the backward

induction algorithm in [1].
The Bellman’s equations for the infinite horizon MDP are

V ∗(s) � max
a∈A

{
ras + γ

∑
s′∈S

pas,s′V
∗(s′)

}
,∀ s ∈ S, (2)

where V ∗(s) is the optimal value function of state s for the infinite horizon MDP. The
optimal stationary and deterministic policy of this problem can be found by the value
iteration or the policy iteration in [1].

2.2 Multi-Scenario MDP

We denote the multi-scenario MDP by a 6-elements-tuple
(T , S, A,C, Jp,r , 〈s0, bs0〉) where T , S and A are following the same defini-
tions above, C is the finite discrete set of scenarios, Jp,r � {(p1, r1),···,(p|C|, r|C|)}
is the parameter pair set in which (pk , rk) is the parameter pair of scenario k ∈ C
where the elements in pk are denoted by pas,s′,k with the same definitions as pas,s′
above, and the elements in rk are denoted by ras,s′,k with the same definitions as ras,s′
above, 〈s0, bs0〉 is the ordered pair consisting of the initial state s0 ∈ S and the initial
probability distribution of scenarios, bs0 � [bs0,1, · · · , bs0,|C|]� ∈ �C , where �C

denotes the set of probability distributions on set C.
For easy of description, we refer to the standard MDP with the parameter pair (pk ,

rk), k ∈ C, as the MDP k as in [4]. We use ras,k � ∑
s′∈S

pas,s′,kr
a
s,s′,k to denote the

immediate expected reward in the MDP k when action a ε A is taken in state s ∈ S

and r0k � [r01,k, . . . , r0|S|,k]
�
to denote the terminal reward in the MDP k.

Given a multi-scenario MDP (T , S, A,C, Jp,r , 〈s0, bs0〉), the value of a policy π

∈ � in MDP k, for a sepcific k ∈ C, is given by its expected total discounted rewards
evaluated with the parameter pair (pk , rk):

V π
k (s0) � Eπ

s0

[
Z−1∑
t�0

γ t ratst,k + γ Zr0sZ ,k

]
. (3)

The weighted value of any policy π ∈ � in the multi-scenario MDP is defined by

Wπ (s0, bs0 ) �
∑
k∈C

bs0,kV
π
k (s0) �

∑
k∈C

bs0,k E
π
s0

[
Z−1∑
t�0

γ t ratst ,k + γ Zr0sZ ,k

]
, (4)
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and the weighted value problem (WVP) is defined as the problem of finding a solution
to

W ∗(s0, bs0
) � max

π∈�
Wπ

(
s0, bs0

) � max
π∈�

{∑
k∈C

bs0,k E
π
s0

[
Z−1∑
t�0

γ t ratst ,k + γ Zr0sZ ,k

]}
.

(5)

We also have the set of policies �* � {π :Wπ � W*} ⊆ � that achieve the maximum
in (4) (see [4]).

Ref. [4] proposes two approximatemethods and theMIP formulation for Eq. (5) and
show that the WVP for the Markov deterministic policy class is a NP-hard problem.

3 Double-FactoredMarkov Decision Process

In this section, a novel framework named as double-factored Markov decision
process (DFMDP) is formulated for theWVP of the multi-scenario MDP. A backward
induction algorithm is proposed for solving the exact solutions of the DFMDPs.

3.1 Scenario Belief and Its Update

The weights in (5) are one’s estimate of the probabilities that scenarios occur in the
multi-scenario MDPs. We believe that bs0 is only the initial probability distribution of
the scenarios and it will change with the system evolution. In fact, system’s state tran-
sitions under specific actions contain the information related to scenario probabilities.
The decision makers can utilize the information to update the scenario probabilities
according to the observation of state transitions when the system evolves. For that rea-
son, we introduce the scenario belief bt as follows to describe the scenario probability
distribution at time t:

bt � [bt,1, · · · , bt,k, · · · , bt,|C|]�, bt,k � 0,∀ k ∈ C and
∑
k∈C

bt,k � 1.

In order to derive the update function for the scenario belief, we define gt as the
total available information in the multi-scenario MDP at decision epoch t. Since at−1
denotes the action implemented at decision epoch t – 1 and st the state observed at
decision epoch t, we have

gt � (st , at−1, gt−1). (6)

Then the elements of the scenario belief is defined as

bt,k � Pr(ck |gt ),∀ k ∈ C, (7)
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where ck denotes the event that the realization of system’s scenario is k. The substitu-
tion of (6) into (7) and the application of Bayes’ rule yields

bt,k � Pr(ck |st , at−1, gt−1) � Pr(st |ck, at−1, gt−1)Pr(ck |at−1, gt−1)

Pr(st |at−1, gt−1)
,∀ k ∈ C . (8)

In (8), the first probability in the numerator is the transition probability of scenario k,
i.e., Pr(st |ck, at−1, gt−1) � pat−1

st−1,st ,k
since gt−1 � (st−1, at−1, gt−2). The prior prob-

ability Pr(ck |at−1, gt−1) is independent of at−1 given gt−1, since choosing for action
is completely under our control at time t − 1, so Pr(ck |at−1, gt−1) � Pr(ck |gt−1) �
bt−1,k . And the denominator of the equation is just the sum of the numerator over all
possible value of k representing each scenario. So we have

bt,k � bt−1,k p
at−1
st−1,st ,k∑

k′∈Cbt−1,k′ pat−1
st−1,st ,k′

,∀ k ∈ C . (9)

We can see in (9) that bt is a function of st , st−1, bt−1 and at−1. So we use bst to
denote the scenario belief when state st is observed at time t, in order to differentiate
it from other states being observed, also the time index t only shows as subscript of st
to simplify the notation. With these in mind, Eq. (9) can be rewritten as

bst ,k � bst−1,k p
at−1
st−1,st ,k∑

k′∈C bst−1,k′ pat−1
st−1,st ,k′

,∀ at−1 ∈ A, st−1, st ∈ S, k ∈ C . (10)

Equation (10) can also be expressed as a function that bst � τ
(
st−1, bst−1, at−1, st

)
where τ (·) is called the scenario belief update function. We stipulate that bst � 0
if the denominator in (10) is equal to zero, implying the situation where state st is
unreachable at time t. Clearly bst ∈ �C , so �C is also called scenario belief space.

Stating from any state s0 ∈ S and scenario belief bs0 ∈ �C , the scenario belief
bst in state st at time t can be obtained by using (10) repeatedly if st is observed. We
denote the combination of st and bst by an ordered pair 〈st , bst 〉, which is referred to
as the ordered pair of state and scenario belief at time t or the state-belief pair for
short. It follows that 〈st , bst 〉 ∈ S × �C where S × �C is the Cartesian production
of S and �C . In addition, the scenario belief update function could be written as
bst � τ

(〈st−1, bst−1〉, at−1, st
)
to highlight the state-belief pair.

The important feature of (10) is that the calculation of bst in state st at time t requires
only the state-belief pair 〈st−1, bst−1〉 at time t − 1; thus, 〈st−1, bst−1〉 summarizes all
the information gained prior to time t − 1 and represents a sufficient statistic for the
complete past history of the process gt−1. This important feature sets the foundation
of the double-factored decision theory.

3.2 Scenario Expectation and Expected Total Reward

Starting with any 〈s0, bs0〉 ∈ S × �C and using (10) repeatedly, all state-belief
pairs 〈st , bst 〉 and actions at for t � 0, 1,· · ·, Z will form the transition tree of the
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system as shown in Fig. 1. Within the tree, there are usually |A| actions behind each
state-belief pair and |S| state-belief pairs behind each action. Each 〈st , bst 〉 usually has
|A|·|S| successors 〈st+1, bst+1〉 � 〈st+1, τ (〈st , bst 〉, at , st+1)〉. And apart from 〈s0, bs0〉,
each 〈st , bst 〉 has one unique predecessor.

There are two types of special state-belief pairs in the transition tree. If bst � e0
in state st at some decision epoch t where e0 is a |C|-dimensional zero vector, the
corresponding state-belief pair 〈st , bst 〉 is referred to as the pseudo state-belief pair.
The reason for the appearance of 〈st , e0〉 is that state st is unreachable. Thus, a pseudo-
state-belief pair is a "leaf" in the tree and it no longer has any successor. If bst � ek
in state st at some decision epoch t where ek is a |C|-dimensional unit vector with its
kth element being one, the corresponding state-belief pair 〈st , bst 〉 is referred to as the
degenerate state-belief pair.

Any path (〈s0, bs0〉, a0, 〈s1, bs1〉, · · · , at−1, 〈st , bst 〉) along the transition tree
will be the possible realization when the system evolves. Thus the history for(
T , S, A,C, Jp,r , 〈s0, bs0〉

)
is defined as the sequence of state-belief pairs and actions,

i.e., ht � (〈s0, bs0〉, a0, 〈s1, bs1〉, · · · , at−1, 〈st , bst 〉
)
, which is referred to as the his-

tory up to time t from 〈s0, bs0〉 onward, or the history up to time t for short. As a
convention, 〈st , bst 〉 denotes the state-belief pair at time t when the history is ht . The
history ht follows the recursion ht � (

ht−1, at−1, 〈st , bst 〉
)
with h0 � 〈s0, bs0〉. We

let Ht denote the set of all possible history up to time t and call it history set up to
time t from 〈s0, bs0〉 onward, or history set up to time t for short.

Similar to the standard MDPs, there are four classes of decision rules xt for the
DFMDPs. History-dependent randomized decision rules map the history set Ht into
the probability distribution set �A on action set A, i.e., xt : Ht → �A or μht (·) �
xt (ht ), μ(·) ∈ �A, ht ∈ Ht . History-dependent deterministic decision rules map the
history set Ht into the action set A, i.e., xt : Ht → A or at � xt (ht ), ht ∈ Ht .

Fig. 1 The transition tree
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Double-factored Markovian randomized decision rules map S × �C into �A, i.e.,
xt : S × �C → �A or μ〈st ,bst 〉(·) � xt

(
st , bst

)
, μ(·) ∈ �A, 〈st , bst 〉 ∈ S × �C .

Double-factored Markovian deterministic decision rules map S × �C into A, i.e.,
xt : S × �C → A or at � xt

(
st , bst

)
, 〈st , bst 〉 ∈ S × �C . A double-factored

Markovian deterministic decision rule specifies the action choice only considering the
fact that the system is in state st with belief bst at time t. We will prove later that it is
Markovian (memoryless) because it depends on the previous history only through the
current state-belief pair of the system, i.e., 〈st , bst 〉 is a sufficient statistic of the past
history as mentioned above.

The policies composed of the above four classes of decision rules, π �
(x0, x1, · · · , xZ−1), are referred to as double-factored history-dependent randomized
policies, double-factored history-dependent deterministic policies, double-factored
Markovian randomized policies and double-factored Markovian deterministic poli-
cies, respectively. And the sets of all policies of these classes are denoted by �DHR,
�DHD, �DMR, and �DMD, respectively.

The relationship between the various classes of policies is as follows: �DMD ⊂
�DMR ⊂ �DHR and �DMD ⊂ �DHD ⊂ �DHR. We will show later with a series of
theorems that the optimal double-factored Markovian deterministic policies are the
best among all classes of policies for the finite horizon DFMDPs.

We next use a one-period decision-making problem to introduce the concept of the
scenario expectations. In a one-period problem, Z � 1 and T � {0}. We assume that
whenever the system is in state s1 at the end of this period, the decision maker receives
a terminal reward V (s1), where V is a definite real-valued function on S. Suppose the
system sits in state s0 with scenario belief bs0 at the start of the period. The decision
maker aims to select an action a∈A to maximize the expected total discounted reward.
Suppose he chooses a deterministic policy π � (x0), which selects action a ∈ A at
initial decision epoch.

In this problem, the expected reward for the MDP k is

V a
k (s0) � ras0,k + γ

∑
s1∈S

pas0,s1,kV (s1). (11)

Since the scenario realization of the system is uncertain before the decision-making,
we can consider the problem from the perspective of expectations over possible sce-
narios and define the expected total discounted reward as follows:

V a(s0, bs0
) �

∑
k∈C

bs0,kV
a
k (s0) �

∑
k∈C

bs0,k

⎡
⎣ras0,k + γ

∑
s1∈S

pas0,s1,kV (s1)

⎤
⎦. (12)

Letting ras0 � ∑
k∈C bs0,kr

a
s0,k

and pas0,s1 � ∑
k∈C bs0,k p

a
s0,s1,k

, (12) is rewritten as

Va(s0, bs0
) � ras0 + γ

∑
s1∈S

pas0,s1V (s1). (13)
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The optimal action a* is obtained by finding the maximum of (13) over all actions in
set A:

a∗(s0, bs0
) ∈ argmax

a∈A

⎧⎨
⎩ras0 + γ

∑
s1∈S

pas0,s1V (s1)

⎫⎬
⎭.

If the decision maker uses a randomized policy with probability μ(a)
to select actions in state s0, the expected total discounted reward equals∑

a∈A μ(a)
{
ras0 + γ

∑
s1∈S pas0,s1V (s1)

}
, where

∑
a∈A μ(a) � 1 and μ(a) � 0 for

a ∈ A. Since

max
μ∈�A

⎧⎨
⎩

∑
a∈A

μ(a)

⎡
⎣ras0 + γ

∑
s1∈S

pas0,s1V (s1)

⎤
⎦

⎫⎬
⎭ � max

a∈A

⎧⎨
⎩ras0 + γ

∑
s1∈S

pas0,s1V (s1)

⎫⎬
⎭,

obviouslywe cannot obtain a larger expected reward in state s0 bymeans of randomized
policies.

We generalize the idea of scenario expectations above to the decision horizon of(
T , S, A,C, Jp,r , 〈s0, bs0〉

)
and use it to define the expected total discounted reward

generated by a policy. Let 〈st , bst 〉 be the state-belief pair in state st at decision epoch
t.We define

ratst �
∑
k∈C

bst ,kr
at
st ,k

,∀ at ∈ A,

patst ,st+1 �
∑
k∈C

bst ,k p
at
st ,st+1,k

,∀ at ∈ A, st+1 ∈ S, (14)

where ratst is called the scenario expectation reward and patst ,st+1 the scenario expecta-
tion transition probability in state st at decision epoch t. Let V π (s0, bs0 ) represent the
expected total discounted reward over the decision-making horizon if policy π is used
and the system has an initial state-belief pair 〈s0, bs0〉 ∈ S × �C . For π ∈ �DHR, it is
defined by

V π
(
s0, bs0

) � Eπ
〈s0,bs0 〉

{
Z−1∑
t�0

γ t ratst + γ Zr0sZ

}
, (15)

where r0sZ � ∑
k∈C bsZ ,kr0sZ ,k . For π ∈ �DHD and π ∈ �DMD, the expected total

discounted reward can be respectively expressed as

V π
(
s0, bs0

) � Eπ
〈s0,bs0 〉

{
Z−1∑
t�0

γ t r xt (ht )st + γ Zr0sZ

}
, (16)
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and

V π
(
s0, bs0

) � Eπ
〈s0,bs0 〉

{
Z−1∑
t�0

γ t r
xt (st ,bst )
st + γ Zr0sZ

}
. (17)

It will be shown later by Theorem 7 that V π
(
s0, bs0

)
equals Wπ (s0, bs0 ) in (4).

3.3 Finite Horizon DFMDP

According to the above theory, the optimization problem for a finite horizon
DFMDP is expressed as

V ∗(s0, bs0
) � max

π∈�DHR
V π

(
s0, bs0

)
,∀ 〈s0, bs0〉 ∈ S × �C . (18)

Now we provide a recursive algorithm to evaluate V π (s0, bs0 ). Let U
π
t : Hπ

t → R
denote the expected total discounted reward obtained by using a fixed policy π at
decision epoch t, t + 1, ···, Z , where Hπ

t is the history set following the policy π up
to time t and Hπ

t � Ht for π ∈ �DHR. If the history at decision epoch t is ht ∈ Hπ
t ,

then we define Uπ
t (t < Z ) by

Uπ
t (ht ) � Eπ

ht

{
Z−1∑
n�t

γ n−t ransn + γ Z−t r0sZ

}
. (19)

To simplify the notation, assume that a deterministic π ∈ �DHD has been specified.
In practice, we will not need to evaluate randomized policies, because subsequent
results establish that deterministic policies are optimal under the expected total reward
criteria. For a given 〈s0, bs0〉, the corresponding Hπ

t is defined by

Hπ
0 � {h0} � {〈s0, bs0 〉

}
,

Hπ
t � {

ht : ht � (
ht−1, xt−1(ht−1), 〈st , τ

(〈st−1, bst−1 〉, xt−1(ht−1), st
)〉),∀ ht−1 ∈ Hπ

t−1,∀ st ∈ S
}
. (20)

It is obvious that Hπ
t ⊂ Ht when |A|> 1. If the history at decision epoch t is

ht ∈ Hπ
t , U

π
t is expressed by

Uπ
t (ht ) � Eπ

ht

{
Z−1∑
n�t

γ n−t r xn(hn)sn + γ Z−t r0sZ

}
. (21)
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∏

∏

The following theorem guarantees that the expected value Uπ
0 (h0) generated by

the algorithm above is equal to V π
(
s0, bs0

)
in (16).

Theorem 1 For any given h0 � 〈s0, bs0〉 ∈ S × �C and a fixed policy π ∈ �DHD,
suppose Uπ

t , t ∈ T , has been generated by the policy evaluation algorithm above.
Then, for all t � Z , (21) holds and V π

(
s0, bs0

)
in (16) equals Uπ

0 (h0) for any
h0 � 〈s0, bs0〉 ∈ S × �C .

For ease of reading, we defer all theorem proofs to “Appendix”.
To generalize the algorithm to randomized policies, it would require an additional

summation in (22) to account for the probability distribution of the action at decision
epoch t under decision rule xt as follows:

Uπ
t (ht ) �

∑
a∈A

μht (a)

⎧⎨
⎩r xt (ht )st + γ

∑
st+1∈S

pxt (ht )st ,st+1U
π
t+1

(
ht , xt (ht ), 〈st+1, bst+1〉

)
⎫⎬
⎭.

(23)

Theorem 1 shall be extended to π ∈ �DHR as follows.

Theorem 2 For any given h0 � 〈s0, bs0〉 ∈ S × �C and a fixed policy π ∈ �DHR,
suppose Uπ

t , t ∈ T , has been generated by the policy evaluation algorithm with (23)
replacing (22). Then, for all t � Z , (19) holds and V π

(
s0, bs0

)
in (15) equals Uπ

0 (h0)
for any h0 � 〈s0, bs0〉 ∈ S × �C .

Now let

U∗
t (ht ) � max

π∈�DHR
Uπ
t (ht ).

It indicates the maximum over all policies of the expected total discounted reward
from decision epoch t onward when the history up to time t is ht .

The optimality equations for the finite horizon DFMDP are given by

Ut (ht ) � max
at∈A

⎧
⎨
⎩ratst + γ

∑
st+1∈S

patst ,st+1Ut+1
(
ht , at , 〈st+1, bst+1〉

)
⎫
⎬
⎭ (24)
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for t ∈ T and ht � (
ht−1, at−1, 〈st , bst 〉

) ∈ Ht , where 〈st+1, bst+1〉 �
〈st+1, τ (〈st , bst 〉, at , st+1)〉. For t � Z and hZ � (

hZ−1, aZ−1, 〈sZ , bsZ 〉) ∈ HZ ,
we add the boundary condition

UZ (hZ ) � r0sZ . (25)

Before stating more theorems, we introduce the following lemma 1.

Lemma 1 Let f be a real-valued function on an arbitrary finite discrete set A and μ()
be a probability distribution on A. Then

sup
a∈A

f (a) �
∑
a∈A

μ(a) f (a).

The following theorem summarizes the optimality properties of solutions to the
optimality equations.

Theorem3 LetHt be the history up to time t from any h0 � 〈s0, bs0〉 onward. Suppose
Ut are solutions of (24) and (25) for t � 0,1,· · · , Z . Then

(i) Ut (ht ) � U∗
t (ht ) for all ht ε Ht , t � 0,1,· · · , Z , and

(ii) V ∗(s0, bs0
) � U0(h0).

The following result shows how to use the optimality equations to find the optimal
policy and to verify its optimality.

Theorem 4 Suppose U∗
t , t � 0, 1, · · · , Z , are solutions of (24) and (25), and policy

π∗ � (
x∗
0 , x

∗
1 , . . . , x∗

Z−1

) ∈ �DHD satisfies

r
x∗
t (ht )

st + γ
∑
st+1∈S

p
x∗
t (ht )

st ,st+1U
∗
t+1

(
ht , x

∗
t (ht ), 〈st+1, bst+1〉

)

� max
at∈A

⎧
⎨
⎩ratst + γ

∑
st+1∈S

patst ,st+1U
∗
t+1

(
ht , at , 〈st+1, bst+1〉

)
⎫
⎬
⎭ (26)

for t ∈ T . Then

(i) for t � 0,1,· · · , Z ,

Uπ∗
t (ht ) � U∗

t (ht ),∀ ht ∈ Ht .

(ii) π* is the optimal policy, and

V π∗(
s0, bs0

) � V ∗(s0, bs0
)
,∀〈s0, bs0〉 ∈ S × �C .

Note that we have restricted attention to double-factored history-dependent deter-
ministic policies in Theorem 4. This is because if there existed a double-factored
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history-dependent randomized policy which satisfied the obvious generalization of
(26), as a result of Lemma 1, we could find a deterministic policy which satisfies (26).

Equation (26) can be written as

x∗
t (ht ) ∈ argmax

at∈A

⎧⎨
⎩ratst + γ

∑
st+1∈S

patst ,st+1U
∗
t+1

(
ht , at , 〈st+1, bst+1〉

)
⎫⎬
⎭, t ∈ T . (27)

The optimal policy π* derived from (27) in Theorem 4 exists because of the finite
set S and A. So we obtain directly Theorem 5.

Theorem 5 There exists an optimal double-factored history-dependent deterministic
policy for finite state set and action set.

We next show that there exists an optimal policy which is double-factored Marko-
vian and deterministic.

Theorem 6 Let U∗
t , t � 0, 1, · · · , Z , be the solutions of (24) and (25). Then

(i) for t � 0, 1,· · · , Z , U∗
t (ht ) depends on ht only through 〈st , bst 〉, i.e., U∗

t (ht ) �
U∗
t

(
st , bst

)
;

(ii) there exists an optimal policy which is double-factored Markovian and determin-
istic when both S and A are finite.

Theorem6 shows that there exists a double-factoredMarkovian deterministic policy
that is optimal among all classes of policies. Furthermore, it follows from (A7) in the
“Appendix” that there are the optimality equations in terms of the optimal double-
factored value function, U∗

t

(
st , bst

)
:

U∗
t

(
st , bst

) � max
at∈A

⎧⎨
⎩

∑
k∈C

bst ,kr
at
st ,k

+ γ
∑
st+1∈S

∑
k∈C

bst ,k p
at
st ,st+1,k

U∗
t+1

(
st+1, τ

(〈st , bst 〉, at , st+1
))

⎫⎬
⎭.

(28)

So we have established that

(29)

V ∗ (
s0, bs0

) � max
π∈�DHR

V π
(
s0, bs0

) � max
π∈�DHD

V π
(
s0, bs0

)

� max
π∈�DMD

V π
(
s0, bs0

)
,∀ 〈s0, bs0〉 ∈ S × �C ,

where the expected total discounted rewards V π (s0, bs0 ) generated by policies π ∈
�DHR, π ∈ �DHD, and π ∈ �DMD are expressed by (15), (16) and (17), respectively.

The following theorem establishes the relationship between the WVP in [4] and
our finite horizon DFMDP problem.

Theorem 7 The finite horizon DFMDP is equivalent to the WVP of multi-scenario
MDP.
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Thus a DFMDP can also be denoted by the 6-elements-tuple(
T , S, A,C, Jp,r , 〈s0, bs0〉

)
according to the equivalence in Theorem 7.

Now we present the double-factored backward induction algorithm (DFBI) for the
exact solutions of the finite horizon DFMDPs based on the above theory.

The DFBI is an exact solution method for the finite horizon DFMDPs. We know
from the transition tree in Fig. 1 that if all state-belief pairs 〈st , bst 〉 for t � 0,1, ···, Z are
reachable, |Ψ t |� (|A|·|S|)t . So the time complexity of the algorithm is O((|A|·|S|·|C|)Z )
and it increases exponentially with the number of decision epochs.

When actually implementing the method, there are several approaches listed below
to reduce the computational complexity such that the algorithm would be practicable
to solve real-world problems.

(i) For any〈st , bst 〉, t � 1, ···, Z , in step 1, if 〈st , bst 〉 equals its elder 〈st ′ , bst ′ 〉, t′ < t,
or its brother 〈st , bst 〉′, its sons can be directly copied from ones of 〈st ′, bst ′ 〉 or 〈st , bst 〉′
to reduce the computation. If 〈st , bst 〉 is a pseudo-state-belief pair, no computation for
its sons is required.

(ii) For U∗
t (st , bst ) and A∗

t (st , bst ) of 〈st , bst 〉 ∈ 	t in step 4, since the same state-
belief pairs in set Ψ t have the same U∗

t and A∗
t according to Theorem 6, copies of

U∗
t and A∗

t are directly used to avoid repetitive computations. When programming
the algorithm, let U∗

t

(
st , bst

) � 0 and A∗
t

(
st , bst

) � ∅ when 〈st , bst 〉 � 〈st , e0〉, and
U∗
t

(
st , bst

) � U∗
t,k(st ) and A∗

t

(
st , bst

) � A∗
t,k(st ) when 〈st , bst 〉 � 〈st , ek〉, k ∈ C ,

where U∗
t,k(st ) and A∗

t,k(st ) are the optimal value function and the optimal action set
of MDP k at time t.
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(iii) When implementing the DFBI, we only need to store the set 	t , as well as
the parent-son relationship between 〈st , bst 〉 ∈ 	t and 〈st+1, bst+1〉 ∈ 	t+1 in order to
reduce the storage demand of the algorithm.

There are three types of scenarios illustrated in [16]. They can be described by three
sets of parameter pair respectively:

(I) For certain transition probabilities and uncertain rewards, Jp,r � Jp0,r �
{( p0, r1

)
, · · · , ( p0, r |C|

)}.
(II) For uncertain transition probabilities and certain rewards, Jp,r � Jp,r0 �

{( p1, r0
)
, · · · , ( p|C|, r0

)}.
(III) For uncertain transition probabilities and rewards, Jp,r �

{( p1, r1
)
, · · · , ( p|C|, r |C|

)}.

Actually, both the type-I and the type-II scenarios are the special cases of the type-III
scenarios.

The following theorem once again establishes the relationship between the
DFMDPs and the standard MDPs.

Theorem 8 The DFMDP
(
T , S, A,C, Jp,r , 〈s0, bs0〉

)
with the type-I of the multiple

scenarios, i.e., Jp,r � {(
p0, r1

)
, · · · , ( p0, r |C|

)}
, is equivalent to the standard MDP

with parameter pair ( p0, r) where r � ∑
k∈C

bs0,k rk .

The Weight-Select-Update (WSU) approximation algorithm in [4] is also a back-
ward induction algorithm. Nowwe show that theWSU can solve exactly the DFMDPs
with the type-I scenarios.

With the notations in this article, the procedure of the WSU is as follows:
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There is Jp,r � {( p0, r1
)
, · · · , ( p0, r |C|

)} in the (
T , S, A,C, Jp,r , 〈s0, bs0〉

)
with

the type-I scenarios. Let Ut (st ) � ∑
k∈C bs0,kUt,k(st ), t � 0, 1, · · · , Z . With param-

eters p0 and r , (30) and (31) in the above procedure become as follow:

xt (st ) ← argmax
at∈A

⎧⎨
⎩ratst +

∑
st+1∈S

patst ,st+1,0Ut+1(st+1)

⎫⎬
⎭, (30′)

and

UZ (sZ ) � r0sZ ,

Ut (st ) ← r xt (st )st +
∑
st+1∈S

pxt (st )st ,st+1,0
Ut+1(st+1). (31′)

The procedure with (30′) and (31′) is just for the solutions of the standard MDP
with parameter pair ( p0,r).

The mean value problem (MVP) heuristic is another approximation algorithm for
the DFMDPs. The MVP is a simple problem in which all parameters take on their
expected values. For the DFMDPs, MVP corresponds to the case where all transition
probabilities and rewards are weighted as follows:

r̃ as �
∑
k∈C

bs0,kr
a
s,k, p̃

a
s,s′ �

∑
k∈C

bs0,k p
a
s,s′,k,∀ s, s′ ∈ S, a ∈ A.

That is, the MVP is a standard MDP problem with the parameter pair ( p̃, r̃).
By themeans of computational experiment in Sect. 4, wewill compare the solutions

by the MVP and the WSU approximation methods with the solutions by our method.
Furthermore, we can obtain the following corollary based on the definition of theMVP
and the WSU methods above.

Corollary Both the MVP and the WSU methods are the exact solution methods for
DFMDPs with type-I scenarios.

3.4 Infinite Horizon DFMDP

Now we formulate the infinite horizon DFMDPs. We assume that the state set, the
action set and the scenario set are finite, the transition probabilities and the rewards
for each scenario are stationary (time homogeneous), the rewards of each scenario are
bounded. The discounted factor γ satisfies that 0 < γ < 1.We consider the stationary
and deterministic policy π � (x(s, bs), x(s, bs), ···), where the decision rule x: S × C
→ A specifies the action to be taken at any state-belief pair.

Under the above assumptions, the optimality equations (28) can also be written as
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Vn(sn, bsn ) � max
an∈A

⎧
⎨
⎩

∑
k∈C

bsn ,kr
an
sn ,k

+ γ
∑

sn+1∈S

∑
k∈C

bsn ,k p
an
sn ,sn+1,k

Vn+1
(
sn+1, τ

(〈sn, bsn 〉, an, sn+1
))

⎫
⎬
⎭.

(32)

Passing to the limit in (32) suggests that equations of the following form will charac-
terize values and optimal policies for the infinite horizon DFMDPs:

V (s, bs) � max
a∈A

{∑
k∈C

bs,kr
a
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a
s,s′,kV

(
s′, τ

(〈s, bs〉, a, s′))
}

, (33)

where V (s, bs) denotes the optimal value function for 〈s, bs〉. The system of equations
(33) are called the optimality equations or Bellman equations for the infinite horizon
DFMDPs.

The Bellman equations (33) can also be rewritten in the value function mapping
form. Let V be the space of real-valued bounded functions V : S × C → R, we have
η: S × �C × A × V → R defined as

η(s, bs, a, V ) �
∑
k∈C

bs,kr
a
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a
s,s′,kV

(
s′, τ

(〈s, bs〉, a, s′)).

Now by defining the value function mapping H: V → V as HV (s, bs) �
maxa∈Aη(s, bs, a, V ), the Bellman equations (33) can be written as V � HV .

Theorem 9 Let H be the value function mapping defined above, then H
is an isotone mapping and a contraction under the supremum norm ||V ||�
sup〈s,bs 〉∈S×�C |V (s, bs)|.

Since H is a contraction mapping, there exists a unique V* ∈ V such that V* �
HV* by Barnach’s fixed-point theorem [1]. And for any V0 ∈ V , the sequence {Vn}
defined below converges to V* (see [1]):

Vn � HVn−1 � HnV0.

The theory above is the base of developing algorithms solving the infinite horizon
DFMDPs. To limit the scope of this paper, the algorithms and case studies for the
infinite horizon DFMDPs would be presented by our follow-up articles.

4 Computational Experiments

The computational experiments involving three sets of test instances for comparing
solutionmethods for finite horizonDFMDPs considering run-time and solution quality
are illustrated in this section. The first set of experiments is based on a randomly
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generated multi-scenario MDP. The second set of experiments is based on a multi-
scenarioMDP for determining the most cost-effective human immunodeficiency virus
(HIV) treatment policy which has been used for pedagogical purposes in the medical
decision-making literature [21, 22]. The third set of experiments is an illustrative
instance of the scenario recognition problem.

As benchmarks, other than solving the problems with the DFBI algorithm, we will
also generate solutions from the WSU, MVP methods and the MIP formulation. We
use V ∗

Z to denote the optimal value obtained by the DFBI, and Ṽ ∗
Z to denote the optimal

value obtained from either WSU or MVP for the multi-scenario MDP with Z decision
epochs. Then let

Gap � V ∗
Z − Ṽ ∗

Z

V ∗
Z

× 100%.

All solution methods are implemented using MATLAB 2017a.

4.1 Random Instance

To generate the random instances, firstly the number of states, actions, scenarios,
and decision epochs for the problem need to be defined. Then, the scenario parameters
are randomly sampled. We sample the rewards from uniform distribution and the
transition probabilities from Dirichlet distribution. The initial beliefs are uninformed
priors on the scenarios.

Let |S| �|A| �|C|� 4 and Z � 4. The rewards for all scenarios are randomly gen-
erated from uniform distribution between 0 and 1. The transition probabilities are
randomly generated from Dirichlet distribution which is characterized by |S| parame-
ters (ρα1, ρα2, · · · , ρα|S|), where (α1, α2, · · · , α|S|)withαi >0∀ i, is the basemeasure
of the distribution and ρ > 0 is the concentration parameter. Then we repeat the pro-
cess, generating 30 instances for ρ � 1, 10, 100, respectively. Table 1 demonstrates the
run-time of the four methods: the MVP, WSU, MIP and DFBI. We find that the MVP
and WSU methods are able to solve these instances more quickly (under 0.05 CPU
seconds for each instance) and the DFBI also does fairly quickly (under 5 CPU sec-
onds for each instance) with the exact solutions. The MIP takes much more run-time
to solve for the exact solutions among these instances.

We evaluate the optimality gap ofMVPandWSUmethods considering three type of
themultiple scenarios. Table 2demonstrates some summary statistics for the optimality
gap of MVP and WSU methods, obtained from these 50 instances for each type
of scenarios and each concentration parameter. For the type-I scenarios, the results
conforms with the Corollary in Sect. 3.3 and both the MVP and the WSU find the
exact solutions. For fixed ρ, the optimality gaps of the MVP and WSU methods for
the type-III scenarios are much greater than the ones for the type-II scenarios. For both
the type-II and type-III scenarios, the greater the value of ρ, the smaller the optimality
gaps of theMVP andWSUmethods. This is because the greater value of ρ corresponds
to the smaller variance for transition matrix across scenarios, which approximates to
the problem with the type-I scenarios.
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Table 2 The optimality gap of MVP and WSU methods on random DFMDPs with three types of multiple
scenarios

Types of multiple
scenarios

Concentration parameter
ρ

Optimality Gap of
MVP/%

Optimality Gap of
WSU/%

Average Maximum Average Maximum

Type-I 1, 10, 100 0.00 0.00 0.00 0.00

Type-II 1 1.97 3.12 2.03 3.12

10 0.09 0.57 0.07 0.43

100 < 0.01 < 0.01 < 0.01 < 0.01

Type-III 1 10.33 23.84 6.84 15.31

10 2.88 6.91 2.27 5.28

100 0.39 1.61 0.36 1.40

4.2 Instance of Medical Decision-Making

AnMDP for determining the optimal timing of treatments for HIV is considered. In
the MDP, HIV is characterized according to 4 health states: Mild, Moderate, Severe,
or Dead. The decision maker can choose to start the patient on one of three treatments:
TreatmentA, Treatment B, and TreatmentC. TreatmentA is the least effective but also
the least expensive while Treatment C is the most effective but comes at the highest
cost. A summary table of parameter values for this MDP as well as some sampling
distributions for each parameter is provided in [21]. In our experiments, we sampled
two scenarios of the transition probabilities from the Dirichlet distribution in [21] to
simulate findings coming from different clinical studies. They are listed below.

pA1 �

⎡
⎢⎢⎣

0.710 0.209 0.070 0.011
0 0.581 0.400 0.019
0 0 0.739 0.261
0 0 0 1

⎤
⎥⎥⎦, pB1 �

⎡
⎢⎢⎣

0.790 0.151 0.051 0.008
0 0.697 0.290 0.013
0 0 0.811 0.189
0 0 0 1

⎤
⎥⎥⎦,

pC1 �

⎡
⎢⎢⎣

0.898 0.074 0.025 0.003
0 0.852 0.142 0.006
0 0 0.908 0.092
0 0 0 1

⎤
⎥⎥⎦

pA2 �

⎡
⎢⎢⎣

0.733 0.198 0.064 0.005
0 0.582 0.408 0.010
0 0 0.753 0.247
0 0 0 1

⎤
⎥⎥⎦, pB2 �

⎡
⎢⎢⎣

0.806 0.143 0.046 0.005
0 0.697 0.296 0.007
0 0 0.821 0.179
0 0 0 1

⎤
⎥⎥⎦,

pC2 �

⎡
⎢⎢⎣

0.862 0.102 0.033 0.003
0 0.784 0.211 0.005
0 0 0.872 0.128
0 0 0 1

⎤
⎥⎥⎦.
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The data related to the rewards is taken directly from [21, 22] and they are the same
for two scenarios. Let S � {Mild, Moderate, Severe}, A � {A, B, C}, Z � 9, and γ �
1. With these settings, we obtain the optimal policies, π∗

k for MDP k (k � 1, 2) and π∗
for the DFMDP. We consider that the number of patients eligible for either scenario
is balanced, thus bs0 � [0.5,0.5]�. Then we can achieve the weighted value (i.e., the
average net benefit in [21, 22]) for each policy, i.e., V π

(
s0, bs0

)
, π � π∗

1 , π∗
2 , π∗

listed in Table 3.
Table 3 shows that for the patients starting in the mild health state, the average

net benefit of policy π∗ is greater than that for policies π∗
k , k � 1, 2 by 0.44% and

3.05% respectively. For the patients starting in the moderate health state, the average
net benefit of policy π∗ is greater than that for policies π∗

k , k � 1, 2 by 0.24% and
12.38% respectively. For the patients starting in the severe health state, the average
net benefits of policies π∗, π∗

1 , π∗
2 are all zero.

This instance illustrates that it is difficult to obtain the best average gain by using
the optimal policy of a single MDP under multiple scenarios of the parameters, but
the optimal policy from DFMDP can do.

4.3 Variant of Medical Instance

A illustrative instance of the scenario recognition problem is given here. Assume
that there are two authoritative findings with different transition probabilities in the
previous medical instance. We represent them with scenario k � 1, 2 respectively as
follows.

pA1 �

⎡
⎢⎢⎣

0.750 0.150 0.090 0.010
0 0.600 0.380 0.020
0 0 0.750 0.250
0 0 0 1

⎤
⎥⎥⎦, pB1 �

⎡
⎢⎢⎣

0.812 0.112 0.068 0.008
0 0.700 0.285 0.015
0 0 0.812 0.188
0 0 0 1

⎤
⎥⎥⎦,

pC1 �

⎡
⎢⎢⎣

0.875 0.075 0.045 0.005
0 0.800 0.190 0.010
0 0 0.875 0.125
0 0 0 1

⎤
⎥⎥⎦,

Table 3 The average net benefits

Vπ
(
s0, bs0

)
, π � π∗

1 , π∗
2 , π∗

(Unit: US$)

s0 Vπ∗
1
(
s0, bs0

)
Vπ∗

2
(
s0, bs0

)
Vπ∗ (

s0, bs0
)

Mild 163 574 159 436 164 298

Moderate 52 040 46 419 52 167

Severe 0 0 0
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pA2 �

⎡
⎢⎢⎣

0.787 0.145 0.068 0
0 0.742 0.245 0.013
0 0 0.771 0.229
0 0 0 1

⎤
⎥⎥⎦, pB2 �

⎡
⎢⎢⎣

0.842 0.108 0.050 0
0 0.809 0.182 0.009
0 0 0.830 0.170
0 0 0 1

⎤
⎥⎥⎦,

pC2 �

⎡
⎢⎢⎣

0.898 0.102 0 0
0.120 0.751 0.129 0
0 0.084 0.796 0.120
0 0 0 1

⎤
⎥⎥⎦,

where the transition probabilities of scenario 1 come from [22], and ones of scenario
2 are hypothetical. The data related to the rewards is taken directly from [21, 22] and
the same for two scenarios. Let S � {1, 2, 3} � {Mild, Moderate, Severe}, A � {A,
B, C}, Z � 8, and γ � 1.

If the patient exhibits transition that shows similar pattern as scenario 1, we would
infer the patient belongs to patient group I, similarly for patient group II. If we don’t
have any prior knowledge of the population percentage for these two groups, we
would just assume an equal possibility, i.e., bs0 � [0.5, 0.5]�. Now let’s start with
a patient currently in the mild health state, and apply the optimal treatment strategy
while recognizing which group this patient belongs to. The optimal treatment policy
for the patients starting in the mild health state (s0 � 1) can be found by using the
DFBI and is demonstrated in Fig. 2.

For this patient X with his/her current health state being in mild, our first-year
treatment plan is C. And at the end of year-1, if his/her health station remains at mild
or transitions tomoderate, then we continue providing treatment planC for the patient.
If the health state becomes severe, the optimal treatment in year-2 is x∗

1 (3,b3) �
x∗
1 (3, e1) � x∗

1,1(3) � A. The state-belief pair 〈3, e1〉 implies that patient X belongs

to group-I rather thangroup-II, since pC1,3,2 � 0 implies that it’s impossible for group-II
patient’s health state transitioning frommild to severe. Similarly, for another patient Y
if his/her health state becomesmild at the end of year-2, after two consecutive treatment
plan C, the optimal treatment in year 3 is x∗

2 (1, b1) � x∗
2 (1, e2) � x∗

2,2(1) � C, and
the state-belief pair 〈1, e2〉 implies that patient Y belongs to group-II.

This is only an illustrative examplewith very limited scale. In order to apply this idea
to real-world scenario recognition problems, the method needs to be combined with

Fig. 2 The treatment policy of patients starting in the mild health state
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algorithms dealing with infinite horizon DFMDPs. This will be one of our focusing
directions for future works.

5 Conclusions and FutureWorks

For theweighted value problem ofMDPswithmultiple scenarios of the parameters,
we introduce the concept of scenario belief to indicate the probability distribution that
the scenarios realize in the system and derive its update at every decision epoch based
on Bayesian rule. We formulate the expected total discounted reward of a policy by
adding the expectation over the scenario beliefs, on top of the usual expectation over
the intrinsic state transition uncertainty, and establish a new framework named as the
DFMDPs. We show that the usage of state-belief pair is the sufficient statistics of the
past history and contains the complete information required for decision-making. We
discuss four classes of policies in the finite horizon DFMDPs and prove that there
exists a double-factored Markovian deterministic policy which is optimal among all
classes of policies. The double-factored backward induction algorithm is proposed. It
is an efficient exact solution method for the double-factored Markovian deterministic
policies in the finite horizon DFMDPs. We also show that the optimality equation
for the infinite horizon DFMDPs is an isotone mapping and a contraction under the
supremum norm. This ensures the existence of solutions of the optimality equation.
Our work enriches the theories of MDPs and expands the application scope of MDPs.

Future work will focus on the following items:

(i) The restrictions on the state set and action set can be relaxed such that DFMDP
models apply to more real-world problems.

(ii) The efficient solution methods for the infinite horizon DFMDPs are further stud-
ied.

(iii) More efficient offline and online algorithms can be invented to solve the large-
size DFMDPs for real-world applications.

(iv) Investigating a learning-based approach in the framework of DFMDP is one of
the directions for future exploration.
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Appendix

Proof of Theorem 1

For anygiven h0 � 〈s0, bs0〉 ∈ S×�C and afixedπ ε �DHD, the history sets Hπ
t for

t � 0,1, ···, Z are determined by step 1 in the policy evaluation algorithm. Equation (22)
shows that when the history up to time t is ht ∈ Hπ

t , the expected value of policy
π at decision epoch t, t + 1, ···, Z is equal to the reward r xt (ht )st received by selecting
action xt(ht) plus the expected total discounted reward over the remaining periods.
The second term contains the product of pxt (ht )st ,st+1 the probability of state transiting from
st to st+1 when action xt(ht) is performed at decision epoch t, and Uπ

t+1 the expected
total discounted reward obtained by applying π at decision epoch t + 1, ···, Z when the
history up to time t + 1 is ht+1 � (

ht , xt (ht ), 〈st+1, bst+1〉
)
. Summing over all possible

states st+1 gives the desired expectation expressed in terms of Uπ
t+1. So Eq. (22) can

be written as below

Uπ
t (ht ) � r xt (ht )st + γ Eπ

ht

{
Uπ
t+1

(
ht , xt (ht ), 〈st+1, bst+1〉

)}
. (A1)

The rest of the proof is by backward induction where the index of induction is t. It
is obvious that (21) holds when t � Z . Suppose now that (21) holds for t + 1, ···, Z .
Then by using (A1) and the induction hypothesis, we have

Uπ
t (ht ) � r xt (ht )st + γ Eπ

ht

{
Eπ
ht+1

[
Z−1∑
n�t+1

γ n−(t+1)r xn (hn )
sn + γ Z−(t+1)r0sZ

]}

� r xt (ht )st + γ Eπ
ht

{
Z−1∑
n�t+1

γ n−(t+1)r xn (hn )
sn + γ Z−(t+1)r0sZ

}
� Eπ

ht

{
Z−1∑
n�t

γ n−t r xn (hn )
sn + γ Z−t r0sZ

}
.

It is true that (21) holds for t. Therefore, V π
(
s0, bs0

) � Uπ
0 (h0) when t � 0.

Proof of Theorem 3

The proof is in two parts. Firstly, we establish by induction that Ut (ht ) � U∗
t (ht )

for all ht ∈ Ht and t � 0,1, ···, Z . Obviously, UZ (hZ ) � r0sZ � Uπ
Z (hZ ) for all hZ ∈

HZ and π ∈ �DHR. Therefore UZ (hZ ) � U∗
Z (hZ ) for all hZ ∈ HZ . Now assume that

Ut (ht ) � U∗
t (ht ) for all ht ∈ Ht for t � n + 1, ···, Z . Let π ′ � (

x ′
0, x

′
1, · · · , x ′

Z−1

)
be

an arbitrary policy in �DHR. So for t � n, we have

Un(hn) � max
an∈A

⎧⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1Un+1
(
hn, an, 〈sn+1, bsn+1〉

)
⎫⎬
⎭

� max
an∈A

⎧
⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
∗
n+1

(
hn, an, 〈sn+1, bsn+1〉

)
⎫
⎬
⎭ (A2)
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� max
an∈A

⎧⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
π ′
n+1

(
hn, an, 〈sn+1, bsn+1〉

)
⎫⎬
⎭ (A3)

�
∑
an∈A

μ
′
hn (an)

⎧⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
π ′
n+1

(
hn, an, 〈sn+1, bsn+1〉

)
⎫⎬
⎭ (A4)

� Uπ ′
n (hn).

Line (A2) holds because of the induction hypothesis and non-negativity of p. Line
(A3) holds because of the definition of U∗

n+1. Line (A4) follows from Lemma 1. The
last equality follows from (23) and Theorem 2.

Because π ′ is arbitrary, we have

Un(hn) � Uπ
n (hn)

for all π ∈ �DHR. Thus Ut (ht ) � U∗
t (ht ) and the induction hypothesis holds. The

first part finishes.
For the second part, we establish that for any ε > 0, there always exists a π ′∈ �DHD

so that

Uπ ′
t (ht ) + (Z − t)ε � Ut (ht ) (A5)

for all ht ∈ Ht and t � 0,1, ··· , Z . Since Uπ ′
Z (hZ ) � UZ (hZ ) � r0sZ , the induction

hypothesis holds for t � Z . Assuming that Uπ ′
t (ht ) + (Z − t)ε � Ut (ht ) for t � n +

1, ···, Z , we have

Uπ ′
n (hn) � r xn(hn)sn + γ

∑
sn+1∈S

pxn(hn)sn ,sn+1U
π ′
n+1

(
hn, xn(hn), 〈sn+1, bsn+1〉

)

� r xn(hn)sn + γ
∑

sn+1∈S
pxn(hn)sn ,sn+1Un+1

(
hn, xn(hn), 〈sn+1, bsn+1〉

) − (Z − n − 1)ε

� Un(hn) − (Z − n)ε. (A6)

The second line in (A6) holds because of the induction hypothesis and ε > 0. Thus the
inductive hypothesis is satisfied and (A5) holds for t � 0,1, ···, Z .

Thus for any ε > 0, there exists a π ′ ∈ �DHR for which

U∗
t (ht ) + (Z − t)ε � Uπ ′

t (ht ) + (Z − t)ε � Ut (ht ) � U∗
t (ht ),

then part (i) in the theorem holds. Part (ii) in the theorem holds because

U0(h0) � U∗
0 (h0) � max

π∈�DHR
Uπ
0 (h0) � max

π∈�DHR
V π

(
s0, bs0

) � V ∗(s0, bs0
)
.
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Proof of Theorem 4

For t � Z , clearly Uπ∗
Z (hZ ) � U∗

Z (hZ ) for all hZ ∈ HZ . Assume argument
in part (i) in the theorem is true for t � n + 1, ···, Z . Then, for t � n and
hn � (

hn−1, x∗
n−1(hn−1), 〈sn, bsn 〉

)
,

U∗
n (hn) � max

an∈A

⎧⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
∗
n+1

(
hn, an, 〈sn+1, bsn+1〉

)
⎫⎬
⎭

� r
x∗
n (hn)

sn + γ
∑

sn+1∈S
p
x∗
n (hn)

sn ,sn+1U
π∗
n+1

(
hn, x

∗
n (hn), 〈sn+1, bsn+1〉

) � Uπ∗
n (hn).

Thus the induction hypothesis is true. Part (ii) in the theorem follows from Theo-
rem 1 and Theorem 3-(ii).

Proof of Theorem 6

We show that (i) holds by induction. Since U∗
Z (hZ ) �

U∗
Z

(
hZ−1, aZ−1, 〈sZ , bsZ 〉) � r0sZ for all hZ–1 ∈ HZ–1 and aZ–1 ∈ A,

U∗
Z (hZ ) � U∗

Z

(
sZ , bsZ

)
. Assume now that (i) is true for t � n + 1, ···, Z . Then

let t � n. For any hn � (
hn−1, an−1, 〈sn, bsn 〉

) ∈ Hn , it follows from (24), the
induction hypothesis and (14) that

U∗
n (hn) � max

an∈A

⎧
⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
∗
n+1

(
hn , an , 〈sn+1, bsn+1 〉

)
⎫
⎬
⎭

� max
an∈A

⎧⎨
⎩ransn + γ

∑
sn+1∈S

pansn ,sn+1U
∗
n+1

(
sn+1, bsn+1

)
⎫⎬
⎭

� max
an∈A

⎧⎨
⎩

∑
k∈C

bsn ,kr
an
sn ,k + γ

∑
sn+1∈S

∑
k∈C

bsn ,k p
an
sn ,sn+1,k

U∗
n+1

(
sn+1, τ

(〈sn , bsn 〉, an , sn+1
))

⎫⎬
⎭. (A7)

Because the quantities within brackets in the last line of (A7) depends on hn only
through 〈sn, bsn 〉, we have U∗

n (hn) � U∗
n

(
sn, bsn

)
. Thus part (i) in the theorem is true

for t � 0,1, ··· , Z .
When S and A are finite, there exists a policy π∗ � (

x∗
0 , x

∗
1 , . . . , x∗

Z−1

) ∈ �DMD

derived from

x∗
t

(
st , bst

) ∈ argmax
at∈A

⎧⎨
⎩

∑
k∈C

bst ,kr
at
st ,k

+ γ
∑
st+1∈S

∑
k∈C

bst ,k p
at
st ,st+1,k

U∗
t+1

(
st+1, τ

(〈st , bst 〉, at , st+1
))

⎫⎬
⎭.

Therefore, by part (i) in the theorem and Theorem 4-(ii), π∗ is optimal.
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Proof of Theorem 7

We will show that Wπ
(
s0, bs0

)
in (4) is equal to V π (s0, bs0 ) in (16). Firstly,

we provide another calculation of scenario belief bst in state st at decision
epoch t. For any h0 � 〈s0, bs0〉 ∈ S × �C , using history recursion ht �
(ht−1, at−1, 〈st , τ (〈st−1, bst−1〉, at−1, st )〉) repeatedly, the belief bst within 〈st , bst 〉
in ht ∈ Ht can be expressed by

bst ,k � bs0,k p
a0
s0,s1,k

pa1s1,s2,k . . . pat−1
st−1,st ,k∑

k′∈C
bs0,k′ pa0s0,s1,k′ p

a1
s1,s2,k′ . . . p

at−1
st−1,st ,k′

,∀ k ∈ C, (A8)

where s0, a0, s1, ···, at−1, st are the state realizations and actions taken up to t.
For a fixed policy π ∈ �DHD, starting from the boundary conditionUπ

Z (hZ ) � r0sZ ,
we evaluate recursively Uπ

t for t � Z − 1, · · · , 1, 0 by (22), that is,

Uπ
Z−1(hZ−1) � r xZ−1(hZ−1)

sZ−1 + γ
∑
sZ∈S

pxZ−1(hZ−1)
sZ−1,sZ Uπ

Z

(
hZ−1, xZ−1(hZ−1), 〈sZ , bsZ 〉)

� r xZ−1(hZ−1)
sZ−1 + γ

∑
sZ∈S

pxZ−1(hZ−1)
sZ−1,sZ r0sZ ,∀ hZ−1 ∈ Hπ

Z−1,

Uπ
Z−2(hZ−2) � r xZ−2(hZ−2)

sZ−2 + γ
∑

sZ−1∈S
pxZ−2(hZ−2)
sZ−2,sZ−1 Uπ

Z−1

(
hZ−2, xZ−2(hZ−2), 〈sZ−1, bsZ−1 〉

)

� r xZ−2(hZ−2)
sZ−2 + γ

∑
sZ−1∈S

pxZ−2(hZ−2)
sZ−2,sZ−1

⎧⎨
⎩r xZ−1(hZ−1)

sZ−1 + γ
∑
sZ∈S

pxZ−1(hZ−1)
sZ−1,sZ r0sZ

⎫⎬
⎭,∀ hZ−2 ∈ Hπ

Z−2,

· · · ,

Uπ
0 (h0) � r x0(h0)s0 + γ

∑
s1∈S

px0(h0)s0,s1

⎧⎨
⎩r x1(h1)s1 + γ

∑
s2∈S

px1(h1)s1,s2

·
⎧⎨
⎩r x2(h2)s2 + . . . + γ

∑
sZ−1∈S

pxZ−2(hZ−2)
sZ−2,sZ−1

⎧⎨
⎩r xZ−1(hZ−1)

sZ−1 + γ
∑
sZ∈S

pxZ−1(hZ−1)
sZ−1,sZ r0sZ

⎫⎬
⎭ . . .

⎫⎬
⎭

⎫⎬
⎭. (A9)

Submitting (14) into the last equation in (A9) and using (A8), we have

Uπ
0 (h0) �

∑
k∈C

bs0,k

⎧
⎨
⎩r x0(h0)s0,k

+ γ
∑
s1∈S

px0(h0)s0,s1,k
r x1(h1)s1,k

+ γ 2
∑
s1∈S

∑
s2∈S

px0(h0)s0,s1,k
px1(h1)s1,s2,k

r x2(h2)s2,k

+ . . . + γ Z−1
∑
s1∈S

∑
s2∈S

. . .
∑

sZ−1∈S
px0(h0)s0,s1,k

px1(h1)s1,s2,k
. . . pxZ−2(hZ−2)

sZ−2,sZ−1,k
r xZ−1(hZ−1)

sZ−1,k

+γ Z
∑
s1∈S

∑
s2∈S

. . .
∑

sZ−1∈S

∑
sZ∈S

px0(h0)s0,s1,k
px1(h1)s1,s2,k

. . . pxZ−2(hZ−2)

sZ−2,sZ−1,k
pxZ−1(hZ−1)

sZ−1,sZ ,k r0sZ ,k

⎫⎬
⎭.

(A10)
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On the other hand, Steimle et al. [4] infer that there are no optimal policies that are
Markovian for the problem in (5). Then, we consider the history-dependent determin-
istic policies of standard MDPs, π � {xt (ht ) : ht ∈ S × A × · · · × A × S, t ∈ T }.
Using the finite horizon policy evaluation algorithm presented in [1] and the same
logic as in (A9), we obtain V π

k (s0) in (3) as follows

V π
k (s0) � r x0(h0)s0,k

+ γ
∑
s1∈S

px0(h0)s0,s1,k
r x1(h1)s1,k

+ γ 2
∑
s1∈S

px0(h0)s0,s1,k

∑
s2∈S

px1(h1)s1,s2,k
r x2(h2)s2,k

+ . . . + γ Z−1
∑
s1∈S

px0(h0)s0,s1,k

∑
s2∈S

px1(h1)s1,s2,k
. . .

∑
sZ−1∈S

pxZ−2(hZ−2)

sZ−2,sZ−1,k
r xZ−1(hZ−1)

sZ−1,k

+ γ Z
∑
s1∈S

px0(h0)s0,s1,k

∑
s2∈S

px1(h1)s1,s2,k
. . .

∑
sZ−1∈S

pxZ−2(hZ−2)

sZ−2,sZ−1,k

∑
sZ∈S

pxZ−1(hZ−1)

sZ−1,sZ ,k r0sZ ,k .

(A11)

It holds from (4), (A11) and (A10) that

Wπ
(
s0, bs0

) �
∑
k∈C

bs0,kV
π
k (s0) � Uπ

0 (h0) � V π
(
s0, bs0

)
.

Then it follows from (5) and (29) that the finite horizon DFMDP is equivalent to the
WVP of the multi-scenario MDP.

Proof of Theorem 8

For a given 〈s0, bs0〉, (10) becomes

bst ,k � bst−1,k p
at−1
st−1,st ,0

pat−1
st−1,st ,0

∑
k′∈C bst−1,k′

� bst−1,k,∀ at−1 ∈ A, st−1, st ∈ S, k ∈ C,

since p1 � … � p|C|� p0. This implies that the all scenario beliefs for any state at any
time are constant and equal to bs0 . As a result, r

at
st � ∑

k∈C bs0,kr
at
st ,k

,∀ st ∈ S, at ∈
A, t ∈ T , i.e., r � ∑

k∈C bs0,k rk which means that the scenario expected reward
does not change over time. Therefore, the DFMDP with the type-I of scenarios can be
reduced to a standard MDP with parameter pair ( p0,r).

Proof of Theorem 9

Firstly, we will prove that H is an isotone mapping. Let V , U ∈ V and U � V .
Suppose that

a∗(s, bs) ∈ argmax
a∈A

{∑
k∈C

bs,kr
a
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a
s,s′,kV

(
s′, τ

(〈s, bs〉, a, s′))
}

,
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then for any 〈s, bs〉 ∈ S × �C ,

(HU )(s, bs) − (HV )(s, bs)

�
∑
k∈C

bs,kr
a∗(s,bs )
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k U

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))

−
∑
k∈C

bs,kr
a∗(s,bs )
s,k − γ

∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k V

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))

� γ
∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k

{
argmaxU

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′)) − V
(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))} � 0.

It shows that HU � HV when U � V . So H is an isotone mapping.
Then we will prove that for all V, U ∈ V , that ‖HV − HU‖ � γ ‖V −U‖ is true for
any 0 < γ < 1. Let V , U ∈ V and HV (s, bs) � HU(s, bs) for a fixed 〈s, bs〉 ∈ S × �C .
Again, suppose that

a∗(s, bs) ∈ argmax
a∈A

{∑
k∈C

bs,kr
a
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a
s,s′ ,kV

(
s′, τ

(〈s, bs〉, a, s′))
}

.

Then

0 � (HV )(s, bs) − (HU )(s, bs)

�
∑
k∈C

bs,kr
a∗(s,bs )
s,k + γ

∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k V

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))

−
∑
k∈C

bs,kr
a∗(s,bs )
s,k − γ

∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k U

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))

� γ
∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k

{
V

(
s′, τ

(〈s, bs〉, a∗(s, bs), s′)) −U
(
s′, τ

(〈s, bs〉, a∗(s, bs), s′))}

� γ
∑
s′∈S

∑
k∈C

bs,k p
a∗(s,bs )
s,s′,k ‖V −U‖� γ ‖V −U‖.

If we assume HU(s, bs) � HV (s, bs), the same logic will imply that

|(HV )(s, bs) − (HU )(s, bs)| � γ ‖V −U‖

for any 〈s, bs〉 ∈ S × �C . This results in ‖ HV − HU‖ � γ ‖V −U‖ So H is a
contraction mapping.
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