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Abstract
In this work we consider an extension of the classical scalar-valued projected gradient
method for multiobjective problems on convex sets. As in Fazzio et al. (Optim Lett
13:1365–1379, 2019) a parameter which controls the step length is considered and an
updating rule based on the spectral gradientmethod from the scalar case is proposed. In
the present paper,we consider an extension of the traditional nonmonotone approach of
Grippo et al. (SIAM JNumer Anal 23:707–716, 1986) based on themaximum of some
previous function values as suggested in Mita et al. (J Glob Optim 75:539–559, 2019)
for unconstrained multiobjective optimization problems. We prove the accumulation
points of sequences generated by the proposed algorithm, if they exist, are stationary
points of the original problem. Numerical experiments are reported.
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1 Introduction

We consider the multiobjective optimization problem (MOP) on convex sets of the
form:

Minimize F(x) s.t. x ∈ C, (1)

where F : R
n → R

r , F(x) = (F1(x), · · · , Fr (x)) is a continuously differentiable
multiobjective function in R

n and C ⊂ R
n is a closed and convex set.

As a concept of optimality, we consider the notion proposed by Pareto in [1]. A
feasible point is called Pareto optimum or efficient solution [1] if there is no x ∈ C
such that F(x) � F(x∗) and F(x) �= F(x∗). A point x∗ ∈ C is said to be a weak
Pareto optimum point or a weakly efficient solution if there is no x ∈ C such that
F(x) < F(x∗).

The general procedure we study in this work is the well-known projected gradient
method (PGM) for vector optimization studied previously in [2–5]. These iterative
algorithms compute the search direction by solving a convex subproblem that depends
on a fixed parameter β > 0 and then they choose the stepsize on the search direction
by using the Armijo line search. Thus, those methods share two essential features:

• they are all descent methods: the objective values decrease with each iteration (in
the component-wise sense);

• the projected gradient search direction is computed by using a fixed parameter
β > 0 instead of an exogenous sequence {βk}, βk > 0, as suggested in [6].

Monotone line search methods generate a sequence of feasible iterative points {xk}
such that F(xk+1) < F(xk). Nonmonotone line search methods permit some growth
in the values of the objective function, with the purpose of improving the speed of
convergence.

In the present paper, we consider an extension of the earliest nonmonotone line
search framework developed by Grippo, Lampariello and Lucidi (GLL) for Newton’s
method, [7], in the scalar case. The nonmonotone line search developed in [7] is based
on the maximum functional values of the scalar objective function f (x) on some
previous iterates: for r = 1, given σ ∈ (0, 1), M � 1 and dk ∈ R

n the step length αk

must satisfy

f (xk + αkd
k) � Mk + σαk∇ f (xk)�dk, (2)

where Mk = max
0� j�m(k)

f (xk− j ) and m(k) = min{m(k − 1) + 1, M}.
Nonmonotone line searches were previously used in the context of multiobjective

descent methods in [6,8,9]. In [8] the authors use nonmonotone line searches for
unconstrained MOP. In [6] the authors present the global analysis of a nonmonotone
PGM based on the nonmonotone scheme given in [10]. In [9] the authors propose two
nonmonotone gradient algorithms for MOP with a convex objective function based
on the nonmonotone line search given by [7].

In the present work, we consider the PGM with the max-type nonmonotone line
search and we prove that, without convexity assumptions on the multiobjective func-
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tion, the accumulation points of the sequences generated by the method are stationary
for problem (1). Our convergence result expands the global convergence theorems
proved in [2–5]. The major difference between the proposed algorithm and the
algorithms in [2–5] is that the PGM defined in those works is implemented with
an Armijo-like rule which means that the sequence of functional values decreases
monotonously. Even though in [6] a nonmonotone PGM is considered, the main dif-
ference with this paper is that the nonmonotone strategy in [6] is given by the average
value of a previous function, whereas in this work the nonmonotone search is based
on the maximum of some previous functional values. We emphasize that we are not
attempting to find, or somewhat characterize, the set of all Pareto optimal solutions,
weak or otherwise.

It is well established in the literature of scalar problems that nonmonotone strategies
combined with spectral gradient choices of the step length βk may accelerate the
convergence process [11,12]. Taking this into account,wepropose to use a variable step
length sequence {βk} to analyze the efficiency of the technique with some numerical
experiments.

This paper is organized as follows. In Sect. 2 we define the implementable non-
monotone projected gradient method. In Sect. 3 we present the convergence analysis
of the method. In Sect. 4 we propose a sequence {βk} for MOP based on the spectral
gradient method. In Sect. 5 we present some numerical experiments. Conclusions and
final remarks are given in Sect. 6.
NotationWe denote: N = {0, 1, 2, · · · }, R+ = {t ∈ R | t � 0}, R++ = {t ∈ R | t >

0}, R
r++ = R++×· · ·×R++, ‖·‖ an arbitrary vector norm. If x and y are two vectors

of R
n , we write x � y if xi � yi , i = 1, · · · , n, and x < y if xi < yi , i = 1, · · · , n,

vi is the i−th component of the vector v. If F : R
n → R

m , F = ( f1, · · · , fm),
J F(x) stands for the Jacobian matrix of F at x : J F(x) is a matrix in R

m×n with
entries (J F(x))i j = ∂ fi (x)

∂x j
. If B ∈ R

n×n is a positive definite matrix, ‖B‖ denotes
the 2-norm of B. If K = {k0, k1, k2, · · · } is an infinite subset of N (k j+1 > k j ,∀ j),
we denote lim

k∈K xk = lim
j→∞ xk j .

2 The Nonmonotone Projected Gradient Method for MOP

For the multiobjective problem on the convex set C (1) we say that a point x∗ ∈ C
is stationary if and only if

J F(x∗)(C − {
x∗}) ∩ [−R

r++] = ∅,

where J F(x∗)(C − {x∗}) := {J F(x∗)(x − x∗) : x ∈ C} and C − {x∗} = {u − x∗ :
u ∈ C}.

So x∗ ∈ C is stationary for F if, and only if, ∀x ∈ C, max
i=1,··· ,r{∇Fi (x

∗)�(x−x∗)} �
0.

Stationarity is a necessary, but generally not a sufficient condition, for weak Pareto
optimality. See [13].
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In order to explain how the search direction is computed we define, for a given
point x ∈ R

n , the function ϕx : R
n → R by

ϕx (v) = max
i=1,··· ,r{∇Fi (x)

�v}. (3)

Then, we consider the following convex scalar-valued minimization problem

min
v∈C−{x} βϕx (v) + ‖v‖2

2
, (4)

where β > 0 is a parameter. This problem is well-defined and it has a unique optimal
solution vβ(x), which is called the projected gradient direction, see [4]. Therefore,
vβ(x) is given by

vβ(x) = argmin
v∈C−{x}

βϕx (v) + ‖v‖2
2

. (5)

Let us call θβ(x) the optimal value of (4), that is to say,

θβ(x) = βϕx (vβ(x)) +
∥∥vβ(x)

∥∥2

2
. (6)

The following proposition characterizes stationary points of the multiobjective
problem (1) in terms of θβ(·) and vβ(·). The proof follows from Proposition 3 in
[5].

Proposition 1 Let β > 0, vβ : C → R
n and θβ : C → R be given by (5) and (6).

Then, the following statements hold.

1. θβ(x) � 0 for all x ∈ C .

2. The function θβ(·) is continuous.
3. The following conditions are equivalent:

(a) The point x ∈ C is nonstationary.
(b) θβ(x) < 0.
(c) vβ(x) �= 0.

In particular, x is stationary if and only if θβ(x) = 0.

The global convergence result given in Sect. 3 is based on the following properties
of vβ and θβ .

Proposition 2 Let β > 0, vβ : C → R
n and θβ : C → R be given by (5) and (6).

Then,

1. ‖vβ(x)‖2 � 2|θβ(x)|.
2. βϕx (vβ(x)) � −|θβ(x)|.
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414 G. A. Carrizo et al.

Proof From the theory of convex analysis and optimization we know that, from (5),
there exists w(x) ∈ R

r such that

r∑

i=1

wi (x) = 1, wi (x) � 0 for all i = 1, · · · , r , (7)

wi (x)(∇Fi (x)
�vβ(x) − ϕx (vβ(x))) = 0 for all i = 1, · · · , r , (8)

(
β

r∑

i=1

wi (x)∇Fi (x) + vβ(x)

)�
(v − vβ(x)) � 0 for all v ∈ C − {x}. (9)

Then, since (9) holds for all v ∈ C − {x}, by considering v = 0 we conclude that

(
β

r∑

i=1

wi (x)∇Fi (x) + vβ(x)

)�
(−vβ(x)) � 0.

Thus,

‖vβ(x)‖2 � −β

r∑

i=1

wi (x)∇Fi (x)
�vβ(x). (10)

Therefore, it follows from (7) and (8) that ϕx (vβ(x)) =
∑r

i=1
wi (x)∇Fi (x)

�vβ(x)
and, by (10), we have that

θβ(x) = β

r∑

i=1

wi (x)∇Fi (x)
�vβ(x) + ‖vβ(x)‖2

2
� −‖vβ(x)‖2 + ‖vβ(x)‖2

2

= −‖vβ(x)‖2
2

.

Thus,

‖vβ(x)‖2 � 2|θβ(x)|,

which proves 1.
Since θβ(x) � 0 we have that |θβ(x)| = −θβ(x) and

βϕx (vβ(x)) + |θβ(x)| = βϕx (vβ(x)) − θβ(x) = −‖vβ(x)‖2
2

.

Therefore,

βϕx (vβ(x)) � −|θβ(x)|

and the conclusion 2 holds
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Observe that, for a nonstationary point x ∈ C wegetβϕx (vβ(x)) � −‖vβ(x)‖2

2 < 0,
which implies that J F(x)vβ(x) < 0 and vβ(x) is a descent direction for F at x . In a
monotone line searchmethod, the stepsize αk > 0 is chosen so that F(xk+1) < F(xk),
as suggested in [2–5]. In a nonmonotone scheme an increase in the objective values
can be allowed as done for PGM in [6] by using the nonmonotone line search based
on the average of previous function values as proposed in [10].

In the present work we consider the nonmonotone line search framework developed
by Grippo et al. [7] that is based on the maximum functional value on some previous
iterates. Given σ ∈ (0, 1), M � 1 and the search direction vβk (x

k), for each i =
1, · · · , r we set

Ak
i = max{Fi (xk− j ) : 0 � j � m(k)}, (11)

where m(k) = min{k, M}. Then, the step αk must satisfy the inequality (in the
component-wise sense)

F(xk + αkvβk (x
k)) � Ak + σαk J F(xk)vβk (x

k), (12)

where Ak = (Ak
1, · · · , Ak

r )
� ∈ R

r .
We can now define an extension of the classical PGM using the nonmonotone line

search technique (12) for the constrained MOP (1).

Algorithm 1 (PGM-GLL) Choose σ ∈ (0, 1), M > 0, 0 < βmin < βmax < ∞ and
β0 ∈ [βmin, βmax]. Let x0 ∈ C be an arbitrary starting point. Set k = 0.

Step1 Compute the search direction.

vβk (x
k) := argmin

v∈C−{xk }
βkϕxk (v) + ‖v‖2

2
. (13)

Step2 Stopping criterion. Compute θβk (x
k) = βkϕxk (vβk (x

k)) + 1
2

∥∥vβk (x
k)

∥∥2 . If
θβk (x

k) = 0, then stop.
Step3 Compute the step length. Let m(k) = min{k, M} and choose αk as the

largest α ∈
{

1
2 j : j = 0, 1, 2, · · · ,

}
such that (12) holds where Ak =

(Ak
1, · · · , Ak

r )
� ∈ R

r and Ak
i is given by (11).

Step4 Set xk+1 = xk + αkvβk (x
k). Define βk+1 such that βk+1 ∈ [βmin, βmax]. Set

k = k + 1, and return to Step 1.

Observe that Algorithm 1 stops at a feasible stationary point of (1) or it generates
an infinite sequence {xk} of nonstationary points.

3 Convergence Analysis

In this section we suppose that Algorithm 1 does not have a finite termination and
therefore it generates infinite sequences {xk}, {vβk (x

k)} and {αk}.
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Lemma 1 For each k, F(xk) � Ak .

Proof It follows easily from the definition of Ak , see Lemma 5 in [8].

Lemma 2 Algorithm 1 is well defined: If xk is not a stationary point, then there exists
a stepsize αk > 0 satisfying condition (12).

Proof Since xk is nonstationary we have that θβk (x
k) < 0 and J F(xk)vβk (x

k) < 0.
Then, by Proposition 1 in [5] there exists a stepsize αk > 0 satisfying the Armijo
condition:

F(xk + αkvβk (x
k)) � F(xk) + σαk J F(xk)vβk (x

k).

Then, by Lemma 1 the inequality (12) holds and the proof is complete.

Lemma 3 The scalar sequence {‖vβk (x
k)‖} is bounded.

Proof See Lemma 3 in [6].

Proposition 3 Let {xk} ⊂ R
n be a sequence generated by Algorithm 1 and K an

infinite subset of N, β∗ > 0, x∗ ∈ C such that lim
k∈K xk = x∗, lim

k∈K βk = β∗. Then, there
exists K ∗ an infinite subset of K such that

lim
k∈K ∗ θβk (x

k) = θβ∗(x∗). (14)

Proof See Proposition 1 in [6].

Proposition 4 Let {xk} ⊂ R
n be a sequence generated by Algorithm 1. Then

lim
k→∞ αk |θβk (x

k)| = 0.

Proof Follows from the proof of Lemma 8 in [8] and the fact that inequalities 1. and
2. of Proposition 2 hold for the search direction sequence {vβk (x

k)}.
The following theorem is the main result of this section: the global convergence of

Algorithm 1.

Theorem 1 Let {xk} ⊂ R
n be a sequence generated by Algorithm 1. Then, every

accumulation point of {xk} is a feasible stationary point of (1).
Proof Let x∗ ∈ R

n be an accumulation point of {xk}. Then, there exists an infinite
subset K of N such that lim

k∈K xk = x∗. The feasibility of x∗ follows combining the fact

that C is closed with xk ∈ C for all k. The sequence {βk} is bounded, then there exists
K0 ⊂ K and β∗ > 0 such that lim

k∈K0
βk = β∗.

By Proposition 4 we have the following two cases: (a) lim
k∈K0

|θβk (x
k)| = 0, or

(b) lim
k∈K0

αk = 0.
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In the first case, by Proposition 3 we obtain that θβ∗(x∗) = 0 which proves that x∗
is a stationary point.

Now we assume that (b) holds. Due to Lemma 3, there exist an infinite subset
K1, K1 ⊂ K0 and v∗ ∈ R

n such that lim
k∈K1

vβk (x
k) = v∗ and lim

k∈K1
αk = 0. Note that

we have

max
i=1,··· ,r{βk∇Fi (x

k)�vβk (x
k)} � θβk (x

k) < 0.

So, letting k ∈ K1 go to infinity we get

max
i=1,··· ,r{β

∗∇Fi (x
∗)�v∗} � 0. (15)

Take now a fixed but arbitrary positive integer q. Since lim
k∈K1

αk = 0, for k ∈ K1 is

large enough, we have αk < 1
2q , which means that the nonmonotone condition in Step

3 of Algorithm 1 is not satisfied for α = 1
2q at xk :

F(xk + 1

2q
vβk (x

k)) � Ak + σ
1

2q
J F(xk)�vβk (x

k),

so for each k ∈ K1 large enough there exists i = i(k) ∈ {1, · · · , r} such that

Fi (x
k + 1

2q
vβk (x

k)) > Ak
i + σ

1

2q
∇Fi (x

k)�vβk (x
k).

Since {i(k)}k∈K1 ⊂ {1, · · · , r}, there exist an infinite subset K2, K2 ⊂ K1 and an
index i0 such that i0 = i(k) for all k ∈ K2,

Fi0(x
k + 1

2q
vβk (x

k)) > Ak
i0 + σ

1

2q
∇Fi0(x

k)�vβk (x
k)

and, by Lemma 1 we obtain that

Fi0(x
k + 1

2q
vβk (x

k)) � Fi0(x
k) + σ

1

2q
∇Fi0(x

k)�vβk (x
k).

Taking the limit when k ∈ K2 goes to infinity in the above inequality, we obtain
Fi0(x

∗ + 1/2qv∗) � Fi0(x
∗) + σ1/2q∇Fi0(x

∗)�v∗. Since this inequality holds for
any positive integer q and for i0 (depending on q), by Proposition 1 in [5] it follows that
J F(x∗)v∗

≮ 0, then max
i=1,··· ,r{∇Fi (x

∗)�v∗} � 0, which, together with (15) implies

θβ∗(x∗) = 0. Therefore, we conclude that x∗ is a stationary point of (1).

Observe that, if we assume that the mapping F : R
n → R

r is R
r -convex:

F(λx + (1 − λ)z) � λF(x) + (1 − λ)F(z)
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for all x, z ∈ R
n and all λ ∈ [0, 1], by using Theorem 3.1 in [14] we can guarantee

that every accumulation point is a weak Pareto point:

Corollary 1 Assume that F : R
n → R

r is R
r -convex and let {xk} ⊂ R

n be a sequence
generated by Algorithm 1. Then, every accumulation point of {xk} is a weak Pareto
optimal solution of (1).

4 The Sequenceˇk

The global convergence analysis of the previous section is independent of the choice
of βk , always between βmin and βmax. In this section we propose a way to choose βk

inspired in the spectral PGM for the scalar case.
We observe that problem (4) is similar to the quadratic subproblem used in [12] to

compute the search direction. In [12], in order to solve the constrained scalar problem
Minimize f (x) subject to x ∈ C where f : R

n → R is a continuously differentiable
scalar function in R

n and C ⊆ R
n is a closed and convex set, the authors suggest

computing the search direction by solving the quadratic problem

Minimize Qk(d) s.t. xk + d ∈ C, (16)

where Qk(d) = 1
2d

�Bkd + ∇ f
(
xk

)�
d and Bk ∈ R

n×n is a positive definite matrix

such that ‖Bk‖ � L and
∥∥∥B−1

k

∥∥∥ � L for a fixed scalar L > 0. In fact, they consider

the particular case: Bk = 1
λ
spg
k

I , where λ
spg
k is the spectral gradient choice defined by

λ
spg
k =

⎧
⎨

⎩
min

{
λmax,max

{
λmin,

s�k sk
y�
k sk

}}
, if y�

k sk > 0,

λmax, otherwise,

where sk = xk − xk−1 and yk = ∇ f
(
xk

) − ∇ f
(
xk−1

)
.

Firstly, we observe that, by comparing problems (4) and (16) we have that the
stationarity condition θβ(x) = 0 for (1) still holds if we consider

vβ(x) := argmin
v∈C−{x}

ϕx (v) + ‖v‖2
2β

and θβ(x) := ϕx
(
vβ(x)

)
) + ‖vβ(x)‖2

2β , for any β > 0.

Secondly, we observe that, if r = 1 then s�
k yk = s�

k

(∇ f
(
xk

) − ∇ f
(
xk−1

)) =
ϕxk (sk) − ϕxk−1 (sk). Finally, the previous analysis allows us to consider, in the mul-
tiobjective case, a sequence of parameters {βk} defined as follows

βk =
⎧
⎨

⎩
min

{
βmax,max

{
βmin,

s�k sk
ϕxk (sk )−ϕxk−1 (sk )

}}
, if ϕxk (sk) − ϕxk−1 (sk) > 0;

βmax, otherwise.
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Therefore, we have an interesting sequence of parameters {βk} that deserves to be
analysed from the practical point of view.

5 Numerical Experiments

In order to exhibit the behavior of the algorithm, we have examined a set of prob-
lems taken from the literature [14–21]. All of these problems are box-constrained and
the details are presented in Table 1. For each problem we have considered 10 starting
points. These points were obtained using random points which belong to the feasible
region of each problem. The algorithm has been coded in Python 3.0 and the subprob-
lem (4) was solved with the SLSQP solver [22] included as part of SciPy [23]. The
code has been executed on a personal computer with an INTEL core i5-7400 3.00 GHz
Processor, 8 GB of RAM and Linux Mint 18.3 operating system.

To carry out an in-depth analysis of our method, we have considered two related
algorithms: the one proposed in [6] (PGM-ZH) and the monotone line search version
of Algorithm 1 (called PGM-monotone), i.e. Algorithm 1 with the Armijo line search
in Step 3.

For each of these algorithms, we have presented a version A with βk = 1 for all k
and a version B where βk has been updated according to the analysis made in Sect. 4.

We have established themaximumnumber of iterations asmaxiter = 1 000 and the
stopping criterion was

∣∣θβk (x
k)

∣∣ � ε = 10−6. A numerical experiment has previously
been carried out in order to choose algorithm-specific parameters such as η and M and
the line search parameter σ . In this numerical test, all problems have been tested taking
into account 10 initial points to combine all the values ofσ = 10−1, 10−2, 10−3, 10−4,
M = 5, 10, 15, 20 and η = 0.8, 0.85, 0.9. Furthermore, this test has shown that the
monotone line search method was the worst-performing method in the sense that for
many points it did not converge to several initial points. Then, we have fixed the
parameter σ in order to obtain the greatest number of starting points convergent to
σ = 10−2. Using the same numerical test, we have considered the number of iterations
needed to establish convergence of each of the values of η and we have observed that
η = 0.8 worked better for the method when βk is fixed and updated according to
Sect. 4. Finally, for the M parameter of the GLL line search, we have obtained that
M = 15 was a better option for βk when fixed and M = 10 for βk when updated
following Sect. 4. For these reasons, these values have been used for each case and
the bounds of the sequence {βk} have been set in βmin = β−1

max = 10−6.
For the purpose of evaluating the performance of these algorithms, in Fig. 1 we have

compared the algorithms by using a performance profile for the number of iterations
for achieving convergence, according to themethod proposed in [24].We have denoted
the set of solvers as S and the set of problems as P . Furthermore, i tp,s denotes the
number of iterations used by the solver s to solve problem p, the best i tp,s for each
p as i t�p = min

{
i tp,s : s ∈ S}

. The distribution function FS(i t) for a method s is
defined by
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Table 1 List of test problems

n m convex L U Source

Brown and Dennis 4 5 No [−25, −5, −5, −1] [25, 5, 5, 1] [18]1

DD1 5 2 No [−20, · · · , −20, ] [20, · · · , 20] [15]2,3

FGS 10 3 Yes [−2, · · · , −2] [2, · · · , 2] [14]2

Helical valley 3 3 No [−2, · · · , −2] [2, · · · , 2] [18]1

JOS1 5 2 Yes [−2, · · · , −2] [2, · · · , 2] [16]2

KW2 2 2 No [−3, −3] [3, 3] [17]

Linear function rank1 10 4 Yes [−1, · · · ,−1] [1, · · · , 1] [18]1,2

Rosenbrock 4 3 No [−2, · · · , −2] [2, · · · , 2] [20]1,2

SD 4 2 Yes [−3, · · · ,−3]
[
1,

√
2,

√
2, 1

]
[19]

Shifted TRIDIA 4 4 No [−1, · · · ,−1] [1, · · · , 1] [20]1,2

TOI4 4 2 Yes [−5, · · · ,−5] [2, · · · , 2] [20]1

TRIDIA 3 3 Yes [−1, · · · ,−1] [1, · · · , 1] [20]2

Trigonometric 4 4 No [−1, · · · ,−1] [1, · · · , 1] [18]1,2

ZDT1 30 2 Yes [0, · · · , 0] [1, · · · , 1] [21]2

ZDT4 10 2 No [0, −5, · · · , −5] [1, 5, · · · , 5] [21]2

1It is an adaptation of a single-objective optimization problem to the multiobjective setting. Since the
problem is originally unconstrained, bound constraints were added. We have used the adaptation proposed
in [8].
2In the original version, either the bounds L and U or the variable n can be modified. We have used the
values proposed in [8].
3This is actually a modified version of [15] which can be found in [8,14]

FS(i t) =
∣∣∣
{
p ∈ P : i tp,s � i t�p

}∣∣∣

|P| .

To present the results more precisely, we have used a semilogarithmic scale in Fig. 1.
Due that line searches increase the number of function evaluations, which could be

a drawback for these algorithms, we also consider a performance profiles for function
evaluations in Fig. 2. This second figure presents performance profiles for function
evaluations using a semi logarithmic scale too and shows that the performances mea-
sured in number of function evaluations and iterations are similar.

We can observe that nonmonotone line searches are faster than monotone ones and
use less function evaluations and iterations. The algorithm considering the average
line search outperforms the other line searches, at least in our test problems. Also, it
is clear the relevance of the use of the sequence {βk} defined in Sect. 4 as follows: The
performance of all algorithms has been improved using the sequence or parameters
{βk}. In particular, the PGM-ZHAlgorithmwas the worst-performing algorithmwhen
βk is fixed, whereas it becomes the best-performing one when βk is updated according
to Sect. 4.

As we have already mentioned in the introduction, we are not attempting to find
the set of all Pareto or weak Pareto points. Nevertheless, for the sake of completeness,
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Fig. 1 Performance profiles for projected gradient algorithmswith different line search by using the number
of iterations as a comparison measurement

Fig. 2 Performance profiles for projected gradient algorithmswith different line search by using the number
of function evaluations as a comparison measurement
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we have also taken into account some metrics used for evaluating the accuracy in
approximation of Pareto fronts. If x is an efficient solution (weakly efficient), then F(x)
is a nondominated (weakly non-dominated) point. Let Fp,s denote the approximated
nondominated front determined by the solver s ∈ S for problem p ∈ P . Let also Fp

denote an approximation to the exact nondominated front of problem p, calculated by
first forming ∪s∈SFp,s and then removing from this set any dominated points. Thus,
we have considered the following metrics:

• Purity metric [25,26] is used to compare the nondominated fronts obtained by
different solvers. It consists then of computing, for solver s ∈ S and problem

p ∈ P , the ratio c
Fp
p,s/cp,s , where c

Fp
p,s = ∣∣Fp,s ∩ Fp

∣∣ and cp,s = ∣∣Fp,s
∣∣. This

metric is then represented by a number between zero and one. Higher values
for this ratio indicate a better nondominated front in terms of the percentage of
nondominated points.

• Spread metric [25,26] attempts to measure the maximum size of the holes of an
approximated nondominated front. Let us assume that solver s ∈ S has computed,
for problem p ∈ P , an approximated nondominated front with N points, indexed
by 1, · · · , N . We have also considered the extreme points indexed by 0 and N +1,
these points are computed considering the minimum and maximum value of each
objective function among all the points in Fp. The metric Γp,s > 0 consists of
setting:

Γp,s = max
j∈{1,··· ,m} max

i∈{0,··· ,N+1} δi, j ,

where δi, j = fi+1, j − fi, j (and we assume that the objective function values have
been sorted out by increasing order for each objective j).

• Additive epsilon indicator [25,26]: The additive epsilon indicator Iε+ is based on
additive ε-dominance:

z1 �ε+ z2 ⇔ z1i � ε + z2i ,∀i ∈ {1, · · · ,m} ,

and defined, for each solver s ∈ S and problem p ∈ P , with respect to a nondom-
inated reference set Fp as:

Iε+
(
Fp,s

) = Iε+
(
Fp,s, Fp

) = inf
{
ε| ∀y ∈ Fp ∃ z ∈ Fp,s : z �ε+ y

}
.

These metrics are presented in Tables 2, 3 and 4 where the values indicated with—
correspond to the combinations of solvers and problems such that none of the starting
points produce convergent sequences.

Table 5 presents a summary of the average number of iterations while Table 6 shows
the average number of function evaluations. Finally, Table 7 illustrates the number of
instances the problem was solved by each solver. In these tables the best average
number of function evaluations and of iterations were written in boldface. Taking
these numbers into account, we can observe that for the three line search strategies
presented the sequence {βk} defined in Sect. 4 reduces, most of the time, the number
of function evaluations used, at least in our test problems.
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Table 2 The value of purity metric in solving test problems

PGM-Monotone PGM-Monotone-B PGM-GLL PGM-GLL-B ZH PGM-ZH-B

Brown and Dennis 0.667 0.75 0.667 0.571 0.333 1.0

DD1 1.0 1.0 1.0 1.0 1.0 1.0

FGS 1.0 1.0 1.0 1.0 1.0 1.0

Helical valley 1.0 0.6 0.125 0.8 0.0 0.75

JOS1 0.0 1.0 0.0 1.0 0.0 1.0

KW2 1.0 1.0 1.0 1.0 1.0 1.0

Linear function rank1 1.0 1.0 1.0 1.0 1.0 1.0

Rosenbrock 0.667 0.286 −1 1.0 1.0 0.667

SD 1.0 1.0 1.0 1.0 1.0 1.0

Shifted TRIDIA 1.0 1.0 0.75 1.0 1.0 0.667

TOI4 0.2 0.0 0.0 0.0 1.0 0.0

TRIDIA 0.375 0.375 0.556 1.0 0.4 1.0

Trigonometric 0.0 1.0 0.0 0.714 0.0 0.571

ZDT1 0.2 0.5 1.0 0.667 1.0 0.667

ZDT4 0.5 1.0 0.25 1.0 0.667 1.0

1 For this problem and algorithm none of the starting points achieves convergence

Table 3 The value of spread metric in solving test problems

PGM-MonotonePGM-Monotone-BPGM-GLLPGM-GLL-BZH PGM-ZH-B

Brown and Dennis 23.35 23.35 23.339 23.35 23.35 23.35

DD1 541.737 541.172 489.321 541.172 489.321 541.172

FGS 475.535 466.555 460.919 466.183 460.919 466.183

Helical valley 2 974.474 2 974.475 2 974.362 2 974.345 2 974.3552 974.475

JOS1 2.4 2.399 2.4 2.399 2.4 2.399

KW2 2.967 4.31 2.433 4.31 2.494 4.31

Linear function rank18.614 8.986 8.614 8.986 8.614 8.986

Rosenbrock 1 169.153 1 240.275 −1 1 169.273 1 168.3381 210.844

SD 6.147 6.132 6.147 6.132 6.147 6.132

Shifted TRIDIA 5.146 5.146 4.824 5.201 5.0 4.577

TOI4 1.273 1.155 2.139 4.612 0.441 4.612

TRIDIA 6.841 5.455 5.411 5.302 5.454 5.302

Trigonometric 1.154 1.137 1.129 1.146 1.129 1.155

ZDT1 1.245 1.274 1.633 1.274 1.633 1.274

ZDT4 53.61 56.747 42.591 56.747 56.69 56.747

1 For this problem and algorithm none of the starting points achieves convergence
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Table 4 The value of epsilon indicator in solving test problems

PGM-MonotonePGM-Monotone-BPGM-GLLPGM-GLL-BZH PGM-ZH-B

Brown and Dennis 1.866 0.218 23.339 15.252 23.058 23.045

DD1 99.537 127.181 93.165 127.181 93.165 127.181

FGS 0.693 8.713 28.59 8.713 28.59 8.713

Helical valley 2.08 0.0 2 924.495 149.859 2 924.495149.859

JOS1 0.0 0.0 0.0 0.0 0.0 0.0

KW2 0.934 1.169 1.877 0.686 1.108 0.686

Linear function rank10.771 0.165 4.496 0.165 2.49 0.165

Rosenbrock 1 169.118 2.134 −1 441.618 1 168.338436.59

SD 0.022 0.06 0.022 0.06 0.022 0.06

Shifted TRIDIA 5.146 5.146 4.068 0.322 5.0 1.514

TOI4 0.0 0.0 0.441 0.0 0.357 0.0

TRIDIA 1.107 0.006 2.148 0.128 1.107 0.128

Trigonometric 0.679 1.13 1.129 0.31 1.129 0.001

ZDT1 0.514 1.161 1.633 0.0 1.633 0.0

ZDT4 3.121 56.747 32.448 56.747 0.0 56.747

1 For this problem and algorithm none of the starting points achieves convergence

Table 5 Number of iterations for each algorithm

Problem PGM-MonotonePGM-Monotone-BPGM-GLLPGM-GLL-BPGM-ZHPGM-ZH-B

Brown and Dennis 69.4 12.7 260.0 15.1 81.6 19.0

DD1 73.4 75.556 37.7 70.5 37.7 69.9

FGS 192.2 199.1 23.8 194.0 23.8 194.0

Helical valley 3.167 36.875 58.6 66.2 18.667 52.125

JOS1 13.9 2.0 13.9 2.0 13.9 2.0

KW2 43.0 6.25 152.5 7.667 75.4 7.222

Linear function rank12.0 2.1 1.0 2.2 8.7 2.2

Rosenbrock 365.667 161.5 – 275.4 235.5 281.7

SD 18.1 6.1 18.1 6.1 18.1 6.1

Shifted TRIDIA 38.0 42.0 67.75 25.167 8.5 19.667

TOI4 41.4 3.1 59.0 3.2 64.7 3.2

TRIDIA 11.5 3.9 13.6 7.9 23.4 7.9

Trigonometric 10.0 34.875 14.2 7.9 10.75 30.3

ZDT1 9.8 7.3 6.0 2.0 6.0 2.0

ZDT4 35.9 45.9 21.4 45.9 28.2 45.9
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Table 6 Number of function evaluations for each algorithm

Problem PGM-MonotonePGM-Monotone-BPGM-GLLPGM-GLL-BPGM-ZHPGM-ZH-B

Brown and Dennis 94.7 22.7 265.333 17.5 88.5 22.5

DD1 144.0 77.667 39.2 72.0 39.2 71.5

FGS 923.4 202.0 24.9 195.1 24.9 195.1

Helical valley 17.5 602.125 310.5 70.0 86.333 941.375

JOS1 14.9 3.0 14.9 3.0 14.9 3.0

KW2 62.8 9.125 254.0 11.0 151.5 10.444

Linear function rank111.0 6.3 6.25 6.2 41.9 6.2

Rosenbrock 3 207.667 256.25 – 283.0 1 694.0 331.0

SD 19.1 7.1 19.1 7.1 19.1 7.1

Shifted TRIDIA 114.0 44.0 104.75 170.167 13.0 21.667

TOI4 44.0 4.8 61.0 4.5 67.0 4.5

TRIDIA 32.9 8.5 20.3 10.6 71.5 10.6

Trigonometric 11.0 1595.5 18.4 44.4 11.75 682.6

ZDT1 14.9 10.7 7.0 3.0 7.0 3.0

ZDT4 131.3 49.0 64.4 49.0 95.0 49.0

Table 7 Number of times each problem was solved for each algorithm

Problem PGM-MonotonePGM-Monotone-BPGM-GLLPGM-GLL-BPGM-ZHPGM-ZH-B

Brown and Dennis 10 10 3 10 10 10

DD1 10 9 10 10 10 10

FGS 10 10 10 10 10 10

Helical valley 6 8 10 10 6 8

JOS1 10 10 10 10 10 10

KW2 10 8 8 9 10 9

Linear function rank110 10 4 10 10 10

Rosenbrock 3 8 0 10 2 10

SD 10 10 10 10 10 10

Shifted TRIDIA 1 1 4 6 2 3

TOI4 10 10 2 10 10 10

TRIDIA 10 10 10 10 10 10

Trigonometric 1 8 5 10 4 10

ZDT1 10 10 10 10 10 10

ZDT4 10 10 10 10 10 10

6 Conclusions

We have presented a modification of the well-known projected gradient method
for multiobjective optimization on convex sets. At each iteration the search direction
was computed by considering a variable step length instead of a fixed parameter. The
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novelty element has been the use of the specific max-type nonmonotone line search
instead of the classical Armijo strategy or the average-type update rule.

Stationarity of the accumulation points of the sequences generated by the proposed
algorithm has been established in the general case under standard assumptions.

The method was implemented and tested. For a better analysis we also consider
the monotone version of the presented algorithm and another algorithm with the non-
monotone line search defined in [6], these three algorithms were considered with the
standard step length and the spectral step length. In our experimentation we observe
a better performance for the nonmonotone line searches and even better using the
spectral step length. As in the scalar case, the nonmonotone line search shows a good
performance in combination with spectral step length.

Acknowledgements We are deeply indebted to the anonymous Referees for their insightful comments and
invaluable suggestions. They have significantly improved the quality of the paper.
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