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Abstract
Robustness of the network topology is a key aspect in the design of computer networks.
Residual closeness is a new graph-theoretic concept defined as a measure of network
robustness due to the failure of individual vertices. We identify those graphs with
maximum residual closeness among connected graphs with fixed connectivity, edge
connectivity and bipartiteness, respectively.
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1 Introduction

A network is usually represented by an undirected simple graph where vertices
represent processors and edges represent links between processors. The measures of
network vulnerability are usually graph invariants that measure how a deletion of one
or more network elements (vertices or edges) changes properties of the network. In
the literature, some graph invariants such as connectivity [1], toughness [2], scattering
number [3] and binding number [4] have been used for this purpose, and each of
them has its own strengths and weaknesses when it comes to understanding a graph.
Dangalchev [5] proposed a new measure for network vulnerability called residual
closeness, which utilizes closeness received after the removal of a vertex and its links.
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The aim of residual closeness is to measure the vulnerability even when the removal
of the vertices does not disconnect the graph. Dangalchev explained the advantage of
residual closeness as a measure for the graph vulnerability and noted that there are
examples to show that the residual closeness can reflect the vulnerability of graphs
more sensitive than or independent of the other parameters in the existing literature.

Let G be a graph with vertex set V (G) and edge (link) set E(G). For vertices u, v

ofG, the distance between u and v inG is the length of a shortest path between u and v

in G, denoted by dG(u, v). Note that dG(u, v) = +∞ if there is no path connecting u
and v (i.e., u and v lie in different components). For an overview of results concerning
the distances in graphs, see the monograph [6]. Following [5], for a vertex u of the
graph G, the closeness of u in G is defined as CG(u) = ∑

v∈V (G)\{u} 2−dG (u,v), which
is also known as a decay centrality of u in G [7]. The closeness of a graph G is defined
as

C(G) =
∑

u∈V (G)

CG(u) =
∑

u∈V (G)

∑

v∈V (G)\{u}
2−dG (u,v).

The residual closeness (or vertex residual closeness) of a non-trivial graph G is
defined as [5]

R(G) = min{C(G − u) : u ∈ V (G)},
whereG−u is the graph obtained fromG by deleting vertex u (and its incident edges).

The computational aspect of the residual closeness has receivedmuch attention. For
example, Dangalchev established some formulas for easy calculation of the residual
closeness and put forward a generalized version of the residual closeness in [8], and he
also expressed the residual closeness of thorn graphs as a function of the closeness and
the residual closeness of the original graphs in [9]; Aytac and coauthors computed the
residual closeness of gear graphs and friendship graphs in [10], cycle related graphs,
including fans, k-pyramid graphs, wheels, n-gon books and shadow graphs of cycles
in [11], regular caterpillars in [12], helm and sunflower graphs in [13], and the graphs
formed by unary and binary graph operations in [14].

In the extremal aspect of the residual closeness, the following problems are con-
sidered. Let G be a family of graphs. It is of importance to determine

min{R(G) : G ∈ G} and max{R(G) : G ∈ G},

and characterize the graphs in G for which the residual closeness attains the minimum
andmaximum overG. Rupnik Poklukar and Žerovnik determined in [15] the extremal
graphs that minimize or maximize the closeness C(G) among all graphs and among
several subclasses of graphs including trees and cacti. Recently, Zhou et al. [16] have
identified the graphs that minimize or maximize the residual closeness over some
families of graphs, including the families of bipartite graphs and trees with fixed
parameters.

A vertex cut of a connected graph G that is not complete is a set S of vertices
such that the graph obtained from G by removing the vertices in S (and the incident
edges) is disconnected. The connectivity κ(G) of a graphG is defined as the minimum
cardinality of vertex cuts of G if G is not complete, and κ(G) = n − 1 otherwise,
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Residual Closeness of Graphs with Given Parameters 841

where n is the order of G, see [17]. It is evident that κ(G) is the minimum number of
vertices whose removal results in a disconnected or trivial graph.

For a graph G with ∅ �= S, T ⊂ V (G) with S ∩ T = ∅, denote by [S, T ] the set
of edges of G between S and T . An edge cut of a graph G is a subset of edges of G
of the form [S, V (G) \ S], where ∅ �= S ⊂ V (G). The edge connectivity λ(G) of a
non-trivial connected graph G is defined as the minimum cardinality of edge cuts of
G and if G is trivial, it is defined as 0, see [17].

Recall that a graph is bipartite if it is possible to partition its vertices into two
parts such that there are no edges with both endpoints in the same part. Lewis and
Yannakakis [18] investigated the problem: For a fixed graph property �, what is the
minimum number of vertices which must be deleted from a given graph so that the
resulting subgraph has property �? If � is bipartite, the minimum number of vertices
whose deletion from G yields a bipartite graph is called the (vertex) bipartiteness [19]
(or bipartite vertex frustration [20]) of G.

To understand the relationship between the residual closeness and the structural
properties, in this paper, we consider tomaximize the residual closeness in the families
of graphs with fixed connectivity, edge connectivity and bipartiteness, respectively,
and the extremal graphs are completely characterized.

2 Preliminaries

For a proper subset V1 of vertices of a graph G, G − V1 denotes the subgraph
of G obtained by deleting all vertices in V1 (and the incident edges) from G, and in
particular, if V1 = {u}, then we write G − u for G − {u}. For a subset E1 of edges
of a graph G, G − E1 denotes the subgraph obtained from G by deleting all edges in
E1, and in particular, if E1 = {e}, then we write G − e for G − {e}.

For vertex disjoint graphsG1 andG2, the union ofG1 andG2, denoted byG1∪G2,
is the graph with vertex set V (G1)∪V (G2) and the edge set E(G1)∪E(G2). The join
of G1 and G2, denoted by G1 ∨ G2, is the graph obtained from G1 ∪ G2 by adding
all edges between V (G1) and V (G2).

Denote by Kn the n-vertex complete graph and Kr ,s the complete bipartite graph
with part sizes r and s.

The following lemma will be frequently used in the proofs.

Lemma 1 [5, 16] Let G be a graph with uv ∈ E(G). Then R(G − uv) � R(G) for
any uv ∈ E(G).

We also need the following lemmas.

Lemma 2 [17] Let G be a connected graph G with minimum degree δ(G). Then,
κ(G) � λ(G) � δ(G).

Lemma 3 [16] Let G be an n-vertex bipartite graph with n � 4. Then,

R(G) � (n − 1)(n − 2)

4
+ 1

2

(⌊n

2

⌋
− 1

) ⌈n

2

⌉

with equality if and only if G ∼= K
n/2�,�n/2.
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3 Residual Closeness and Connectivity

In this section, we determine all connected graphs with fixed number of vertices
and connectivity having maximum residual closeness.

Lemma 4 Suppose that G = Kκ ∨ (Kr ∪ Ks) with κ � 1 and 1 � r � s. Then,

R(G) =
{

r(r−1)
2 + s(s−1)

2 , if κ = 1,
(κ−1)(κ−2)

2 + r(r−1)
2 + s(s−1)

2 + (κ − 1)(r + s) + rs
2 , if κ � 2.

Proof Let G = Kκ ∨ (Kr ∪ Ks). Let u be a vertex of G in Kκ , v a vertex of G in Kr

and w a vertex of G in Ks . For positive integers a, b and c, it is evident that

C(Ka ∨ (Kb ∪ Kc)) = C(Ka) + C(Kb) + C(Kc) + 2

(
a(b + c)

2
+ bc

4

)

= a(a − 1)

2
+ b(b − 1)

2
+ c(c − 1)

2
+ a(b + c) + bc

2
.

Case 1 κ = 1.
It is easily seen that

C(G − u) = C(Kr ) + C(Ks) = r(r − 1)

2
+ s(s − 1)

2
.

Note that G − v = K1 ∨ (Kr−1 ∪ Ks), where K0 ∪ Ks = Ks if r = 1. Then,

C(G − v) = (r − 1)(r − 2)

2
+ s(s − 1)

2
+ r + s − 1 + (r − 1)s

2
.

Similarly,

C(G − w) = r(r − 1)

2
+ (s − 1)(s − 2)

2
+ r + s − 1 + r(s − 1)

2
.

Thus,

C(G − v) − C(G − w) = s − r

2
� 0

and

C(G − w) − C(G − u) = r + r(s − 1)

2
> 0.

It then follows that C(G − u) < C(G − w) � C(G − v). Therefore, R(G) =
C(G − u) = r(r−1)

2 + s(s−1)
2 .
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Case 2 κ � 2.
Note that

C(G − u) = (κ − 1)(κ − 2)

2
+ r(r − 1)

2
+ s(s − 1)

2
+ (κ − 1)(r + s) + rs

2
,

C(G − v) = κ(κ − 1)

2
+ (r − 1)(r − 2)

2
+ s(s − 1)

2
+ κ(r + s − 1) + (r − 1)s

2

and

C(G − w) = κ(κ − 1)

2
+ r(r − 1)

2
+ (s − 1)(s − 2)

2
+ κ(r + s − 1) + r(s − 1)

2
.

Then

C(G − v) − C(G − w) = s − r

2
� 0

and

C(G − w) − C(G − u) = r

2
> 0.

So C(G − u) < C(G − w) � C(G − v). Thus, R(G) = C(G − u) = (κ−1)(κ−2)
2 +

r(r−1)
2 + s(s−1)

2 + (κ − 1)(r + s) + rs
2 .

For integers s � 2 and � with 1 � � � s − 1, denote by Hs+2,� the graph obtained
from K1 ∨ (K1 ∪ Ks) by deleting � edges joining the vertex of degree s + 1 and the
vertices of degree s. Denote by v the vertex of degree one in K1 ∨ (K1 ∪ Ks).

Lemma 5 Suppose that s � 3 and � � 1. Then R(Hs+2,�) = s(s−1)
2 if and only if

� � min{s − 2, 
 2(s+1)
3 �}.

Proof Let u be the vertex of degree s − � + 1 that is adjacent to vertex v in Hs+2,�.
Let W = V (Hs+2,�) \ {u, v}. Let Hs+2,� = K1 ∨ (K1 ∪ Ks) − E with E being a set
of � edges joining u and vertices in W .

Suppose first that � � min

{

s − 2, 
 2(s+1)
3 �

}

. Then

C(Hs+2,� − u) = C(Ks) = s(s − 1)

2

and

C(Hs+2,� − v) = s(s − 1)

2
+ s − �

2
.

123



844 M. Cheng, B. Zhou

Let w1, w2 ∈ W be vertices of Hs+2,� with degrees s − 1 and s, respectively. Then,

C(Hs+2,� − w1) = (s − 1)(s − 2)

2
+ 1 + s − 1 − � − 1

2
+ 1

2

(

s − 1 − � − 1

2

)

,

where vertex pairs from {u}×W contribute s−1− �−1
2 toC(Hs+2,� −w1) and vertex

pairs from {v} × W contribute 1
2

(
s − 1 − �−1

2

)
to C(Hs+2,� − w1). Similarly, since

� � s − 2, one has

C(Hs+2,� − w2) = (s − 1)(s − 2)

2
+ 1 + s − 1 − �

2
+ 1

2

(

s − 1 − �

2

)

.

Then

C(Hs+2,� − v) − C(Hs+2,� − w1) = 2s + � − 5

4
> 0,

C(Hs+2,� − w1) − C(Hs+2,� − w2) = 3

4
> 0

and

C(Hs+2,� − w2) − C(Hs+2,� − u) = 2(s + 1) − 3�

4
� 0

as � � 
 2(s+1)
3 �. So C(Hs+2,� − u) � C(Hs+2,� − w2) < C(Hs+2,� − w1) <

C(Hs+2,� − v). Thus
R(Hs+2,�) = C(Hs+2,� − u) = s(s − 1)

2
.

Conversely, suppose that R(Hs+2,�) = s(s−1)
2 .

If � = s − 1, then there is only one vertex w in W that is not incident to any edge
in E , and for w, we have

C(Hs+2,� − w) = (s − 1)(s − 2)

2
+ 1,

so R(Hs+2,�) � C(Hs+2,� − w) <
s(s−1)

2 , a contradiction.

If � >
2(s+1)

3 , then, as � � s − 2, we can choose a vertex, say w2, in W that is not
incident to any edge in E , and as above, we have

C(Hs+2,� − w2) = (s − 1)(s − 2)

2
+ 1 + s − 1 − �

2
+ 1

2

(

s − 1 − �

2

)

= s2

2
− 3� − 2

4
,

and thus R(Hs+2,�) � C(Hs+2,� − w2) <
s(s−1)

2 , also a contradiction.

It follows that � � min{s − 2, 
 2(s+1)
3 �}.
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Note that the complete graph Kn is the unique connected graph on n vertices with
connectivity n − 1. Let 2K1 be the empty graph on two vertices.

Theorem 1 Let G be a connected graph on n vertices with connectivity κ , where
1 � κ � n − 2. Then,

R(G) �
{

(n−2)(n−3)
2 , if κ = 1,

(n−1)(n−3)+κ
2 , if κ � 2

with equality if and only if G is isomorphic to one of the following graphs:

(i) K1 ∨ (K1 ∪ Kn−2), or H4,1, or Hn,� with n � 5 and � = 1, · · · ,min{n −
4, 
 2(n−1)

3 �}, if κ = 1;
(ii) K2 ∨ (K1 ∪ Kn−3) or 2K1 ∨ (K1 ∪ Kn−3), if κ = 2;
(iii) Kκ ∨ (K1 ∪ Kn−κ−1), if κ � 3.

Proof Suppose that G is a connected graph on n vertices with connectivity κ that
maximizes the residual closeness.

Let S be a vertex cut of G with κ vertices. Then the graph G − S is disconnected.
Assume that G1 is a component of G − S. Let G2 = G − S − V (G1). Then G − S =
G1 ∪G2. Denote by r and s the order of G1 and G2, respectively. Then r + s = n−κ .
Assume that r � s. So G ⊆ Kκ ∨ (Kr ∪ Ks). By the choice of G and Lemmas 1 and
4, we have

R(G) = R(Kκ ∨ (Kr ∪ Ks)) = F(κ, r , s), (1)

where

F(κ, r , s) :=
{

r(r−1)
2 + s(s−1)

2 , if κ = 1,
(κ−1)(κ−2)

2 + r(r−1)
2 + s(s−1)

2 + (κ − 1)(r + s) + rs
2 , if κ � 2.

Note that

F(κ, r , s), =
{

r2+s2−(n−1)
2 , if κ = 1

(n−κ)(2κ−3)
2 + (κ−1)(κ−2)

2 + r2+s2+rs
2 , if κ � 2

=
{

(n−1)(n−2)
2 − rs, if κ = 1,

(n−κ)(n+κ−3)
2 + (κ−1)(κ−2)

2 − rs
2 , if κ � 2.

So

F(κ, r , s) � f (n, κ) :=
{

(n−2)(n−3)
2 , if κ = 1,

(n−1)(n−3)+κ
2 , if κ � 2

(2)

with equality if and only if r = 1 and s = n − κ − 1. By combining (1) and (2), and
noting that f (n, κ) = R(Kκ ∨ (K1 ∪ Kn−κ−1)), we have

R(G) = f (n, κ).
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Note that G is a spanning subgraph of Kκ ∨ (Kr ∪ Ks). By the above proof, we have
r = 1 and s = n − κ − 1, i.e.,

G ⊆ Kκ ∨ (K1 ∪ Kn−κ−1).

It is possible that G ∼= Kκ ∨ (K1 ∪ Kn−κ−1). Suppose in the following that G �

Kκ ∨ (K1 ∪ Kn−κ−1). For convenience, let H = Kκ ∨ (K1 ∪ Ks) with s = n− κ − 1.
Then G � H , so G ⊆ H − e for some edge e of H . Let V1, V2 and V3 be the vertex
sets of the subgraphs Kκ , K1 and Ks appearing in H , respectively. There are four
cases.
Case 1 e joins two vertices in V1.

In this case, κ � 2. We will prove that κ = 2. If κ � 3, then we choose a vertex u
in V1 that is not incident to e in H , so

C(H − e − u) = (κ − 1)(κ − 2)

2
− 1

2
+ s(s − 1)

2

+ (κ − 1)(1 + s) + s

2

= F(κ, 1, s) − 1

2

= f (n, κ) − 1

2
.

ByLemma 1, R(G) � R(H−e) � C(H−e−u) < f (n, κ), which is a contradiction.
So κ = 2.

Next, we show that R(H − e) = f (n, 2). For any vertex u ∈ V1,

C(H − e − u) = C(K1 ∨ (K1 ∪ Ks)) = s(s − 1)

2
+ 1 + s + s

2
.

For v ∈ V2 and w ∈ V3,

C(H − e − v) = 1

2
+ s(s − 1)

2
+ 2s

and

C(H − e − w) = 1

2
+ (s − 1)(s − 2)

2
+ 2s + s − 1

2
.

By direct calculation, we have

C(H − e − v) − C(H − e − w) = s − 1

2
� 0,

C(H − e − w) − C(H − e − u) = 0,

and so C(H − e − u) = C(H − e − w) � C(H − e − v). Thus,

R(H − e) = C(H − e − u)

= s(s − 1)

2
+ 1 + s + s

2
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= F(2, 1, s)

= f (n, 2).

Now we show that G ∼= H − e. Suppose that this is not true. Then G ⊆ H − e− e∗
for some edge e∗ of H − e. For convenience, let H∗ = H − e− e∗. If s = 1, then H∗
is a path on four vertices and so κ � 1, a contradiction. So s � 2. If e∗ joins a vertex,
say u, in V1 and the vertex in V2 of H − e, it is easy to see that V1 \ {u} is a vertex cut
of H∗, so κ � |V1 \ {u}| = 1, a contradiction. So e∗ joins a vertex in V1 and a vertex
in V3 of H − e, or e∗ joins two vertices in V3 of H − e. In the former case, for a vertex
u ∈ V1 that is incident to e but not incident to e∗, we have

C(H∗ − u) = s(s − 1)

2
+ 1 + s − 1

2
+ s

2
− 1

4
= F(2, 1, s) − 3

4
< f (n, 2),

implying that R(G) � R(H∗) � C(H∗ − u) < f (n, 2), which is a contradiction. In
the latter case, for u ∈ V1, we have

C(H∗ − u) = s(s − 1)

2
− 1

2
+ 1 + s + s

2
= F(2, 1, s) − 1

2
< f (n, 2),

implying that R(G) � R(H∗) � C(H∗−u) < f (n, 2), which is also a contradiction.
Therefore, we conclude that G ∼= H − e ∼= 2K1 ∨ (K1 ∪ Kn−3).
Case 2 e joins two vertices in V3.

In this case, s � 2. Let u ∈ V1. If κ = 1, then

C(H − e − u) =
{
0, if s = 2
s(s−1)

2 − 1
2 = F(1, 1, s) − 1

2 , if s > 2

< f (n, 1),

so R(G) � R(H − e) � C(H − e−u) < f (n, 1), which is a contradiction. If κ � 2,
then

C(H − e − u) = (κ − 1)(κ − 2)

2
+ s(s − 1)

2
− 1

2

+ (κ − 1)(1 + s) + s

2

= F(κ, 1, s) − 1

2
< f (n, κ),

so R(G) � R(H − e) � C(H − e − u) < f (n, κ), which is also a contradiction.
Therefore, Case 2 cannot occur.
Case 3 e joins a vertex in V1 and a vertex in V2.
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If κ = 1, then H − e is disconnected and so G is disconnected, which is a contra-
diction. So we may assume that κ � 2. Let u ∈ V1 that is not incident to e. Then

C(H − e − u)

=
{

s(s−1)
2 + s, if κ = 2

(κ−1)(κ−2)
2 + s(s−1)

2 + (κ − 1)(1 + s) − 1
2 + s

2 , if κ � 3

� (κ − 1)(κ − 2)

2
+ s(s − 1)

2
+ (κ − 1)(1 + s) − 1

2
+ s

2

= F(κ, 1, s) − 1

2
< f (n, κ).

Thus, R(G) � R(H − e) � C(H − e − u) < f (n, κ), which is also a contradiction.
So Case 3 cannot occur.
Case 4 e joins a vertex in V1 and a vertex in V3.

If κ � 2, then, for u ∈ V1 that is not incident to e, we have

C(H − e − u)

=

⎧
⎪⎨

⎪⎩

1, if κ = 2, s = 1
s(s−1)

2 + (1 + s) − 1
2 + s

2 − 1
4 , if κ = 2, s � 2

(κ−1)(κ−2)
2 + s(s−1)

2 + (κ − 1)(1 + s) − 1
2 + s

2 , if κ � 3

< f (n, κ)

implying that R(G) � R(H−e) � C(H−e−u) < f (n, κ), which is a contradiction.
So κ = 1. Then, s � 2. We show that R(H − e) = f (n, 1). For u ∈ V1 and v ∈ V2,
we have

C(H − e − u) = C(K1 ∪ Ks) = s(s − 1)

2

and

C(H − e − v) = s(s − 1)

2
+ s − 1

2
.

For w1, w2 ∈ V3, where w1 is incident to e and w2 is not incident to e, we have

C(H − e − w1) = C(K1 ∨ (K1 ∪ Ks−1))

= (s − 1)(s − 2)

2
+ s + s − 1

2

and

C(H − e − w2) =
{
C(K2) = 1, if s = 2,
(s−1)(s−2)

2 + s − 1
2 + s−1

2 − 1
4 , if s � 3.
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By direct calculation, we have

C(H − e − v) − C(H − e − u) = 2s − 1

2
> 0,

C(H − e − w1) − C(H − e − u) = s + 1

2
> 0

and

C(H − e − w2) − C(H − e − u) =
{
0, if s = 2,
2s−1
4 > 0, if s � 3.

So C(H − e − u) � min{C(H − e − v),C(H − e − w1),C(H − e − w2)}. Thus

R(H − e) = C(H − e − u) = F(1, 1, s) = f (n, 1) = s(s − 1)

2
.

Note that H − e ∼= Hn,1. If n = 4, then G ∼= H − e ∼= H4,1. Suppose that n � 5.
We may assume that G = H − E , where E is a subset of edges of H with e ∈ E .

Note that no edge of E joins the vertex in V1 and the vertex in V2, as otherwise, G
is disconnected, which is impossible. If there exists an edge of E joins two vertices in
V3 of H − e, then by letting u ∈ V1, we have

C(G − u) � s(s − 1)

2
− 1

2
= f (n, 1) − 1

2
,

so R(G) � C(G − u) < f (n, 1), which is a contradiction. Thus any edge in E joins
the vertex in V1 and a vertex in V3 of H . That is, G ∼= Hn,|E |. By Lemma 5, we have
1 � |E | � min{n − 4, 
 2(n−1)

3 �}.
We complete the proof by combining the above cases.

4 Residual Closeness and Edge Connectivity

In this section, we determine all connected graphs with fixed number of vertices
and edge connectivity having maximum residual closeness. Note that Kn is the unique
connected graph on n vertices with edge connectivity n − 1 by Lemma 2.

Theorem 2 Let G be a connected graph on n vertices with edge connectivity λ, where
1 � λ � n − 2. Then,

R(G) �

⎧
⎨

⎩

(n−2)(n−3)
2 , if λ = 1,

(n−1)(n−3)+λ
2 , if λ � 2

with equality if and only if G is isomorphic to one of the following graphs:
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(i) K1 ∨ (K1 ∪ Kn−2), or H4,1, or Hn,� with n � 5 and � = 1, · · · ,min{n −
4, 
 2(n−1)

3 �}, if λ = 1;
(ii) K2 ∨ (K1 ∪ Kn−3) or 2K1 ∨ (K1 ∪ Kn−3), if λ = 2;
(iii) Kλ ∨ (K1 ∪ Kn−λ−1), if λ � 3.

Proof Let G be a connected graph on n vertices with edge connectivity λ that maxi-
mizes the vertex residual closeness.

Let κ be the connectivity of G. Then, κ � λ by Lemma 2. If λ = κ , then we have
by Theorem 1 that

R(G) = f (n, λ) :=
{

(n−2)(n−3)
2 , if λ = 1,

(n−1)(n−3)+λ
2 , if λ � 2,

and G is isomorphic to one of Kλ ∨ (K1 ∪ Kn−λ−1), or 2K1 ∨ (K1 ∪ Kn−3), or
H4,1, or Hn,� with n � 5 and � = 1, · · · ,min{n − 4, 
 2(n−1)

3 �}. If λ > κ , then
R(G) � f (n, κ) < f (n, λ), which is a contradiction.

Similarly, we have

Corollary 1 Let G be a connected graph on n vertices with minimum degree δ, where
1 � δ � n − 2. Then,

R(G) �
{

(n−2)(n−3)
2 , if δ = 1,

(n−1)(n−3)+δ
2 , if δ � 2

with equality if and only if G is isomorphic to one of the following graphs:

(i) K1 ∨ (K1 ∪ Kn−2), or H4,1, or Hn,� with n � 5 and � = 1, · · · ,min{n −
4, 
 2(n−1)

3 �}, if δ = 1;
(ii) K2 ∨ (K1 ∪ Kn−3) or 2K1 ∨ (K1 ∪ Kn−3), if δ = 2;
(iii) Kδ ∨ (K1 ∪ Kn−δ−1), if δ � 3.

5 Residual Closeness and Bipartiteness

In this section, we determine all connected graphs with fixed number of vertices
and bipartiteness having maximum residual closeness.

Lemma 6 Suppose that G = Kk ∨ Kr ,t with k, r , t � 1 and k + r + t = n. Then

R(G) = (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4
+ r t

2
.

Proof Let U = V (Kk). Then, G −U = Kr ,t . Let {X ,Y } be the bipartition of G −U
with |X | = r and |Y | = t . Let u ∈ U , x ∈ X and y ∈ Y . Then,

C(G − u) =
(
k − 1

2

)

+ (k − 1)(r + t) + r t + 1

2

((
r

2

)

+
(
t

2

))

,
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C(G − x) =
(
k

2

)

+ k(r − 1 + t) + (r − 1)t + 1

2

((
r − 1

2

)

+
(
t

2

))

,

and

C(G − y) =
(
k

2

)

+ k(r + t − 1) + r(t − 1) + 1

2

((
r

2

)

+
(
t − 1

2

))

.

Assume that r � t . By straightforward computation, we see that

C(G − x) − C(G − y) = r − t

2
� 0

and

C(G − y) − C(G − u) = t − 1

2
� 0.

So we have

R(G) = C(G − u)

= (k − 1)(k − 2)

2
+ (k − 1)(r + t) + r t + r(r − 1) + t(t − 1)

4

= (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4
+ r t

2
,

as desired.

For integers t � r � 2, we call any edge of K1∨Kr ,t with one end vertex of degree
r + t a non-bipartite edge.

Lemma 7 For integers t � r � 2 and q with 1 � q � r + t − 1, let E be a set of q
non-bipartite edges of K1 ∨ Kr ,t . Let G = K1 ∨ Kr ,t − E. If the bipartiteness of G
is 1, then R(G) = (r+t)(r+t−1)

4 + r t
2 if and only if 1 � q � r − 1.

Proof Let u be the vertex of degree r + t in K1 ∨ Kr ,t , and {X ,Y } the bipartition of
K1 ∨ Kr ,t − u with |X | = r and |Y | = t .

Since G is a graph with bipartiteness one, q � r + t −2 and ux and uy are edges of
G for some x ∈ X and some y ∈ Y . As q � 1, uw ∈ E for some w ∈ X ∪ Y . Then,

C(G − u) = r t + 1

2

((
r

2

)

+
(
t

2

))

= (r + t)(r + t − 1)

4
+ r t

2
,

C(G − x) = (r − 1 + t) − q

2
+ (r − 1)t + 1

2

((
r − 1

2

)

+
(
t

2

))

= (r + t)(r + t − 1)

4
+ r t

2
+ r − q − 1

2
,
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C(G − y) = (r + t − 1) − q

2
+ r(t − 1) + 1

2

((
r

2

)

+
(
t − 1

2

))

= (r + t)(r + t − 1)

4
+ r t

2
+ t − q − 1

2
,

and

C(G − w) =
{
C(G − x) + 1

2 , if w ∈ X ,

C(G − y) + 1
2 , if w ∈ Y .

Suppose first R(G) = (r+t)(r+t−1)
4 + r t

2 . If q � r , then R(G) � C(G − x) <
(r+t)(r+t−1)

4 + r t
2 , which is a contradiction. It follows that 1 � q � r − 1.

Conversely, suppose that 1 � q � r − 1, then

C(G − u) � min{C(G − x),C(G − y)} < C(G − w),

so R(G) = C(G − u) = (r+t)(r+t−1)
4 + r t

2 .

Theorem 3 Let G be a connected graph on n � 4 vertices with bipartiteness k, where
0 � k � n − 2. Then,

R(G) �
{

(n−1)(n−2)
4 + 1

2

(⌊ n
2

⌋ − 1
) ⌈ n

2

⌉
, if k = 0,

(k−1)(k−2)
2 + (n−k)(n+3k−5)

4 + 1
2� n−k

2 
 n−k
2 �, if k � 1

with equality if and only if G is isomorphic to one of the following graphs:

(i) K
n/2�,�n/2, if k = 0;
(ii) K1 ∨ K
(n−1)/2�,�(n−1)/2, or K1 ∨ K
(n−1)/2�,�(n−1)/2 − E for a set E of non-

bipartite edges with 1 � |E | � 
 n−1
2 � − 1, if k = 1;

(iii) K2 ∨ K
(n−2)/2�,�(n−2)/2, or 2K1 ∨ K
(n−2)/2�,�(n−2)/2 with n � 6, if k = 2;
(iv) Kk ∨ K
(n−k)/2�,�(n−k)/2, if k � 3.

Proof The case when k = 0 follows from Lemma 3. Suppose that k � 1. Let G
be a connected graph on n vertices with bipartiteness k that maximizes the residual
closeness.

Let U ⊂ V (G) with |V (U )| = k such that G − U is a bipartite graph. Let {X ,Y }
be the bipartition of G − U . Let r = |X | and t = |Y |. Assume that r � t . So
G ⊆ Kk ∨ Kr ,t . By Lemmas 1 and 6, we have

R(G) = R(Kk ∨ Kr ,t ) = (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4
+ r t

2
. (3)

The above upper bound (3) for R(G) is maximized if and only if r = 
 n−k
2 � and t =

� n−k
2 . Note that the maximum value is really achieved by Kk ∨ K
(n−k)/2�,�(n−k)/2.

Thus, we have
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R(G) = g(n, k) := (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4

+1

2

⌈
n − k

2

⌉ ⌊
n − k

2

⌋

.

For convenience, let G ′ = Kk ∨ Kr ,t . Note that G is a spanning subgraph of G ′. By
the above proof, we have

r =
⌊
n − k

2

⌋

and t =
⌈
n − k

2

⌉

.

That is,

G ′ = Kk ∨ K
(n−k)/2�,�(n−k)/2.

It is possible that G ∼= G ′ ∼= Kk ∨ K
(n−k)/2�,�(n−k)/2. Suppose in the following
that G � G ′. Then G ⊆ G ′ − e for some edge e of G ′. There are three cases.
Case 1 e joins two vertices in U .

In this case, k � 2. We claim that k = 2. Otherwise, k � 3. We choose a vertex u
in U , which is not incident to e, so we have

C(G ′ − e − u) = (k − 1)(k − 2)

2
− 1

2
+ (k − 1)(r + t) + r t + 1

2

((
r

2

)

+
(
t

2

))

= (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4
+ r t

2
− 1

2

= g(n, k) − 1

2
< g(n, k).

By Lemma 1,

R(G) � R(G ′ − e) � C(G ′ − e − u) < g(n, k),

which is a contradiction. So k = 2, as claimed.
Suppose that r = 1. That is, n = 4, 5. Then, t = 1, 2 and the deletion of the unique

vertex in X from G ′ − e results in a bipartite graph K2,t , and so the bipartiteness of
G ′ − e is 1. As G is a spanning subgraph of G ′ − e, the bipartiteness of G is no more
than that of G ′ − e, so k � 1, which contradicts the fact that k = 2. It follows that
r � 2. That is, n � 6.

Next, we show that R(G ′ − e) = g(n, 2). For any vertex u ∈ U , x ∈ X and y ∈ Y ,
we have

C(G ′ − e − u) = C(K1 ∨ Kr ,t ) = r + t + r t + 1

2

((
r

2

)

+
(
t

2

))

,

C(G ′ − e − x) = 1

2
+ 2(r − 1 + t) + (r − 1)t + 1

2

((
r − 1

2

)

+
(
t

2

))
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and

C(G ′ − e − y) = 1

2
+ 2(r + t − 1) + r(t − 1) + 1

2

((
r

2

)

+
(
t − 1

2

))

.

By direct calculation, we see that

C(G ′ − e − x) − C(G ′ − e − u) = r − 2

2
� 0

and

C(G ′ − e − y) − C(G ′ − e − u) = t − 2

2
� 0.

Thus,

R(G ′ − e) = C(G ′ − e − u)

= r + t + r t + 1

2

((
r

2

)

+
(
t

2

))

= (r + t)2 + 3(r + t)

4
+ r t

2
= g(n, 2).

Now, we show thatG ∼= G ′ −e. Suppose that this is not true. ThenG ⊆ G ′ −e−e∗
for some edge e∗ of G ′ − e. For convenience, let G∗ = G ′ − e − e∗. Denote by u the
vertex inU that is not incident to e∗ in G ′ − e if e∗ joins a vertex inU and a vertex in
X or Y , and either vertex in U otherwise. In both cases, we have

C(G∗ − u) = r + t + r t − 1

2
+ 1

2

((
r

2

)

+
(
t

2

))

= g(n, 2) − 1

2
,

Thus R(G) � R(G∗) � C(G∗ − u) < g(n, 2), a contradiction. So we conclude that
G ∼= G ′ − e ∼= 2K1 ∨ K
(n−2)/2�,�(n−2)/2.
Case 2 e joins a vertex in X and a vertex in Y .

Let u ∈ U . If k � 2, then

C(G ′ − e − u) = (k − 1)(k − 2)

2
+ (k − 1)(r + t) + r t − 1

2

+ 1

2

((
r

2

)

+
(
t

2

))

= g(n, k) − 1

2
< g(n, k),
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so R(G) � R(G ′ −e) � C(G ′ −e−u) < g(n, k), which is a contradiction. It follows
that k = 1. If n = 4, then G ′ = K1 ∨ K1,2, so C(G ′ − e−u) = 1 < g(4, 1). If n � 5,
then r � 2, C(G ′ − e − u) = r t − 3

4 + 1
2

((r
2

) + (t
2

))
, and so

C(G ′ − e − u) = (n − 1)(n − 2)

4
+ 1

2
r t − 3

4
< g(n, 1).

In either case, we have R(G) � R(G ′ − e) � C(G ′ − e − u) < g(n, 1), which is a
contradiction. So Case 2 cannot occur.
Case 3 e joins a vertex in U and a vertex in X ∪ Y .

Suppose that k � 2. We choose a vertex u in U that is not incident to e, and we
have

C(G ′ − e − u) = (k − 1)(k − 2)

2
+ (k − 1)(r + t) − 1

2
+ r t

+ 1

2

((
r

2

)

+
(
t

2

))

= (k − 1)(k − 2)

2
+ (n − k)(n + 3k − 5)

4
+ r t

2
− 1

2
< g(n, k).

By Lemma 1,

R(G) � R(G ′ − e) � C(G ′ − e − u) < g(n, k),

which is a contradiction. It follows that k = 1 with g(n, 1) = (r+t)(r+t−1)
4 + r t

2 .
As G is a spanning subgraph of G ′ − e and the bipartiteness of G is 1, the bipar-

titeness of G ′ − e is at least 1. If n = 4, then r = 1, e must join the unique vertex inU
and a vertex in Y , and C(G ′ − e − x) = C(K2 ∪ K1) = 1 < 5

2 = g(4, 1) for x ∈ X ,
a contradiction. Thus, n � 5.

Wemay assume thatG = G ′−E , where E is a subset of edges ofG ′ with e ∈ E . By
the above arguments, any edge of E joins the unique vertex inU and a vertex in X ∪Y .
By Lemma 7, we have |E | � 
 n−1

2 � − 1. Thus, G ∼= G ′ − E with 1 � |E | � 
 n−1
2 �

− 1.

6 Concluding Remarks

Acentral concept that is used to assess stability and robustness of the performance of
a network under failures is that of vulnerability, see, e.g., [21, 22]. Residual closeness
is a new graph vulnerability measure used in network vulnerability analysis [5]. One
way to understand which graph properties a graph invariant gauges is to investigate the
extremal graphs. In this paper, we studied the relationship between residual closeness
and some graph parameters including connectivity, edge connectivity and bipartite-
ness. Those connected graphs with fixed number of vertices and one of these graph
parameters that achieve the maximum residual closeness were completed determined.
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The extremal graphs can provide a snapshot of the residual closeness and so can yield
information about the graph. The results may be extended to the generalized version
of the residual closeness in [8] defined as Rα(G) = min{Cα(G−u) : u ∈ V (G)}with
Cα(G) = ∑

u∈V (G)

∑
v∈V (G)\{u} αdG (u,v), where α ∈ (0, 1). In following steps, we

will investigate the relationship between residual closeness and other graph parame-
ters, like number of cut vertices, number of cut edges, matching number, domination
number, toughness, scattering number and binding number.
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