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Abstract
The paper deals with the study of two different aspects of stability in the given space
as well as the image space, where the solution concepts are based on a partial order
relation on the family of bounded subsets of a real normed linear space. The first aspect
of stability deals with the topological set convergence of families of solution sets of
perturbed problems in the image space and Painlevé–Kuratowski set convergence of
solution sets of the perturbed problems in the given space. The convergence in the given
space is also established in terms of solution sets of scalarized perturbed problems.
The second aspect of stability deals with semicontinuity of the solution set maps of
parametric perturbed problems in both the spaces.

Keywords Topological convergence · Painlevé–Kuratowski convergence · Upper
semicontinuity · Lower semicontinuity · Stability · Scalarization

Mathematical Subject Classification 49J53 · 90C31 · 49J45

1 Introduction

Stability theory plays a crucial role in set optimization in order to examine the
behavior of solution sets of the perturbed problems obtained by perturbing the feasible
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set, objective function or ordering cone. Various stability aspects have been studied in
literature such as essential stability (see [1, 2]), continuity of solution set maps (see
[3–7]) and convergence of solution sets (see [8–12]).

In set optimization, Dhingra and Lalitha [13] and Han et al. [9] studied the conver-
gence aspect of stability in the given space in terms of Painlevé–Kuratowski sense.
Further, Gutiérrez et al. [8] and Karuna and Lalitha [10, 14] established the conver-
gence results in the image space in terms of external and internal stabilitywithout using
an appropriate notion of convergence in an ordered power set. Recently, Geoffroy [15]
defined a topology on the family of lower bounded sets and introduced topological
convergence for a sequence of families of sets. By perturbing both the feasible set
and the objective function, he established the topological convergence for families of
minimal and relaxed minimal solution sets.

The real life problems are influenced by many other parameters also, which led to
study of another stability aspect, namely continuity of solution set maps in parametric
set optimization. In literature [3–5, 16, 17], the continuity aspect has been explored by
employing certain continuity and convexity assumptions. In [4], using the upper set
order relation, Xu and Li established the continuity of u-lower level maps to study the
continuity of efficient solution set map, whereas using lower set order relation, Chen
et al. [16] established the continuity of strict lower level maps to provide sufficient
conditions for the continuity of strict minimal solution set map. Besides, Zhang and
Huang [18] examined the continuity results using topological convergence introduced
by Geoffroy [15].

A well-established practice to study stability aspects is through associated per-
turbed scalarized problems. In this direction, Liu et al. [19] investigated the continuity
aspect by employing linear and nonlinear scalarization techniques. To the best of our
knowledge, the stability aspect in terms of convergence of solution sets of scalarized
problems in set optimization has not been investigated so far.

Recently, Karaman et al. [20] introduced new partial order relations on the family
of bounded sets by using Minkowski difference. They considered scalar problems
based on generalized Gerstewitz function to characterize efficient and weak efficient
solutions and discussed optimality conditions. By using a strict order relation given
in [15], Geoffroy provided a topolgy on the family of lower bounded subsets of a real
normed linear space. Motivated by them, in order to define a topology on the whole
family of nonempty subsets of a real normed linear space rather than the family of
lower bounded subsets, we consider the strict order relation given in [20]. Further, we
discuss a notion of corresponding topological convergence for sequence of families of
sets. In light of this topology, we study the convergence aspect and continuity aspect
for set optimization problem in the image space.

We derive upper and lower set order convergence of the families of weak minimal
and minimal solution sets, respectively, in the image space under the perturbations of
the feasible set and objective function. Further, in the given space, we establish the
lower convergence for efficient solution sets in Painlevé–Kuratowski sense without
imposing any strict quasiconvexity assumption, which have been used earlier in the
literature (see [10, 21]) to obtain the similar convergence results. We also establish the
upper Painlevé–Kuratowski for a weaker notion of weak efficient solutions. Besides,
we provide complete characterization of strict efficient and weak efficient solutions
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in terms of the scalar problem considered in [20]. We further derive the upper and
lower Painlevé–Kuratowski convergence of solution sets of perturbed scalar problems
to solution sets of the original set optimization problem.

The study is further extended to the semicontinuity of solution set maps both in
the given space and image space. For this purpose, we introduce notions of upper and
lower semicontinuity for minimal solution set maps and examine the semicontinuity
results in the image space by imposing certain conditions such as domination property,
compactness and topological convergence.Wederive the upper semicontinuity ofweak
efficient solution set map. Analogous to lower Painlevé–Kuratowski convergence for
efficient solution sets, we establish the lower semicontinuity for efficient solution set
map by relaxing the assumption of strict convexity. To the best of our knowledge, the
convergence aspect in set optimization using scalarization technique and continuity
aspect in set optimization in the image space are being studied for the first time in this
paper.

The rest of the paper is organized as follows. In Sect. 2, we study topological
convergence and its properties with respect to preference relations considered in [20].
Section 3 deals with the study of convergence of solution sets in the given space as well
as the image space. We establish convergence of solution sets in the given space using
a scalar technique in Sect. 4. In Sect. 5, we investigate the continuity of solution set
maps in both the image space and the given space. Finally, we give some concluding
remarks in Sect. 6.

2 Preliminaries

Let X be a real normed linear space and B(x, δ) denote the open ball with centre
at x ∈ X and radius δ > 0. Let Y be a real normed linear space and K be a closed
convex pointed cone in Y with nonempty interior, denoted by intK . Let P0(Y ) denote
the family of all nonempty subsets of Y and B0(Y ) denote the family of all nonempty
bounded subsets ofY . An element y ∈ Y is said to be a lower bound of a set A ∈ P0(Y )

if A ⊆ y + K . We denote the set of all lower bounded sets in P0(Y ) by LB(Y ). For
A, B ∈ P0(Y ), we first recall the following notion of the Minkowski difference from
[22] defined as

A
.− B := {y ∈ Y : y + B ⊆ A}.

We next consider two order relations introduced by Karaman et al. [20]. For A, B ∈
P0(Y ),

A �m B if and only if (A
.− B) ∩ (−K ) �= ∅

and
A ≺m B if and only if (A

.− B) ∩ (−intK ) �= ∅.

From [20, Corollary 2], we observe that �m is a partial order relation on B0(Y ). It
can also be seen easily that the relation ≺m is transitive and irreflexive.

We now consider some subsets of P0(Y ) with respect to ≺m relation. Similar
notions have been considered in [15, Definition 2.5] for the family of sets LB(Y ).
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Definition 1 Let A, B ∈ P0(Y ).

(a) If A ≺m B, then the open interval (A; B) is defined as

(A; B) := {C ∈ P0(Y ) : A ≺m C ≺m B}.

The set of all open intervals inP0(Y ) is denoted by I and clearly I ⊆ P(P0(Y )).
(b) The set A+ is defined as A+ := {C ∈ P0(Y ) : A ≺m C}.
(c) The set A− is defined as A− := {C ∈ P0(Y ) : C ≺m A}.
Remark 1 Since A ≺m A+ k for any k ∈ intK , it follows that A+ k ∈ A+ and hence,
A+ �= ∅. Similarly, A− �= ∅ as A − k ∈ A− for any k ∈ intK .

The following lemma shows that every open interval between two sets is nonempty.

Lemma 1 Let A, B ∈ P0(Y ) be such that A ≺m B then (A; B) �= ∅.

Proof Let −k ∈ (A
.− B) ∩ (−intK ). Thus, B − k ⊆ A, that is, for any λ ∈ (0, 1),

B − λk − (1 − λ)k ⊆ A. Thus, −(1 − λ)k ∈ A
.− (B − λk) and so A ≺m B − λk.

Also B − λk ≺m B. Hence, B − λk ∈ (A; B) which implies that (A; B) �= ∅.

Similarly, it is easy to see that A + λk also belongs to (A; B) for any λ ∈ (0, 1)
and −k ∈ (A

.− B) ∩ (−intK ).
Geoffroy [15] considered a topology on the family of lower bounded sets, whereas

we define a similar topology on the collection of family of nonempty subsets of Y ,
generated by I. We denote it by τ . Clearly I is a sub-base for the topology τ , that is,
the collection of all finite intersection of elements of I is a base for τ .

We now present some open sets with respect to topology τ .

Lemma 2 Let A, B ∈ P0(Y ). The following assertions hold:

(i) If A ≺m B, then (A; B) is a τ -open set.
(ii) The open interval (A − k; A + k′) for any k, k′ ∈ intK is a τ -open neighborhood

of A.
(iii) For any λ ∈ (0, 1) and −k ∈ (A

.− B) ∩ (−intK ), the set (A − λk; A + λk) is a
τ -open neighborhood of A.

(iv) The set A− is a τ -open set.
(v) The set A+ is a τ -open set.

Proof (i) The proof follows easily as I is a sub-base for topology τ .
(ii) Since A−k ≺m A ≺m A+k′ therefore A ∈ (A−k; A+k′). From (i), it follows

that (A − k; A + k′) is a τ -open neighborhood of A.
(iii) Immediately follows from (ii).
(iv) Let C ∈ A−. Thus, C ≺m A, which implies that (C

.− A) ∩ (−intK ) �= ∅. Let
−k ∈ (C

.−A)∩(−intK ). Clearly,C ∈ (C−λk,C+λk) for anyλ ∈ (0, 1). Since
C ≺m A, we have C + λk ≺m A which implies that (C − λk,C + λk) ⊆ A−.
Thus, A− is a τ -open set.

(v) The proof follows as in (iv).
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Similar to a topological convergence given in [15, Definition 2.12], we next provide
a notion of τ -convergence for a sequence of sets in P0(Y ).

Definition 2 Let A ∈ P0(Y ) and (An)n∈N be a sequence in P0(Y ). The sequence
(An)n∈N τ -converges to A (denoted by An

τ→ A) if for any neighborhood N of A
there corresponds m ∈ N such that An ∈ N for n�m.

It may be noted that since I is sub-base for the topology τ therefore, without loss
of generality, we assume that a neighborhood of A is of the form (W ;W ′) where W ,
W ′ ∈ P0(Y ). In the next two lemmas, we show the compatibility of τ -convergence
with the order relations on P0(Y ).

Lemma 3 Let A, B ∈ P0(Y ). Let (An)n∈N and (Bn)n∈N be two sequences in P0(Y )

such that An
τ→ A and Bn

τ→ B. Then the following assertions hold:

(i) If A ≺m B, then An ≺m Bn for sufficiently large n.
(ii) If An ≺m Bn for sufficiently large n, then A − k ≺m B for any k ∈ intK.

Proof (i) From Lemma 1, we have (A; B) �= ∅. Let W ∈ (A; B) which implies
that A ∈ W− and B ∈ W+. Since W− and W+ are τ -open sets it follows that
An ∈ W− and Bn ∈ W+ for sufficiently large n. Thus, W ∈ (An; Bn) for
sufficiently large n, which implies that An ≺m Bn for sufficiently large n.

(ii) Clearly, A − k
2 ≺m A for any k ∈ intK . Thus, A ∈ (A − k

2 )
+ which is a

τ -open set. Since An
τ→ A therefore A − k

2 ≺m An for sufficiently large n.

Similarly, B ∈ (B + k
2 )

− for any k ∈ intK . Since Bn
τ→ B, we have Bn ≺m

B + k
2 for sufficiently large n. Thus, A − k

2 ≺m An ≺m Bn ≺m B + k
2 , which

implies that A − k ≺m B for any k ∈ intK .

Lemma 4 Let A ∈ B0(Y ) be a closed set and B ∈ P0(Y ). Let (An)n∈N and (Bn)n∈N
be two sequences in P0(Y ) such that An

τ→ A and Bn
τ→ B. Then the following

assertions hold:

(i) If A − k ≺m B for any k ∈ intK, then A �m B.
(ii) If An ≺m Bn for sufficiently large n, then A �m B.
(iii) If An �m Bn then A �m B.

Proof (i) Let (kn)n∈N ⊆ intK be such that kn → 0. Since A − kn ≺m B, there
exists k′

n ∈ intK such that B − k′
n ⊆ A− kn . As A is a bounded set, there exists

a subsequence (k′
nm )m∈N of (k′

n)n∈N which converges to k′ ∈ K . As A is closed,
we have B − k′ ⊆ A and hence, A �m B.

(ii) The proof follows immediately from (i) and Lemma 3(ii).
(iii) The proof follows as in (ii).

Analogous to a topological convergence given in [15, Definition 3.5], we nowdefine
the following notions of convergence of sequence of families of sets with respect to
topology τ .

Definition 3 Let A ∈ P(P0(Y )) and (An)n∈N be a sequence in P(P0(Y )).
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(a) The sequence (An)n∈N is said to lower set order converge toA, if for any A ∈ A
there exists An ∈ An for all n such that An

τ→ A.
(b) The sequence (An)n∈N is said to upper set order converge to A, if any sequence

(An)n∈N with An ∈ An has a subsequence (Ank )k∈N such that Ank
τ→ A then

A ∈ A.

The lower (resp. upper) set order convergence of the sequence (An)n∈N to A is

denoted by An
lsτ→ A (resp. An

usτ→ A). The sequence (An)n∈N is said to set order

converge to A, if An
lsτ→ A and An

usτ→ A, and is denoted by An → A.

We now consider the notion of Painlevé–Kuratowski convergence of sets from [23].
A sequence (An)n∈N of nonempty subsets of X is said to converge to a nonempty subset

A of X in Painlevé-Kuratowski sense (denoted by An
K→ A) if Ls(An) ⊆ A ⊆ Li(An),

where
Ls(An) := {x ∈ X : x = lim

k→∞ xk, such that xk ∈ Mnk , for k ∈ N},
Li(An) := {x ∈ X : x = lim

n→∞ xn, xn ∈ An for sufficiently large n}.
The inclusion Ls(An) ⊆ A refers to the upper Painlevé–Kuratowski convergence

(denoted by An
K
⇀A) and A ⊆ Li(An) refers to the lower Painlevé–Kuratowski con-

vergence (denoted by An
K
⇁A).

We now consider the set optimization problem

(P) Min F(x)

s.t. x ∈ S,

where F : X ⇒ Y is a nonempty bounded set-valued map and S is a nonempty subset
of X . We denote the family of image sets of F on S byF , that is,F := {F(x) : x ∈ S}.

We next recall the notions of m-minimal and m-weak minimal solution sets of (P)
from [20].

Definition 4 [20] Let x̄ ∈ S. Then F(x̄) is said to be an

(a) m-minimal solution set of (P) if there does not exist any x ∈ S such that

F(x) �m F(x̄) and F(x) �= F(x̄).

(b) m-weak minimal solution set of (P) if there does not exist any x ∈ S such that

F(x) ≺m F(x̄).

We denote the family of all m-minimal (resp. m-weak minimal) solution sets of (P)
by m-Min(F) (resp. m-WMin(F)).

We say that x̄ ∈ S is an m-efficient (resp. m-weak efficient) solution of (P) if F(x̄)
is an m-minimal (resp. m-weak minimal) solution set of (P). The set m-Eff(F) (resp.
m-WEff(F)) refers to the set of m-efficient (resp. m-weak efficient) solutions of (P).

Similar to Definition 2.7 in [24], we now give the following notion of m-strict
efficient solutions of (P).
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Definition 5 A point x̄ ∈ S is said to be an m-strict efficient solution of (P) if for any
x ∈ S,

F(x) �m F(x̄) ⇒ x = x̄ .

Wedenote the set ofm-strict efficient solutions of (P) bym-SEff(F). It can be easily
seen thatm-SEff(F) ⊆ m-Eff(F) ⊆ m-WEff(F). However, the reverse inclusionmay
not hold as can be seen from [25, Example 2.1].

We now recall a strict lower set order relation on LB(Y ) from [15] and denote it
by ≺sl . For A, B ∈ LB(Y ),

A ≺sl B if and only if there exists k ∈ K \ {0} such that B ⊆ A + k + K .

We next recall the notion of relaxed minimal solution from [15, Definition 3.11].
A point x̄ ∈ S is a relaxed minimal solution of (P) if there does not exists any x ∈ S
such that F(x) ≺sl F(x̄). We observe that every relaxed minimal solution of (P) is
an m-weak efficient solution of (P). However, the converse need not be true as can be
seen from the following example.

Example 1 Let X = R, S = [−1, 1], Y = R
2 and K = R

2+. Let F : X ⇒ Y be
defined as

F(x) =
{ {(x, 0)}, if x < 0,

{(x, x)}, if x � 0.

For x̄ = 0, we observe that x̄ ∈ m-WEff(F), but x̄ is not a relaxed minimal solution
of (P).

Analogous toDefinition4.3 in [26],wenext have the followingnotionof domination
property which is used in the sequel.

Definition 6 Let S be a nonempty subset of X . Then a family of setsF is said to satisfy
m-domination property on S if for each F(x) ∈ F , there exists F(x̄) ∈ m-Min(F)

such that F(x̄) �m F(x).

We now recall the notions of the upper and lower continuity for a set-valued map
from [23], which we refer to as semicontinuity notions.

Definition 7 [23,Definition 3.1.1] Themap F is said to be upper (resp.lower) semicon-
tinuous at x̄ ∈ S if for any open set V ⊆ Y with F(x̄) ⊆ V (resp. F(x̄) ∩ V �= ∅)
there is a neighborhood U of x̄ such that F(x) ⊆ V (resp. F(x) ∩ V �= ∅) for all
x ∈ U ∩ S.

The following proposition provides sequential characterization of the semicontinu-
ity notions.

Proposition 1 Let x̄ ∈ S.

(i) [23, Proposition 3.1.6] The map F is lower semicontinuous at x̄ if and only if
for any sequence (xn)n∈N ⊆ S with xn → x̄ and any ȳ ∈ F(x̄), there exists
yn ∈ F(xn) such that yn → ȳ.
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(ii) [23, Proposition 3.1.9] If F(x̄) is compact, then F is upper semicontinuous at x̄
if and only if for any sequence (xn)n∈N ⊆ S with xn → x̄ and yn ∈ F(xn), there
exist ȳ ∈ F(x̄) and a subsequence (ynk )k∈N of (yn)n∈N such that ynk → ȳ.

3 Convergence of Families of Solution Sets

In literature (see [9, 10, 13]), the convergence aspect of stability has been established
in the given space. By virtue of topological convergence for sequence of families of
sets, we now study the stability of minimal solution sets both in the given space and
image space.

Here we consider the perturbation of both the objective map and the feasible set. A
family of the perturbed problems (Pn) is defined as follows

(Pn) Min Fn(x)

s. t. x ∈ Sn,

where Sn is a nonempty subset of X and Fn : X ⇒ Y is a nonempty bounded set-valued
map. Let the image set of Fn on Sn be Fn , that is, Fn = {Fn(xn) : xn ∈ Sn}.

We denote the family of all m-minimal (resp. m-weak minimal) solution sets of
(Pn) by m-Min(Fn) (resp. m-WMin(Fn)). The set m-Eff(Fn) (resp. m-WEff(Fn))
refers to the set of m-efficient (resp. m-weak efficient) solutions of (Pn). Throughout,
we assume that the set ofm-efficient (resp.m-weak efficient) solutions of (P) and (Pn)
are nonempty for every n.

In the following result, we derive the upper set order convergence of families of
m-weak minimal solution sets.

Theorem 1 If Fn
lsτ→ F , then m-WMin(Fn)

usτ→ m-WMin(F).

Proof Let Fn(xn) ∈ m-WMin(Fn) be such that there exists a subsequence
(Fnk (xnk ))k∈N of (Fn(xn))n∈N with Fnk (xnk )

τ→ F(x). We need to show that
F(x) ∈ m-WMin(F). On the contrary, assume that there exists u ∈ S such that

F(u) ≺m F(x). Since Fnk
lsτ→ F it follows that there exists Fnk (unk ) ∈ Fnk for all k

such that Fnk (unk )
τ→ F(u). Thus, using Lemma 3(i) we have Fnk (unk ) ≺m Fnk (xnk )

for sufficiently large k, which contradicts the fact that Fnk (xnk ) ∈ m-WMin(Fnk ).

Remark 2 Anh et al. [27, Corollary 4.1] considered a set optimization problem by
perturbing the feasible set and established the upper convergence for a notion of weak
minimal solution sets in terms of external stability via Hausdorff convergence using
set less order relation. However, we consider a problem with perturbations in both the
feasible set and the objective function, to establish the upper convergence for m-weak
minimal solution sets in terms of topological convergence. It may be observed that
topological convergence is compatible with the considered set order relation and the
assumptions in Theorem 1 are different from those considered in [27, Corollary 4.1].
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We next provide sufficient conditions for the lower set order convergence of a
sequence of families of minimal solution sets of the perturbed problems to the corre-
sponding family of minimal solution sets of the original problem.

Theorem 2 If the following conditions hold:

(a) Fn → F ;
(b) there is a τ -compact set E ∈ P(B0(Y )) such that Fn ⊆ E for sufficiently large n;
(c) Fn satisfies m-domination property on Sn for all n;
(d) F is closed-valued on S;

then m-Min(Fn)
lsτ→ m-Min(F).

Proof Let F(x) ∈ m-Min(F). SinceFn
lsτ→ F , there exists Fn(xn) ∈ Fn for all n such

that Fn(xn)
τ→ F(x). As Fn satisfies m-domination property on Sn for all n, there

exists Fn(un) ∈ m-Min(Fn) such that Fn(un) �m Fn(xn). Using the compactness
assumption, it follows that (Fn(un))n∈N has a convergent subsequence (Fnk (unk ))k∈N
such that Fnk (unk )

τ→ F(u). Clearly, F(u) ∈ F as Fnk
usτ→ F . From Lemma 4(iii)

we obtain that F(u) �m F(x), which further implies that F(u) = F(x) as F(x) ∈
m-Min(F). Thus, there exists Fnk (unk ) ∈ m-Min(Fnk ) such that Fnk (unk )

τ→ F(x).
Since the later convergence holds for every convergent subsequence, therefore the
entire sequence (Fn(un))n∈N converges to F(x). Hence, F(x) ∈ Li(m-Min(Fn)).

The following two examples illustrate that condition (a) cannot be relaxed in The-
orem 2.

Example 2 Let X = R, S = [0, 1], Sn = [0, 1 − 1
n ], Y = R

2 and K = R
2+. Consider

the maps F , Fn : X ⇒ Y defined as

F(x) = {(t, 0) : min{x, 1 − x}� t � 1},
Fn(x) =

{ {(t,−1) : 0� t � 1}, if x = 0,
{(t, 0) : min{x, 1 − x}� t � 1}, if x �= 0.

It can be easily seen thatFn
usτ
� F as Fn(0)

τ→ A, where A = {(t,−1) : 0� t � 1}
and A /∈ F , but all other assumptions of Theorem 2 are satisfied. Here m-Min(F) =
{F(0), F(1)} andm-Min(Fn) = {Fn(0)}. We observe that for any F(x) ∈ m-Min(F)

there does not exist any Fn(xn) ∈ m-Min(Fn) such that Fn(xn)
τ→ F(x).

Example 3 Let X = R, S = [0, 1], Sn = [ 1n , 1], Y = R
2 and K = R

2+. Consider the
maps F , Fn : X ⇒ Y defined as

F(x) =
{ {(t, 0) : −1� t � 0}, if x = 0,

{(t, 0) : 0� t �max{x, 1 − x}}, if x �= 0,

Fn(x) = {(t, 0) : 0� t �max{x, 1 − x}}.

It can be seen that Fn
lsτ
� F as for F(0), there does not exists any Fn(xn) ∈ Fn

such that Fn(xn)
τ→ F(0), but all other assumptions of Theorem 2 are satisfied.
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Here m-Min(F) = {F(0)} and m-Min(Fn) = {Fn(1)}. We observe that for F(0) ∈
m-Min(F), the result fails to hold.

Remark 3 As stated in Remark 2 earlier, we also observe here that the lower conver-
gence established in this paper is different from the one established by Anh et al. [27,
Theorem 4.4].

The proof of the following theorem, which presents the upper stability of m-weak
efficient solution sets in the given space, follows on the lines of Theorem 3.12 in [15].

Theorem 3 If the following conditions hold:

(a) Sn
K
⇀S;

(b) Fn
lsτ→ F ;

(c) for every xn ∈ Sn, x ∈ S with xn → x there exists a subsequence (Fnk (xnk ))k∈N
of (Fn(xn))n∈N such that Fnk (xnk )

τ→ F(x);

then m-WEff(Fn)
K
⇀m-WEff(F).

Next, we show that the upper stability of m-weak efficient solution sets can also be
obtained by replacing condition (b) in Theorem 3 by the lower Painlevé–Kuratowski
convergence of the sets Sn .

Theorem 4 If the following conditions hold:

(a) Sn
K→ S;

(b) for every xn ∈ Sn, x ∈ S with xn → x there exists a subsequence (Fnk (xnk ))k∈N
of (Fn(xn))n∈N such that Fnk (xnk )

τ→ F(x);

then m-WEff(Fn)
K
⇀m-WEff(F).

Proof Let xn ∈ m-WEff(Fn) be such that there exists a subsequence (xnk )k∈N of

(xn)n∈N with xnk → x . As Sn
K
⇀S it follows that x ∈ S. Using assumption (b), without

loss of generality we assume that Fnk (xnk )
τ→ F(x). We show that x ∈ m-WEff(F).

On the contrary, assume that there exists u ∈ S such that F(u) ≺m F(x). Since

Snk
K
⇁S, there exists unk ∈ Snk for all k such that unk → u. Again using assumption

(b), without loss of generality we assume that Fnk (unk )
τ→ F(u). From Lemma 3(i),

we have Fnk (unk ) ≺m Fnk (xnk ), which is a contradiction as xnk ∈ m-WEff(Fnk ).

Remark 4 From [28], we recall that for A, B ∈ P0(Y ), A �l B if and only if
B ⊆ A + K and A ≺l B if and only if B ⊆ A + intK . It may be observed from
[20, Proposition 9] that if A �m B (resp. A ≺m B) then A �l B (resp. A ≺l B).
Considering the solutions based on the strict relation≺l , Karuna and Lalitha [10] stud-
ied the upper stability of stronger notion of weak efficient solution sets. The problem
considered in [10] involved just the perturbation of the feasible set and the stability
results were obtained under continuity and closedness assumptions on the objective
map.
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Using the quasi-order relation �l , Geoffroy [15, Corollary 3.14] established the
lower stability of minimal solution set by proving that every minimal solution is
a limit of a sequence of approximate minimal solutions of (Pn). However, by con-
sidering the solutions based on partial order relation �m , we establish the lower
Painlevé–Kuratowski convergence of a sequence of efficient solution sets of the per-
turbed problems to strict efficient solution set of the original problem.

Theorem 5 If the conditions (a) − (c) of Theorem 3 are satisfied and the following
conditions hold:

(d) Sn
K
⇀S;

(e) there exists a compact set E in X such that Sn ⊆ E for sufficiently large n;
(f) Fn satisfies m-domination property on Sn for sufficiently large n;
(g) F is closed-valued on S;

then m-Eff(Fn)
K
⇁m-SEff(F).

Proof Let x ∈ m-SEff(F). Since Fn
lsτ→ F , there exists Fn(xn) ∈ Fn for all n such

that Fn(xn)
τ→ F(x). As Fn satisfies m-domination property on Sn for all n, there

exists un ∈ m-Eff(Fn) such that

Fn(un) �m Fn(xn).

By assumption (e), there exists a subsequence (unk )k∈N of (un)n∈N such that unk →
u. Clearly u ∈ S as Sn

K
⇀S, which further by assumption (c) implies that there exists

a subsequence (Fnkl (unkl ))l∈N of (Fnk (unk ))k∈N such that Fnkl (unkl )
τ→ F(u). By

virtue of Lemma 4(iii), we have F(u) �m F(x). Since x ∈ m-SEff(F), we obtain that
u = x . Thus, there exists a subsequence (unk )k∈N with unk ∈ m-Eff(Fnk ) such that
unk → x . Since this convergence holds for every convergent subsequence, therefore
the entire sequence (un)n∈N converges to x . Thus, x ∈ Li(m-Eff(Fn)).

Remark 5 Using the relation �l and perturbing the feasible set only, a similar result
has been proved for a different notion of efficient solution set in [10, Theorem 4.3]
by assuming a strict quasiconvexity assumption (see Definition 2.6 in [17]) on the
objective map.

From Theorems 3 and 5, we now conclude the following result.

Theorem 6 If the following conditions hold:

(a) Sn
K→ S;

(b) Fn
lsτ→ F ;

(c) there exists a compact set E in X such that Sn ⊆ E for sufficiently large n;
(d) for every xn ∈ Sn, x ∈ S with xn → x there exists a subsequence (Fnk (xnk ))k∈N

of (Fn(xn))n∈N such that Fnk (xnk )
τ→ F(x);

(e) Fn satisfies m-domination property on Sn for sufficiently large n;
(f) F is closed-valued on S;

then m-SEff(F) ⊆ Li(m-Eff(Fn)) ⊆ Ls(m-WEff(Fn)) ⊆ m-WEff(F).
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4 Stability Using Scalarization Approach

In this section, based on the scalar problem proposed by Karaman et al. [20], we
study the stability of solution sets of set optimization problembymeans of scalarization
techniques. For this purpose, we first obtain the characterizations of m-strict efficient
and m-weak efficient solutions of (P) in terms of strict optimal and optimal solu-
tions of scalarized problem, respectively. Then we establish the Painlevé–Kuratowski
convergence of optimal solutions of perturbed scalar problems to solution sets of (P).

We consider a scalar function Ime (., .) : FX × FX → R ∪ {±∞} defined by

Ime (F(x), F(x̄)) := inf{t ∈ R : F(x) �m te + F(x̄)},

where e ∈ intK , F : X ⇒ Y is a nonempty bounded set-valued map and
FX := {F(x) : x ∈ X}.

We first recall the following properties of Ime from [20] required in the sequel.

Theorem 7 [20, Proposition 19] Let x, x̄ ∈ X. Then the following assertions hold:

(i) F(x) ≺m F(x̄) if and only if Ime (F(x), F(x̄)) < 0.
(ii) Let Ime (F(x), F(x̄)) be finite and F(x̄)

.− F(x) be a compact set. Then
F(x) �m F(x̄) if and only if Ime (F(x), F(x̄))� 0.

The following notions of m-increasing and strictly m-increasing function are from
[20].

Definition 8 [20, Definition 9] Let A ∈ P(P0(Y )). A function T : P0(Y ) → R ∪
{±∞} is called
(a) m-increasing on A if for A, B ∈ A, A �m B implies that T (A)� T (B).
(b) strictly m-increasing on A if for A, B ∈ A, A ≺m B implies that T (A) < T (B).

Lemma 5 (i) [20, Proposition 15] Let F(x) ∈ FX . Then Ime (., F(x)) is an m-
increasing function on FX .

(ii) [20, Proposition 17] Let F(x) ∈ FX be a compact set. Then Ime (., F(x)) is a
strictly m-increasing function on FX .

For x̄ ∈ S, we now consider the scalar optimization problem

(P(F(x̄))) Min Ime (F(x), F(x̄))

s.t. x ∈ S.

We denote the set of optimal (resp. strict optimal) solutions of (P(F(x̄))) by
argminS(P(F(x̄))) (resp. argmin<

S (P(F(x̄)))) defined as

argminS(P(F(x̄))) := {x̂ ∈ S : Ime (F(x̂), F(x̄))� Ime (F(x), F(x̄)) for all x ∈ S}
(resp. argmin<

S (P(F(x̄)))

:= {x̂ ∈ S : Ime (F(x̂), F(x̄)) < Ime (F(x), F(x̄)) for all x ∈ S \ {x̂}}).
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The following result relates m-weak efficient and m-strict efficient solutions of (P)
with the optimal and strict optimal solutions of scalar optimization problem, respec-
tively.

Theorem 8 The following assertions hold:

(i)
⋃
x∈S

argmin<
S (P(F(x))) ⊆ m-SEff(F).

(ii) If F is a compact-valued map on S, then
⋃
x∈S

argminS(P(F(x))) ⊆ m-WEff(F).

(iii) If F is a compact-valued map on S, then m-SEff(F) ⊆ ⋃
x∈S

argmin<
S (P(F(x))).

Proof (i) Let x̂ ∈ ⋃
x∈S

argmin<
S (P(F(x))). Let x̂ ∈ argmin<

S (P(F(x̄))) for some

x̄ ∈ S. Thus, Ime (F(x̂), F(x̄)) < Ime (F(x), F(x̄)) for all x ∈ S \ {x̂}. We show
that x̂ ∈ m-SEff(F). On the contrary, assume that there exists u ∈ S \ {x̂} such
that F(u) �m F(x̂). Since Ime (., F(x̄)) is an m-increasing function, we have
Ime (F(u), F(x̄))� Ime (F(x̂), F(x̄)), which is a contradiction.

(ii) Let x̂ ∈ ⋃
x∈S

argminS(P(F(x))). Thus, x̂ ∈ argminS(P(F(x̄))) for some x̄ ∈
S and so Ime (F(x̂), F(x̄))� Ime (F(x), F(x̄)) for all x ∈ S. We show that
x̂ ∈ m-WEff(F). On the contrary, assume that there exists u ∈ S such that
F(u) ≺m F(x̂). As Ime (., F(x̄)) is a strictly m-increasing function, we have
Ime (F(u), F(x̄)) < Ime (F(x̂), F(x̄)), which is a contradiction.

(iii) Let x̂ ∈ m-SEff(F), hence it follows that F(x) �
m F(x̂) for any x ∈ S \ {x̂}.

Thus, by Theorem 7(ii), we have Ime (F(x), F(x̂)) > 0 for all x ∈ S \ {x̂}.
As Ime (F(x̂), F(x̂)) = 0 it follows that Ime (F(x̂), F(x̂)) < Ime (F(x), F(x̂))
for all x ∈ S \ {x̂}. Hence, x̂ ∈ argmin<

S (P(F(x̂))), which implies that x̂ ∈⋃
x∈S

argmin<
S (P(F(x))).

Remark 6 As F is a bounded set-valued map, thus from [20, Corollary 10] we observe
that m-WEff(F) ⊆ ⋃

x∈S
argminS(P(F(x))).

Thus, from Theorem 8 and Remark 6, we conclude the following result.

Theorem 9 If F is compact-valued map on S, then the following assertions hold:

(i) m-WEff(F) = ⋃
x∈S

argminS(P(F(x))).

(ii) m-SEff(F) = ⋃
x∈S

argmin<
S (P(F(x))).

In the following result, we investigate the stability of optimal solutions of perturbed
scalarized problems in the upper Painlevé–Kuratowski sense.

Theorem 10 If the following conditions hold:

(a) Sn
K
⇀S;

(b) Fn
lsτ→ F ;

(c) for every x ∈ S, xn ∈ Sn with xn → x there exists a subsequence (Fnk (xnk ))k∈N
of (Fn(xn))n∈N such that Fnk (xnk )

τ→ F(x);
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(d) Fn is a compact-valued map on Sn for all n;

then
⋃

xn∈Sn
argminSn (P(Fn(xn)))

K
⇀

⋃
x∈S

argminS(P(F(x))).

Proof Let x̂n ∈ ⋃
xn∈Sn

argminSn (P(Fn(xn))) be such that there exists a subsequence

(x̂nk )k∈N of (x̂n)n∈N with x̂nk → x̂ . Let x̂n ∈ argminSn (P(Fn(x̄n))) for some x̄n ∈ Sn .

Since Sn
K
⇀S it follows that x̂ ∈ S. As x̂nk ∈ argminSnk (P(Fnk (x̄nk ))), we have

Ime (Fnk (x̂nk ), Fnk (x̄nk ))� Ime (Fnk (xnk ), Fnk (x̄nk )), for all xnk ∈ Snk . (1)

Let x ∈ S. Since Fnk
lsτ→ F , it follows that there exists Fnk (xnk ) ∈ Fnk for all k ∈ N

such that Fnk (xnk )
τ→ F(x). As Fnk is compact-valued on Snk , from (1) and Lemma

5(ii) it follows that Fnk (xnk ) ⊀
m Fnk (x̂nk ) for all k ∈ N. Also, using assumption

(c), without loss of generality we assume that Fnk (x̂nk )
τ→ F(x̂). By Lemma 3(i),

we have F(x) ⊀
m F(x̂). Thus, by Theorem 7(i), we have Ime (F(x), F(x̂))� 0. As

Ime (F(x̂), F(x̂)) = 0 we obtain that Ime (F(x̂), F(x̂))� Ime (F(x), F(x̂)). Thus x̂ ∈
argminS(P(F(x̂))) ⊆ ⋃

x∈S
argminS(P(F(x))).

Remark 7 We observe that as in Theorem 4, we can replace the condition Fn
lsτ→ F

by Sn
K
⇁S in Theorem 10 also.

The next theorem is an immediate consequence of Theorem 9(i) and Theorem 10
that establishes the upper Painlevé–Kuratowski convergence of the optimal solution
sets of perturbed scalarized problems to m-weak efficient solution set of (P).

Theorem 11 If the conditions (a)-(d) of Theorem 10 are satisfied and

(e) F is compact-valued on S, then
⋃

xn∈Sn
argminSn (P(Fn(xn)))

K
⇀m-WEff(F).

Next, we prove the lower Painlevé–Kuratowski convergence of the optimal solution
sets of perturbed scalarized problems to the strict optimal solution set of a scalar
problem.

Theorem 12 If the following conditions hold:

(a) Sn
K→ S;

(b) for every x ∈ S, xn ∈ Sn with xn → x there exists a subsequence (Fnk (xnk ))k∈N
of (Fn(xn))n∈N such that Fnk (xnk )

τ→ F(x);
(c) there is a compact set E in X such that Sn ⊆ E for sufficiently large n;
(d) Fn satisfies m-domination property on Sn for sufficiently large n;

then

⋃
xn∈Sn

argminSn (P(Fn(xn)))
K
⇁

⋃
x∈S

argmin<
S (P(F(x))).
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Proof Let x̂ ∈ ⋃
x∈S

argmin<
S (P(F(x))). Let x̂ ∈ argmin<

S (P(F(x̄))) for some x̄ ∈ S.

Thus, Ime (F(x̂), F(x̄)) < Ime (F(x), F(x̄)) for all x ∈ S \ {x̂}. Since Sn K
⇁S, it follows

that there exists x̂n ∈ Sn for all n ∈ N such that x̂n → x̂ . By assumption (d),
there exists un ∈ m-Eff(Fn) such that Fn(un) �m Fn(x̂n). From [20, Corollary 8],
we have m-Eff(Fn) ⊆ ⋃

xn∈Sn
argminSn (P(Fn(xn))). By virtue of assumption (c), there

exists a subsequence (unk )k∈N of (un)n∈N such that unk → u. Clearly, u ∈ S as

Sn
K
⇀S. Using assumption (b), without loss of generality we assume that Fnk (x̂nk )

τ→
F(x̂) and Fnk (unk )

τ→ F(u). From Lemma 4(iii), it follows that F(u) �m F(x̂),
which by Lemma 5(i) implies that Ime (F(u), F(x̄))� Ime (F(x̂), F(x̄)). Since x̂ ∈
argmin<

S (P(F(x̄))), it follows that u = x̂ . Thus, by using the same argument given in
Theorem 5, we have x̂ ∈ Li(

⋃
xn∈Sn

argminSn (P(Fn(xn)))).

As an outcome of Theorem 9(ii) and Theorem 12, we establish the lower Painlevé–
Kuratowski convergence of the optimal solution sets of perturbed scalarized problems
to m-strict efficient solution set of (P).

Theorem 13 If the conditions (a)-(d) of Theorem 12 are satisfied and

(e) F is compact-valued on S, then
⋃

xn∈Sn
argminSn (P(Fn(xn)))

K
⇁m-SEff(F).

We now conclude this section with the following result, which improves Theorem
6 in Sect. 3.

Theorem 14 If the conditions (a)-(e) of Theorem 13 are satisfied and the following
conditions hold:

(f) Fn
lsτ→ F ;

(g) Fn is a compact-valued map on Sn for all n;

thenm-SEff(F) ⊆ Li(
⋃

xn∈Sn
argminSn (P(Fn(xn)))) ⊆ Ls(

⋃
xn∈Sn

argminSn (P(Fn(xn))))⊆
m-WEff(F).

Remark 8 We observe from Theorem 14 that for compact-valued maps, we obtain
stability results for the set optimization problem (P) in terms of solutions of perturbed
scalarized problems which are much easier to achieve in comparison with the stability
results obtained via solution sets of perturbed set optimization problems.

5 Continuity of Solution Set Map

This section deals with another stability aspect pertaining to continuity of solution
set maps in parametric set optimization problems both in the image space and given
space. For this, we first consider a family of parametric set optimization problems
by perturbing both the objective map F and the feasible set S of problem (P) over a
nonempty set U ⊆ Z , where Z is a real normed linear space. Let the set-valued map

123



788 Karuna, C. S. Lalitha

S : U ⇒ X be the perturbation map for the feasible set and F : X × Z ⇒ Y be a
nonempty bounded set-valued map. For parameter u, we now consider the following
parametric set optimization problem

(P(u)) m-Min F(x, u)

s.t. x ∈ S(u),

where S(u) is a nonempty subset of X . For each u ∈ U , let Fu denote the family of
image sets of F(., u) on S(u), that is, Fu := {F(x, u) : x ∈ S(u)}. We denote the
set of m-minimal (resp. m-weak minimal) solution sets of (P(u)) by m-Min(u) (resp.
m-WMin(u)) and the setm-Eff(u) (resp.m-WEff(u) andm-SEff(u)) denote the set of
m-efficient (resp.m-weak efficient andm-strict efficient) solutions of (P(u)). We refer
to the map m-Min : U ⇒ B0(Y ) (resp. m-WMin : U ⇒ B0(Y )) as m-minimal (resp.
m-weak minimal) solution set map and m-Eff : U ⇒ X (resp. m-WEff : U ⇒ X )
as m-efficient (resp. m-weak efficient) solution set map. Throughout, we assume that
m-Eff(u), m-WEff(u) and m-SEff(u) are nonempty for every u ∈ U .

In literature (for instance see [23, 29, 30]), various continuity notions have been
given for set-valued maps. Thanks to the topology τ on P(B0(Y )), we now propose
the following notions of upper and lower semicontinuity form-minimal (resp.m-weak
minimal) solution set map with image set as family of sets.

Definition 9 The map m-Min : U ⇒ B0(Y ) is said to be upper semicontinuous
(resp. lower semicontinuous) at ū ∈ U if for any τ -open set V ∈ P(B0(Y )) with
m-Min(ū) ⊆ V (resp. m-Min(ū) ∩ V �= ∅) there is a neighborhood W of ū such that
m-Min(u) ⊆ V (resp. m-Min(u) ∩ V �= ∅) for all u ∈ W ∩U .

Similarly, we can define the upper and lower semicontinuity of m-weak minimal
solution set map by replacing m-Min by m-WMin in the above definition.

We now provide sufficient conditions for the upper semicontinuity ofm-weak min-
imal solution set map.

Theorem 15 Let ū ∈ U. If the following conditions hold:

(a) for every sequence (un)n∈N ⊆ U with un → ū, we have Fun → Fū ;
(b) there exists a compact set E in Y and δ > 0 such that

⋃
u∈Bδ(ū)

⋃
x∈S(u)

F(x, u) ⊆ E ;

then m-WMin is upper semicontinuous at ū.

Proof On the contrary, assume that m-WMin is not upper semicontinuous at ū.
Then there exist a τ -open set V in P(B0(Y )) with m-WMin(ū) ⊆ V , a sequence
(un)n∈N ⊆ U with un → ū such that m-WMin(un) � V for sufficiently large n.
Let F(xn, un) ∈ m-WMin(un) be such that F(xn, un) /∈ V for sufficiently large n.
By compactness assumption, it follows that (F(xn, un))n∈N has a convergent subse-
quence (F(xnk , unk ))k∈N such that F(xnk , unk )

τ→ F(x̄, ū). Clearly, F(x̄, ū) ∈ Fū as

Fun
usτ→ Fū . We next show that F(x̄, ū) ∈ m-WMin(ū). On the contrary, assume that

there exists ȳ ∈ S(ū) such that F(ȳ, ū) ≺m F(x̄, ū). Now, proceeding as in Theorem
1, we obtain that F(x̄, ū) ∈ m-WMin(ū) which further implies that F(xnk , unk ) ∈ V
for sufficiently large k, which is a contradiction.
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Under suitable assumptions, we next investigate the lower semicontinuity of m-
minimal solution set map.

Theorem 16 Let ū ∈ U. If the conditions (a) and (b) of Theorem 15 are satisfied and
the following conditions hold:

(c) there exists δ > 0 such that Fu satisfies m-domination property on S(u) for every
u ∈ Bδ(ū);

(d) F(., ū) is closed-valued on S(ū);
then m-Min is lower semicontinuous at ū.

Proof On the contrary, assume that m-Min is not lower semicontinuous at ū. Then
there exist a τ -open set V in P(B0(Y )) with m-Min(ū) ∩ V �= ∅ and a sequence
(un)n∈N ⊆ U with un → ū such that

m-Min(un) ∩ V = ∅ for sufficiently large n. (2)

Let F(x̄, ū) ∈ m-Min(ū) ∩ V . Further, proceeding as in Theorem 2, it follows that
there exists F(ȳ, ū) ∈ Fū such that F(ȳ, ū) �m F(x̄, ū), which further implies
that F(ȳ, ū) = F(x̄, ū) as F(x̄, ū) ∈ m-Min(ū). Since F(x̄, ū) ∈ V we have
F(ynk , unk ) ∈ V for sufficiently large k, which contradicts (2).

We next discuss the continuity of solution set maps in the given space. Before that
we provide the notion of continuity of a set-valued map with respect to topology τ .
Similar notion of continuity has been considered by Zhang and Huang [18, Definition
2.4] by using the topology introduced by Geoffroy [15].

Definition 10 The map F : X ⇒ Y is said to be τ -continuous at x̄ ∈ X if for every
sequence xn → x̄ we have F(xn)

τ→ F(x̄). The map F is τ -continuous on X if it is
τ -continuous at every x ∈ X .

The following theorem depicts the upper semicontinuity of m-weak efficient solu-
tion set map.

Theorem 17 Let ū ∈ U. If the following conditions hold:

(a) S is continuous at ū and S(ū) is compact;
(b) F(., .) is τ -continuous on S(ū) × {ū};
then m-WEff is upper semicontinuous at ū and m-WEff(ū) is a compact set.

Proof On the contrary, assume that m-WEff is not upper semicontinuous at ū. Then
there exist an open set V in X withm-WEff(ū) ⊆ V and a sequence (un)n∈N ⊆ U with
un → ū such that m-WEff(un) � V for sufficiently large n. Hence, there exists xn ∈
m-WEff(un) such that xn /∈ V for sufficiently large n. Since S is upper semicontinuous
at ū and S(ū) is compact, there exist a subsequence (xnk )k∈N of (xn)n∈N and x̄ ∈ S(ū)

such that xnk → x̄ .Weneed to show that x̄ ∈ m-WEff(ū). On the contrary, let ȳ ∈ S(ū)

be such that F(ȳ, ū) ≺m F(x̄, ū). Using the lower semicontinuity of S at ū, there exists
a sequence (ynk )k∈N, ynk ∈ S(unk ) such that ynk → ȳ. By virtue of τ -continuity of
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F(., .) on S(ū) × {ū} we have F(ynk , unk )
τ→ F(ȳ, ū) and F(xnk , unk )

τ→ F(x̄, ū).
From Lemma 3(i) we obtain that F(ynk , unk ) ≺m F(xnk , unk ) for sufficiently large k,
which is a contradiction to the fact that xnk ∈ m-WEff(unk ). Thus, x̄ ∈ m-WEff(ū)

and hence xnk ∈ V for sufficiently large k, which is again a contradiction.
Next, to prove thatm-WEff(ū) is a compact set, it is enough to show thatm-WEff(ū)

is a closed set. Let xn ∈ m-WEff(ū) be such that xn → x̄ . As S is upper semicontinuous
at ū and S(ū) is compact, it follows that x̄ ∈ S(ū). We now claim that x̄ ∈ m-WEff(ū).
On the contrary, assume that there exists ȳ ∈ S(ū) such that F(ȳ, ū) ≺m F(x̄, ū).
Using the τ -continuity of F(., .) at (x̄, ū) we have F(xn, ū)

τ→ F(x̄, ū). Thus, by
Lemma 3(i) it follows that F(ȳ, ū) ≺m F(xn, ū) for sufficiently large n. This contra-
dicts the fact that xn ∈ m-WEff(ū) for all n.

Remark 9 Zhang and Huang [18, Theorem 3.1] proved a similar result for relaxed
minimal solution set map under the assumptions of K -closedness and topological
continuity of the map F with respect to topology given by Geoffroy [15].

We next provide sufficient conditions for the lower semicontinuity of m-efficient
solution set map.

Theorem 18 Let ū ∈ U. If the conditions (a) and (b) of Theorem 17 are satisfied and
the following conditions hold:

(c) there exists δ > 0 such that Fu satisfies m-domination property on S(u) for every
u ∈ Bδ(ū);

(d) F(., ū) is closed-valued on S(ū);
(e) m-Eff(ū) = m-SEff(ū);

then m-Eff is lower semicontinuous at ū.

Proof On the contrary, assume that m-Eff is not lower semicontinuous at ū. Thus,
there exists an open set V in X with m-Eff(ū) ∩ V �= ∅ and a sequence (un)n∈N ⊆ U
with un → ū such that

m-Eff(un) ∩ V = ∅ for sufficiently large n. (3)

Let x̄ ∈ m-Eff(ū) ∩ V . Using lower semicontinuity of S at ū, there exists a sequence
(xn)n∈N, xn ∈ S(un) such that xn → x̄ . By m-domination property, there exists
yn ∈ m-Eff(un) for sufficiently large n such that F(yn, un) �m F(xn, un). Since S is
upper semicontinuous at ū and S(ū) is compact, there exist a subsequence (ynk )k∈N of
(yn)n∈N and ȳ ∈ S(ū) such that ynk → ȳ. Since F(., .) is τ -continuous on S(ū)×{ū}
we have F(ynk , unk )

τ→ F(ȳ, ū) and F(xnk , unk )
τ→ F(x̄, ū). From Lemma 4(iii),

we obtain that F(ȳ, ū) �m F(x̄, ū). As m-Eff(ū) = m-SEff(ū), we have x̄ = ȳ and
so ynk ∈ m-Eff(unk ) ∩ V for sufficiently large k, which contradicts (3).

Remark 10 We recall from [18, Definition 2.6] that F is strictly K -quasiconvex on
a nonempty convex subset S of X if for any x , x̄ ∈ S with x �= x̄ and λ ∈ (0, 1),
F(x) �l F(x̄) implies that F(λx + (1 − λ)x̄) ≺sl F(x̄). Zhang and Huang [18,
Theorem 3.3] derived the lower semicontinuity of minimal solution set map (denoted
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by Min(F, S(.),�l)) by assuming F to be strictly K -quasiconvex. However, it can be
seen from the following example that considering the solutions on the basis of relation
�m , the lower semicontinuity of efficient solution set map can also be obtained even
though the objective map is not strictly K -quasiconvex.

Example 4 Let X = Z = R, Y = R
2,U = [0, 1] and K = R

2+. Define the set-valued
map S : U ⇒ X as S(u) = [0, 1] for all u ∈ U . Consider the map F : X × Z ⇒ Y
defined as

F(x, u) = co{(0, 0), (ux, 2 − x), (x + 1, u(x − 1))}.

It can be easily seen that for ū = 0, F is not strictly K -quasiconvex on S(ū). Here,

Min(F, S(.),�l) =
{ [0, 1], if u = 0,

{0}, if u �= 0,

and m-Eff(u) = [0, 1], for every u ∈ U .

We observe that Min(F, S(.),�l) is not lower semicontinuous at ū, but m-Eff is
lower semicontinuous at ū.

6 Conclusion

In this paper, we investigated two aspects of stability namely, convergence of solu-
tion sets and continuity of solution setmaps, both in the given space and image space. In
an attempt to solve the open problem given byGeoffroy [15], we considered the prefer-
ence relation≺m to define a topology τ on the whole setP0(Y ) and studied the related
concepts of τ -convergence and τ -continuity to establish the stability results. Further,
taking the advantage of the topology τ , we introduced the concept of semicontinuity
for solution set maps in the image space. Moreover, in the setting of τ -convergence
and the preference relations ≺m and �m , we also studied the convergence aspect of
stability in set optimization using scalarization techniques.
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