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Abstract
Based on the number of customers and the server’s workload, this paper proposes
a modified Min(N , D)-policy and discusses an M/G/1 queueing model with delayed
randomizedmultiple vacations under such a policy. Applying the well-known stochas-
tic decomposition property of the steady-state queue size, the probability generating
functionof the steady-state queue length distribution is obtained.Moreover, the explicit
expressions of the expected queue length and the additional queue length distribution
are derived by some algebraic manipulations. Finally, employing the renewal reward
theorem, the explicit expression of the long-run expected cost per unit time is given.
Furthermore, we analyze the optimal policy for economizing the expected cost and
compare the optimal Min(N , D)-policy with the optimal N -policy and the optimal
D-policy by using numerical examples.
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1 Introduction

It is known that different control policies are useful to control the queue size and
effectively reduce the customers’ waiting time. If the number of arrivals during the
server vacation is too large, system congestion may occur, which will degrade the
quality of service and the customers’ satisfaction. In addition, a queueing system
without a control policy will generate a large amount of switching costs if the system
frequently switches its state for a long time. Therefore, in order to effectively control
the queue size and overcome the cost problem caused by the frequent switching, the
investigation concerning the queueing systemwith a control policy is worth doing. The
earliest works on the control policy of queueing systems were the N -policy proposed
by Yadin and Naor [1], the T -policy presented by Heyman [2], and the D-policy
developed by Balachandran [3, 4]. In someM/G/1 queues, the N -policy and D-policy
operate according to exhaustive service rule, i.e., the server is turned off when the
system becomes empty. The N -policy means that the server resumes its service when
there are N customers present in the system. In contrast, under the conventional D-
policy, the server starts to serve only when the sum of the service times of all waiting
customers firstly exceeds a predetermined threshold D(D � 0). We know that the
stochastic decomposition property proposed in reference [5] cannot be applied to the
classical D-policy queue. Thus, the research on D-policy queue has always been a
very challenging task in queueing theory. Authors like Dashalalow [6], Artalejo [7,
8] and Lee et al. [9, 10] did some pioneering works in studying the queues with the
conventional D-policy. On the other hand, the absence of the server or non-availability
of the service in the system can be termed as vacation. Queues with vacations have
been extensively investigated by many researchers. Doshi [11] provided an exhaustive
survey of suchwork through 1985.Here, we refer the readers to themonograph byTian
[12] for more details. In the study of vacation models, most works were concentrated
on the study of models with multiple vacations and single vacation. However, the
randomized multiple vacation policy (also called multiple adaptive vacation policy,
first proposed by Tian [13]) is more general than multiple and single vacation policies.

From the engineering point of view, employing a control involves installing some
instruments, including precision counting and scanning gauges. When the manufac-
turing environment changes and the system owner wants to switch to another control
policy, it is impossible, in many cases, to discard the existing hardware system. There-
fore, with the fast development of the information era, there has been an increasing
interest in investigating some queueing systems with the joint control policy. For
example, Lee and Seo [14] studied about theM/G/1 queuewith the dyadicMin(N , D)-
policy in which the idle server resumes its service if either N customers accumulate
in the system or the sum of the service times of the waiting customers exceeds D,
whichever occurs first. Lee et al. [15] extended it to the MAP/G/1 queueing system.
Until now, an enormous number of works on the joint control policy and vacation
queues have been published. Some more extensive and extended research works on
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continuous-time and discrete-time queues with the threshold policies and vacation
mechanism can refer to the references [16–31].

On the one hand, the meaning of the conventional D-policy above is “the server
resumes its service when the cumulative service times of the waiting customers firstly
reach or exceed D". However, in many practical applications, it is very difficult for
the server to run D-policy designed according to the cumulative service times of the
waiting customers in the system, because before each customer’s service is completed,
the service time of the customer is randomly unknown. On the other hand, there are
many queueing systems with vacation policies, the server cannot leave for vacation
immediately after the service is completed and the system becomes empty, he/she has
to go through a period of delayed time to prepare for the vacation. Sometimes this
delayed period is very necessary, such as bank staff need to sort out accounts before
going off work or leaving. In addition, the length of the server’s vacation time depends
not only on the amount of auxiliary works which the server is engaged in during the
vacation, but also on the constraints of the customers’ arrival process. Consequently,
the number of consecutive vacations is often uncertain. Multiple adaptive vacation
schedule is a more flexible vacation policy and is more general than most classical
vacation policies in the sense that the well known multiple vacation policy and single
vacation policy become two special cases of this policy. Under this framework, we
can investigate many different vacation policies between these two extreme cases for
the purpose of better allocation of the server’s time to perform primary jobs (serving
queue) and to do secondary jobs (vacations). Thus, inspired by the facts mentioned
above, we will propose a new continuous-time M/G/1 queueing model with delayed
randomized multiple vacations under the modified Min(N , D)-policy, in which the
idle server resumes its service if either N customers accumulate in the system or the
accumulative workload (not the cumulative service times) of the waiting customers in
the system exceeds D, whichever occurs first. In our model, the states of the server can
be in theworking state, the idle state (onduty) and thevacation state (off duty).Utilizing
the stochastic decomposition theorem of the steady-state queue size in [5, 12], we
present the stochastic decomposition structure of steady-state queue size. Moreover,
the explicit expressions of the expected queue length and the additional queue-length
distribution are derived. By numerical examples, we investigate the long-run expected
cost per unit time of the system and discuss the optimalMin(N , D)-policy, the optimal
N -policy and the optimal D-policy, respectively. The comparison of the minimum
costs and the optimal threshold values for three different policies is presented. When
the number of consecutive vacations is a fixed positive integer J , the optimal three-
dimensional control policy (N∗, D∗, J ∗) is also given.

The remainder of this paper is organized as follows. In Sect. 2, the details assump-
tions of the model are given. In Sect. 3, we firstly introduce several definitions and
lemmas, and then obtain the probability generating function of the steady-state queue-
length distribution by applying the well-known stochastic decomposition property of
the steady-state queue size [5, 12]. Moreover, the explicit expressions of the expected
queue size and the additional queue-length distribution are derived by some algebraic
manipulations. Section 4 is devoted to obtain a long-run expected cost function to
discuss a cost optimization problem, and numerically find the optimal control policy
for economizing the system cost. At last, the conclusions are presented in Sect. 5.
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2 Model Formulation

Considering a continuous-time M/G/1 queueing model with delayed randomized
multiple vacations under the modified Min(N , D)-policy, the detailed assumptions of
the model are given as follows:

(1) The inter-arrival time τn(n � 1) is exponentially distributed with cumulative
distribution function F(t) = 1 − e−λt , t � 0, λ > 0.

(2) The workload of the server for the nth customer, denoted by Wn(n � 1), refers
to the quantity of events included in the completed service items required by the
customer and follows an arbitrary distribution W (x), x � 0.

(3) The service time required to complete the workload Wn , that is, the service time
of the nth customer, denoted by χn(n � 1), is arbitrarily distributed with G(t)
which is supposed to have finite mean 1/μ.

(4) The queueing system operates under the modified Min(N , D)-policy based on
delayed randomized multiple vacations, that is, once the system becomes empty,
the server goes through a delayed period Y with arbitrary distribution Y (t) before
taking vacation. During the delayed period Y , if there are customers arriving in the
system, the server starts its service at once until the system becomes empty and
the server restarts a delayed period Y . Otherwise, the server immediately takes a
vacation with a random length V which obeys arbitrary distribution V (t). Limited
by the amount of current auxiliary work, the server is required to take a random
maximum number of vacations ( denoted by H ) after the system becomes empty,
and H obeys a generally discrete distribution with

P{H = l} = hl , l = 1, 2, 3, · · ·

and probability generating function (p.g.f) H(z) = ∑∞
l=1 hl z

l , |z| < 1. In addi-
tion, for a certain positive integer k(1 � k � H), due to the vacation interruption
mechanism, if the number of customers arriving in the system reaches N (N � 1)
or the total workload of the server for all the waiting customers is not less than a
given threshold D(D � 0), whichever occurs first, the server immediately inter-
rupts the vacation and returns to system to serve. During the kth vacation, if there
are less than N customers in the system as well as the total workload of the server
for all the waiting customers is less than D, the server remains vacation state until
the kth vacation ends and begins to serve at once. If no customer arrives in the
system during the kth vacation, the server will prepare for (k+1)th vacation. This
pattern repeats until the H th vacation expires. If the total H vacations have been
finished, the server will go back to system to stay idle and wait for the next arrival.
Briefly speaking, there are four cases of starting a new server busy period after the
system becomes empty:

(a) Starting a new server busy period during a delayed period (arrival occurs during
a delayed period);

(b) Starting a new server busy period during a vacation (arrival occurs during
vacation period and the queue size reaches N or the total workload of the
server for all the waiting customers is not less than a given threshold D);
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(c) Starting a new server busy period at the completion instant of a vacation (arrival
occurs during vacation period);

(d) Starting a new server busy period during idle period (no arrival occurs during
the given H vacations).

(5) The inter-arrival time τ , the workload W of the server for each customer, the
service time χ , the server’s continuous vacation number H , the delayed period Y
and the server vacation time V are all independent of each other.

Remarks (1) The workload of the server for each customer refers to the quantity of
events included in the completed service items required by the customer. The
unit of measurement for the workload may be a counting unit, a weight unit, etc.
For example, if a customer needs a certain factory to process 100 products, the
workload of this factory for this customer is 100 products. If a truck arrives at a
warehouse to load 3 000kg(3 tons) of materials, the workload of the server for the
truck is 3 000kg(3 tons).

(2) In practical applications, the modified D-policy proposed in this paper is very
easy for the server to run the D-policy designed by the cumulative workload of the
server for the waiting customers in the system, because before starting the service,
the server can easily know the workload of the server for the waiting customers in
the system according to the customers’ service items.

(3) The queueing model studied in this paper generalizes the queueing models that
have been studied in references [13, 17–19, 27]. For example, when P{Y = ∞} =
1, the queueingmodel considered in this paper is equivalent to the classic queueing
model studied in [32]. When P{Y = 0} = 1 and N = 1, it is equivalent to the
queueing model considered in [12, 13]. When P{Y = 0} = 1 and D → ∞, the
considered queueing model in this paper can be reduced to the queueing model
investigated in [27].

(4) For later use, the following notations are adopted throughout this paper: g∗(s) =∫ ∞
0 e−stG(t)dt denotes the Laplace transform of the corresponding distribution
G(t), g(s) = ∫ ∞

0 e−stdG(t) denotes the Laplace–Stieltjes transform of the cor-
responding distribution G(t), G(k)(t) denotes the k-fold convolution of G(t), i.e.,
G(k)(t) = ∫ t

0 G
(k−1)(t − x)dG(x), k � 1 and G(0)(t) = 1, ρ = λ/μ denotes the

traffic intensity of the system, �(s) denotes the real part of the complex variable
s.

3 The Stochastic Decomposition of the Stationary Queue Size

In this section, applying the well-known stochastic decomposition property of the
steady-state queue size [5, 12], the probability generating function of the steady-
state queue-length distribution is obtained. Moreover, the explicit expressions of the
expected queue size and the additional queue-length distribution are derived by some
algebraic manipulations. For later discussions, some definitions and lemmas will be
presented as follows.

123



862 L. Luo et al.

Definition 1 (Server busy period) It is the time interval when the server starts to serve
customers until the system becomes empty again. Thus, the server busy period here is
equivalent to the system busy period of the standard M/G/1 queueing system in [32].

Denote by b, the length of the server busy period that starts from only one customer,
and let B(t) = P{b � t}, t � 0, b(s) = ∫ ∞

0 e−stdB(t),wehave the following lemma.

Lemma 1 (see [32]) For �(s) > 0, b(s) is the unique solution of the equation z =
g(s + λ − λz) in |z| < 1, and B(t) can be expressed as:

B(t) =
∞∑

k=1

∫ t

0

(λx)k−1

k! e−λxdG(k)(x), t � 0,

and

lim
t→∞ B(t) = lim

s→0+ b(s) =
{
1, ρ � 1
ω, ρ > 1

, E[b] =
{ ρ

λ(1−ρ)
, ρ < 1,

∞, ρ � 1,

where ω(0 < ω < 1) is the root of the equation z = g(λ − λz) in (0,1).
Let b<i> be the length of the server busy period evoked by i(i � 1) customers.

Because the arrival process is a Poisson process, the probability distribution function
of b<i> is given by

P{b<i> � t} = B(i)(t), t � 0, i � 1.

Definition 2 (Server non-busy period) It is the time period from the moment that the
system just becomes empty until the moment when the server returns to the system
after vacation and starts to serve customers.

Definition 3 (System idle period) It is a period of time during which the system is
continuously idle (no customers). Obviously, the system idle period is the remaining
time of an arrival interval. Let τ̂ j represent the length of the j th system idle period,
then {τ̂ j , j � 1} are independent identically distributed random variables each with
distribution F(t) = 1 − e−λt , t � 0.

Definition 4 (System busy period) It is the time interval that starts at the instant at
which the first customer arriving at the idle system and ends at the instant when the
system becomes empty again.

Definition 5 (Busy cycle) It is the time interval that from the moment that the server
non-busy period just begins until the moment that the next server busy period ends.

Theorem 1 Let P(z) be the p.g.f. of steady-state queue-length distribution for the
queueing system studied in this paper, then for ρ < 1 and |z| < 1, we have the
stochastic decomposition of the steady-state queue-length as follows:

P(z) = (1 − ρ)(1 − z)g(λ(1 − z))

g(λ(1 − z)) − z
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·
1 − v(λ) + y(λ)[1 − H(v(λ))]

N−1∑

k=1
zk

∫ ∞
0 W (k)(D)F (k+1)(t)dV (t)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N
, (1)

and the average steady-state queue size, denoted by E[L], is presented by

E[L] = ρ + λ2E[χ2]
2(1 − ρ)

+
y(λ)[1 − H(v(λ))]

N−1∑

k=1
k

∫ ∞
0 W (k)(D)F (k+1)(t)dV (t)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N
, (2)

where �N =
N∑

m=1
W (m−1)(D)

∫ ∞
0 F (m)(t)dV (t), E[χ2] = ∫ ∞

0 t2dG(t).

Proof See Appendix A.

Theorem 2 For ρ < 1, the probability distribution of the additional queue size L1 is
presented by

P{L1 = 0} = 1 − v(λ)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N
, (3)

P{L1 = j} = y(λ)[1 − H(v(λ))] ∫ ∞
0 W ( j)(D)F ( j+1)(t)dV (t)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N
,

j = 1, 2, · · · , N − 1. (4)

Proof Let I (z) = 1 − v(λ) + y(λ)[1 − H(v(λ))]∑N−1
k=1 zk

∫ ∞
0 W (k)(D)F (k+1)(t)dV (t),

then the p.g.f. of the additional queue size distribution can be rewritten as:

PL1(z) = I (z)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N
.

Through a simple calculation, we can obtain the following results:

I (0)(0) = 1 − v(λ),

I ( j)(0) = ( j !)y(λ)[1 − H(v(λ))]
∫ ∞

0
W ( j)(D)F ( j+1)(t)dV (t),

j = 1, 2, · · · , N − 1.

Thus, employing P{L1 = j} = 1
j ! · d j

dz j
[PL1(z)]|z=0, we can get Eqs. (3)–(4).

4 The Optimal Control Policy Under the Cost Model

In practice, the operating cost of system is closely related to the system benefit.
Therefore, from the perspective of economic profit, taking optimal control of operating
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cost into account is very needed. In this section, in order to discuss the cost optimization
problem, the cost structure model is first established as follows:

(1) r ≡ fixed setup cost for per busy cycle (this cost is due to the server being turned
on each time);

(2) h ≡ fixed holding cost per unit time for each customer present in the system (this
cost originates from the customer’s sojourn time that consists of waiting time and
service time).

Let F(N , D) be the long-run expected cost per unit time of the system.Applying the
renewal of reward process theorem for a busy cycle that is defined as the Definition 5
above, it leads to

F(N , D) = h · E[L] + r

E[U ] , (5)

where E[L] denotes the average steady-state queue size, and U denotes a busy cycle
that consists of a server non-busy period (see Definition 2 above) and a server busy
period (see Definition 1 above), denoted by I and B, respectively.

Next, we will find the expression of the expected busy cycle E[U ] in the objective
function. Clearly, based on Lemma 1, we obtain the average length of the server busy
period as follows:

E[B] = E[b] · E[L2] = ρ

λ(1 − ρ)
· E[L2],

where E[L2] is given by Eq. (A7) in appendix.
We note that the number of customers in the system at the beginning of a server

busy period is equal to the number of customers who arrived during the server non-
busy period, and the arrival process is a Poisson process with rate λ, then the expected
length of the server non-busy period is given by

E[I ] = E[L2]
λ

.

Therefore, we can obtain the expected length of the busy cycle as follows:

E[U ] = E[I ] + E[B] = E[L2]
λ(1 − ρ)

. (6)

Substituting Eqs. (2), (A7) and (6) into Eq. (5), we have

F(N , D) = h

{

ρ + λ2E[χ2]
2(1 − ρ)

+
y(λ)[1 − H(v(λ))]

N−1∑

m=1
mW (m)(D)

∫ ∞
0 F (m+1)(t)dV (t)

[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N

}
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+ rλ(1 − ρ)[1 − v(λ)]
[1 − v(λ)][1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]�N

, (7)

where �N is determined in Theorem 1.
It is observed from Eq. (7) that the cost function F(N , D) is extremely complex

and nonlinear with respect to the decision variables N and D, which poses a hard
task to find the analytic results for the optimum values N∗ and D∗ directly. From Eq.
(5), we see that the total cost consists of two parts, one part is the cost incurred by
customers waiting in the system, which is determined by hE[L]. The other part is the
setup cost per unit time, denoted by r

E[U ] . The dyadic min(N , D) policy reduces the
setup cost caused by frequently on/off a queueing system, but it also increases the cost
of the customer’s waiting time. Therefore, the total cost function is a convex function
of two variables N and D, and then, we can choose optimal values (N∗, D∗) for the
optimization problem. In order to solve the optimization problem in Eq. (7), numerical
calculation examples are provided to demonstrate how to search the optimal values
N∗ and D∗.

Numerical Example 1To demonstrate themodel’s application, we consider a prac-
tical situation related to a production system. In order to effectively use the remaining
productivity of the production system, the manager decided to accept some outside
production tasks to increase the revenue of the system. Therefore, the manager designs
a strategy: When the system does not has orders to be produced which belong to the
normal production task, the factory begins to prepare to undertake the accepted outside
task. But it will take a random period Y to do this preparation. That is, the factory goes
through a delayed period Y before undertaking the accepted outside task. During the
delayed period Y , if there are normal orders that need to be processed arrive in the
system, the factory starts its production at once until the system becomes empty and
the factory restarts a delayed period Y . Otherwise, the factory immediately undertakes
the production of accepted outside tasks for a random length V . In order to control
the queue size of normal orders during the random length V and reduce the cost that
the system frequently switches its state for a long time, the system operates under
the above modified Min(N , D)-policy based on delayed randomized multiple vaca-
tions. In this case, the specific meaning of each cost above is stated in more detail as
follows.

r ≡ fixed setup cost for each production normal order during per busy cycle;
h ≡ fixed holding cost per unit time for each normal order present in the system

(this cost originates from the order’s sojourn time that consists of waiting time and
production time).

Suppose that the inter-arrival time τ of normal orders, the production time χ of each
normal order, the delayed period Y , and the time V for the factory to continuously
undertake the accepted outside task follow exponential distribution with parameters
λ,μ, β and θ , respectively. Besides, we also assume that the number H of consecutive
times that the factory undertakes the production of accepted outside tasks each with a
random length V is geometrically distributed with parameter α(0 < α < 1), and the
production workload W of the factory for each normal order follows the distribution
W (x) = 1 − e−εx . Under these specific distributions and the above cost model, the
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expression of the cost function F(N , D) above can be rewritten as:

F(N , D) = h

{
λ

μ − λ

+
λβ

N−1∑

m=1
m

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
]

(λ + β)(λ + αθ) + λβ
N−1∑

m=1

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
]

}

+
rλ

(
1 − λ

μ

)
· (λ + β)(λ + αθ)

(λ + β)(λ + αθ) + λβ
N−1∑

m=1

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
] . (8)

Setting λ = 1, μ = 2, ε = 4, θ = 0.1, β = 0.5, α = 0.2, r = 100, h = 2, and
putting them into Eq. (8), we have

F(N , D) = 2

{

1 +
5
∑N−1

m=1 m
( 10
11

)m ·
[
1 − e−4D ∑m−1

i=0
(4D)i

i !
]

153
10 + 5

N−1∑

m=1

( 10
11

)m ·
[
1 − e−4D

∑m−1
i=0

(4D)i

i !
]

}

+ 765
153
10 + 5

∑N−1
m=1

( 10
11

)m ·
[
1 − e−4D

∑m−1
i=0

(4D)i

i !
] . (9)

Since the decision variable N is a discrete variable, the decision variable D is a
continuous variable, for a fixed N (N = 1, 2, 3, · · · ), we can find the corresponding
optimum solution D∗

N by ∂F(N ,D)
∂D = 0. All the calculations have been done on the

MATLAB software package. The numerical results are displayed in Table 1 and Fig. 1.
It can be seen from Table 1 and Fig. 1 that the optimal control threshold value

(N∗, D∗) = (12, 7.45) and the corresponding minimum cost F(N∗, D∗) = 24.897 0.

Table 1 The optimal threshold
values and the minimum costs
for different values of N

N D∗
N F(N , D∗

N )
∂F(N ,D)

∂D |D=D∗
N

1 – 52.000 0 –

2 2.86 41.006 0 −3.65 × 10−4

6 4.78 27.443 1 −1.05 × 10−4

11 6.34 24.931 2 9.81 × 10−5

12 7.45 24.897 0 1.72 × 10−5

13 6.51 24.932 6 6.41 × 10−4

18 2.14 25.240 9 6.98 × 10−4

23 2.42 25.422 5 −6.80 × 10−4
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Fig. 1 The changes of F(N , D) with different values of N and D

Table 2 shows the optimal values and the minimum costs for three policies under
the cost function 8 when μ = 2, ε = 4, θ = 0.1, β = 0.5, α = 0.2, r = 100, h = 2,
with different inter-arrival rate.
Numerical Example 2 Based on Numerical Example 1 mentioned above, if the num-
ber H of consecutive times that the factory undertakes the production of accepted
outside tasks is a fixed positive integer J , that is, P{H = J } = 1. Then, the expres-
sion of the cost function F(N , D) can be simplified as:

F(N , D, J ) = h

{
λ

μ − λ

+
β

[

1 −
(

θ
λ+θ

)J
]

N−1∑

m=1
m

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
]

λ + β + β

[

1 −
(

θ
λ+θ

)J
]

N−1∑

m=1

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
]

}

+
rλ

(
1 − λ

μ

)
· (λ + β)

λ + β + β

[

1 −
(

θ
λ+θ

)J
]

N−1∑

m=1

(
λ

λ+θ

)m ·
[

1 − e−εD
m−1∑

i=0

(εD)i

i !
] . (10)

Table 2 Comparison of the minimum costs and the optimal threshold values for three different policies

ρ N -policy D-policy Min(N , D)-policy

0.5 N∗ = 12 D∗ = 8.52 N∗ = 12, D∗ = 7.45

F(N∗, ∞)=24.897 0 F(∞, D∗)=30.500 9 F(N∗, D∗)=24.897 0

0.7 N∗ = 11 D∗ = 3.51 N∗ = 11, D∗ = 6.12

F(N∗, ∞)=25.970 0 F(∞, D∗)=36.683 7 F(N∗, D∗)=25.970 0
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Setting λ = 1.8, μ = 2, ε = 1, θ = 0.1, β = 4, r = 100, h = 4, and putting them
into Eq. (10), we have

F(N , D, J ) = 4

{

9 +
20

[
1 − ( 1

19

)J ] N−1∑

m=1
m

( 18
19

)m
(

1 − e−D
m−1∑

i=0

Di

i !
)

29 + 20
[
1 − ( 1

19

)J ] N−1∑

m=1

( 18
19

)m
(

1 − e−D
m−1∑

i=0

Di

i !
)

}

+ 522

29 + 20
[
1 − ( 1

19

)J ] N−1∑

m=1

( 18
19

)m
(

1 − e−D
m−1∑

i=0

Di

i !
) . (11)

Since N and J are discrete variables, the variable D can be consecutively taken, we
first take the fixed N to find minimum cost F(N , D∗

N , J ∗
N ) and the corresponding val-

ues of variables D and J . Then, by comparing the minimum values of F(N , D∗
N , J ∗

N )

at different values of N , the three-dimensional optimal control policy (N∗, D∗, J ∗)
and the corresponding minimum cost F(N∗, D∗, J ∗) are determined.

Obviously, Table 3 and Fig. 2 show that the cost F(N , D, J ) keep decreasing until
a minimum and then increase as N grows. We observe that the minimum operating
cost is 47.250 7 under N∗ = 3, D∗ =12.27, J ∗ = 4.

5 Conclusions

In this paper, we proposed the modifiedMin(N , D)-policy based on the customers’
number and server’s workload, and studied an M/G/1 queueing model with delayed
randomized multiple vacations under the control of the modified Min(N , D)-policy.
The well-known stochastic decomposition property of the steady-state queue size was
used to obtain the probability generating function of the steady-state queue-length
distribution. Also, the explicit expressions of the expected queue size and the addi-
tional queue-length distribution were derived by directly algebraic manipulations. To
demonstrate themodel’s application,we further discussed the operating cost of system.
Several numerical examples were provided to determine the optimal control policy for

Table 3 The optimal threshold
values and the minimum costs
for different values of N

N (D∗
N , J∗

N ) F(N , D∗
N , J∗

N )
∂F(N ,D,J∗

N )

∂D |D=D∗
N

1 −−− 54.000 0 −−−
2 (13.18, 4) 48.467 6 −6.32 × 10−6

3 (12.27, 4) 47.250 7 −6.07 × 10−5

4 (10.42, 4) 47.404 4 6.52 × 10−4

5 (2.21, 4) 47.932 9 4.92 × 10−4

6 (2.04, 4) 48.222 8 −8.73 × 10−4

7 (1.93, 4) 48.285 1 −3.67 × 10−4
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Fig. 2 The changes of F(N , D, 4) for different values of N and D

economizing the system cost. Thus, the analysis of this paper will provide a potentially
practical application for system managers and decision makers in related application
areas such as flexible manufacturing systems.

Appendix A. Proof of Theorem 1

Proof Let S0 = l0 = A0 = 0, ln = ∑n
i=1 τi , Sn = ∑n

i=1 Vi , An = ∑n
i=1 Wi , n � 1.

According to the assumption (4) of the model above, there are four cases of starting a
new server busy period after the system becomes empty:

(a) Starting a new server busy period during a delayed period (arrival occurs during a
delayed period);

(b) Starting a new server busy period during a vacation (arrival occurs during vacation
period and the queue size reaches N or the total workload of the server for all the
waiting customers is not less than a given threshold D);

(c) Starting a new server busy period at the completion instant of a vacation (arrival
occurs during vacation period);

(d) Starting a new server busy period during idle period (no arrival occurs during the
given H vacations).

Due to the above definition of theworkload of the server for each customer,we know
that the cumulative workload of the server for the waiting customers is completely
determined by the quantity of events included in these customer’s service items, not by
the cumulative service times of the customers. Thus, the beginning instant of a server
busy period is the time point of regeneration of the system. Applying the mutual
independence of the inter-arrival time τ , the workload W , the service time χ , the
delayed period Y , the maximum vacation number H and the server vacation time V ,
we have that the lengths of sub-busy periods are identical and independently distributed
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in this system, and furthermore, the decomposition property of the steady-state queue-
length in Refs. [5, 12] holds. Therefore, the steady-state queue size discussed in this
paper can be decomposed into the sum of two independent parts: one is the stationary
queue size of the classical M/G/1 queueing system, and the other is that the additional
queue size L1 caused by the delayed randomized multiple vacations and the modified
Min(N , D)-policy. So that, the p.g.f. of the steady-state queue-length distribution,
denoted by P(z), is equal to the product of the p.g.f. of the steady-state queue-length
distribution of the classical M/G/1 queueing system and the p.g.f. of the additional
queue-length distribution ([12], Theorem 2.3.2), that is,

P(z) = PM/G/1(z) · PL1(z). (A1)

In [32], the p.g.f. of the steady-state queue-length distribution of the classical M/G/1
queueing system is given by

PM/G/1(z) = (1 − ρ)(1 − z)g(λ(1 − z))

g(λ(1 − z)) − z
. (A2)

In [12], the p.g.f. of the additional queue size distribution is presented by

PL1(z) = 1 − L2(z)

(1 − z)E[L2] , (A3)

where L2 is the random variable denoting the number of customers present in the
system at the beginning instant of a server busy period, E[L2] is the expected value
of L2, and L2(z) is the p.g.f. of L2 .

Based on the delayed randomized multiple vacations and the modifiedMin(N , D)-
policy above, the probability distribution of the random variable L2 can be derived by
the law of total probability decomposition.

(1) The event {L2 = 1} can be divided into the following four cases:

• After the system becomes empty, the first arrival occurs during the delayed
period;

• After the system becomes empty, the first arrival occurs during the kth vacation
Vk(k = 1, 2, · · · ) and the workload W of the server for this customer is less
than D;

• After the system becomes empty, the first arrival occurs during the kth vacation
Vk(k = 1, 2, · · · ) and the workload W of the server for this customer is not
less than D;

• After the system becomes empty, the first arrival occurs after the end of H
vacations (no arrival occurs during the H vacations).

Therefore,

P{L2 = 1} = P{0 � τ̂ < Y }

+
∞∑

l=1

hl

l∑

k=1

P{Y + Sk−1 � τ̂ < Y + Sk,Y + Sk−1
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� τ̂ � Y + Sk < τ̂ + l1,W < D}

+
∞∑

l=1

hl

l∑

k=1

P{Y + Sk−1 � τ̂ < Y + Sk,W � D}

+P {̂τ > Y + SH }
= 1 − y(λ)

+W (D)

∞∑

l=1

hl

l∑

k=1

∫ ∞

0

∫ ∞

0

∫ t+x

t
p{y � t + x < y + l1}

dF(y)dV (x)dY (t) ∗ V (k−1)(t)

+[1 − W (D)]
∞∑

l=1

hl

l∑

k=1

∫ ∞

0

∫ ∞

0

∫ t+x

t
p{t � y < t + x}

dF(y)dV (x)dY (t) ∗ V (k−1)(t)

+
∞∑

l=1

hl

∫ ∞

0
[1 − F(t)]dY (t) ∗ V (l)(t)

= 1 −W (D)y(λ)[1 −H(v(λ))] · 1−v(λ)−∫ ∞
0 λxe−λxdV (x)

1 − v(λ)
, (A4)

where τ̂ represents the remaining inter-arrival time of τ and W denotes the workload
W of the server for this customer.
(2) For m(2 � m � N − 1), the event {L2 = m} can be divided into the following
two cases:

• After the system becomes empty, there are m customers arrive during the kth
vacation Vk(k = 1, 2, · · · ) and the total workload of the server for m customers is
less than D;

• After the system becomes empty, there are m customers arrive during the kth
vacation Vk(k = 1, 2, · · · ) and the total workload of the server for m customers is
not less than D for the first time.

Thus, the probability that the event {L2 = m} occurs is given by

P{L2 = m} =
∞∑

l=1

hl

l∑

k=1

P{Y + Sk−1 � τ̂ < Y + Sk,Y + Sk−1

< τ̂ + lm−1 � Y + Sk < τ̂ + lm, Am < D}

+
∞∑

l=1

hl

l∑

k=1

P{Y + Sk−1 � τ̂ , τ̂ + lm−1 < Y + Sk,

Am−1 < D � Am}

= W (m)(D)y(λ)[1 − H(v(λ))]
1 − v(λ)

∫ ∞

0

(λx)m

m! e−λxdV (x)
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+[W (m−1)(D) − W (m)(D)]y(λ)[1 − H(v(λ))]
1 − v(λ)

·
∞∑

n=m

∫ ∞

0

(λx)n

n! e−λxdV (x). (A5)

(3) The event {L2 = N } means that after the system becomes empty, there are N
customers arrive during the kth vacation Vk(k = 1, 2, · · · ) and the total workload
of the server for the first N − 1 customers is less than D. So that

P{L2 = N } =
∞∑

l=1

hl

l∑

k=1

P{Y + Sk−1 � τ̂ , τ̂ + lN−1 < Y + Sk,

AN−1 < D} = W (N−1)(D)y(λ)[1−H(v(λ))]
1−v(λ)

∞∑

n=N

∫ ∞

0

(λx)n

n! e−λxdV (x). (A6)

Therefore, the average number of customers at the beginning of the server busy period
is given by

E[L2] =
N∑

m=1

m · P{L2 = m}

= 1 − y(λ) + y(λ)H(v(λ))

+ y(λ)[1 − H(v(λ))]
1 − v(λ)

{ N−1∑

m=1

mW (m)(D)

∫ ∞

0

(λx)m

m! e−λxdV (x)

+
N−1∑

m=1

m[W (m−1)(D) − W (m)(D)]
∞∑

n=m

∫ ∞

0

(λx)n

n! e−λxdV (x)

+NW (N−1)(D)

∞∑

n=N

∫ ∞

0

(λx)n

n! e−λxdV (x)

}

= 1 − y(λ) + y(λ)H(v(λ))

+ y(λ)[1 − H(v(λ))]
1 − v(λ)

{

−
N−1∑

m=1

mW (m)(D)

∞∑

n=m+1

∫ ∞

0

(λx)n

n! e−λxdV (x)

+
N−1∑

m=0

(m + 1)W (m)(D)

∞∑

n=m+1

∫ ∞

0

(λx)n

n! e−λxdV (x)

}

= 1 − y(λ) + y(λ)H(v(λ))

+ y(λ)[1 − H(v(λ))]
1 − v(λ)

{ N−1∑

m=1

W (m)(D)

∞∑

n=m+1

∫ ∞

0

(λx)n

n! e−λxdV (x)

+
∞∑

n=1

∫ ∞

0

(λx)n

n! e−λxdV (x)

}
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= 1 − y(λ) + y(λ)H(v(λ))

+ y(λ)[1 − H(v(λ))]
1 − v(λ)

{ N−1∑

m=0

W (m)(D)

∫ ∞

0

[

1 −
m∑

n=0

(λx)n

n! e−λx

]

dV (x)

}

= 1 − y(λ) + y(λ)H(v(λ)) + y(λ)[1 − H(v(λ))]�N

1 − v(λ)
. (A7)

The p.g.f. L2(z) is given by

L2(z) =
N∑

k=1

zk · P{L2 = k}

= z[1 − y(λ) + y(λ)H(v(λ))]

+ y(λ)[1 − H(v(λ))]
1 − v(λ)

{ N∑

k=1

zkW (k−1)(D)

∞∑

n=k

∫ ∞

0

(λx)n

n! e−λxdV (x)

+
N−1∑

k=1

zkW (k)(D)

∫ ∞

0

(λx)k

k! e−λxdV (x)

−
N−1∑

k=1

zkW (k)(D)

∞∑

n=k

∫ ∞

0

(λx)n

n! e−λxdV (x)

}

= z[1 − y(λ) + y(λ)H(v(λ))] + y(λ)[1 − H(v(λ))]
1 − v(λ)

{

z[1 − v(λ)]

+(z − 1)
N−1∑

k=1

zkW (k)(D)

∞∑

n=k+1

∫ ∞

0

(λx)n

n! e−λxdV (x)

}

= z +
(z − 1)y(λ)[1 − H(v(λ))]

N−1∑

k=1
zk

∫ ∞
0 W (k)(D)F (k+1)(t)dV (t)

1 − v(λ)
.(A8)

Substituting Eqs. (A2), (A3), (A7) and (A8) in Eq. (A1), it gives Eq. (1). Then, Eq.
(2) can be derived by using E[L] = d

dz [P(z)]|z=1.
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