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Abstract
Evolution is based on the competition between individuals and therefore rewards
only selfish behavior. How cooperation or altruism behavior could prevail in social
dilemma then becomes a problematic issue. Game theory offers a powerful mathe-
matical approach for studying social behavior. It has been widely used to explain the
evolution of cooperation. In this paper, we first introduce related static and dynamic
game methods. Then we review two types of mechanisms that can promote cooper-
ation in groups of genetically unrelated individuals, (i) direct reciprocity in repeated
games, and (ii) incentive mechanisms such as reward and punishment.

Keywords Cooperation · Game theory · Direct reciprocity · Reward · Punishment

Mathematics Subject Classification 91A80 · Applications of game theory

1 Introduction

“Howdid cooperative behavior evolve” is a fundamental question in biology and the
social sciences [1]. A great deal of game-theoretic research has been devoted to explain
the prevalence of cooperation in biological systems as well as in human society. One
reason for the vast literature frommembers of the game theory community on this topic
is that theirmethods do notwork for the underlying game, the Prisoner’sDilemma (PD)
game, which pits cooperative behavior against its nemesis of defection. In particular,
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defection strictly dominates cooperation since defectors always have higher payoffs
by enjoying the benefits from cooperators without paying. That is, the only rational
option in the PD game is to defect although it is to everyone’s advantage for all players
to cooperate.

In the last decades, several mechanisms have been proposed to promote cooper-
ation. Cooperation can be rational when the payoffs of the PD game are modified
by assuming some relatedness between the players, by them playing the game an
uncertain number of times, by extending the model to a game based on reputation, or
introducing incentive mechanisms such as reward and punishment. These predictions
are often based on applying either static (e.g., Nash equilibrium analysis and evolu-
tionarily stable strategy) or dynamic methods (e.g., replicator equation) from game
theory that assumes a large population of agents paired at random to play the game.
Population interactions that are structured either spatially or socially also enhance the
evolution of cooperation as do the stochastic effects of finite populations.

In this paper, we review recent studies on the evolution of cooperation. In particular,
we focus on game mechanisms that can promote cooperation in groups of genetically
unrelated individuals. These mechanisms include direct reciprocity in repeated games
and incentive mechanisms such as reward and punishment. The rest of this paper is
organized as follows. Section 2 introduces some basic games, equilibrium notations,
and dynamic methods in game theory. Section 3 focuses on the repeated game and
discusses strategies based on direct reciprocity. Section 4 considers the effects of
reward and punishment in one-shot game. Section 5 summarizes and discusses the
effects of these two types of mechanisms.

2 Game theory and Evolutionary Dynamics

2.1 Basic Games

2.1.1 The Prisoner’s Dilemma Game

A paradigm for modelling human cooperation is the Prisoner’s Dilemma (PD)
game [2–4]. The standard PD game is a two-player game, where each player has two
strategies, cooperation (C) and defection (D). The payoff matrix for the PD game
is shown in Eq. (1). Two players are offered a certain payoff, R (i.e., reward), for
mutual cooperation, and a lower payoff, P (i.e., punishment), for mutual defection.
If one player cooperates while the other defects, then the cooperator gets the lowest
payoff, S (i.e., sucker’s payoff), and the defector gains the highest payoff, T (i.e., the
temptation of defection). Thus, the payoffs satisfy T > R > P > S. A further
common assumption is 2R > S + T > 2P , which means that mutual cooperation is
the best outcome and mutual defection is the worst outcome.

C D
C
D

(
R S
T P

)
. (1)
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In the one-shot PD game, D strictly dominates C because a player is better off
defecting than cooperating no matter what the opponent does. So mutual defection is
the only rational outcome.

We further introduce a simplified version of the PD game, the Donation game [3, 4].
This game has been widely used to study the evolution of cooperation. In this game,
C means that a donor pays a cost, c, for a recipient to get a benefit, b, where b > c,D
means that the donor pays no cost and distributes no benefit. The payoff matrix is then
given by

C D
C
D

(
b − c −c
b 0

)
. (2)

Similarly as the standard PD game, D is a dominant strategy for both players and
mutual cooperation leads to a higher average payoff.

2.1.2 The Public Goods Game

The public goods game (PGG) is a generalization of the PD game [4]. In a PGG,
each player in a group of size n is given a fixed endowment, c, and chooses how
much of that endowment to put into a common pool. The total amount in the pool is
multiplied by a factor r with 1 < r < n and then redistributed evenly to each player in
the group. Denote the contribution of player i by xi , with 0 � xi � c. The payoff of
player i is then the remainder of his/her endowment c − xi plus what he/she receives
from the public pool, which has the form

ui (x) � c − xi +
r
∑n

j�1x j

n
� c −

(
1 − r

n

)
xi +

r
∑

j ��i x j

n
. (3)

Furthermore, the average payoff of the group is

u(x) � 1

n

∑n

i�1
ui (x) � c +

(r − 1)

n

∑n

i�1
xi . (4)

Thus, it is to the group’s advantage if all players contribute their total endowment
because r > 1, but each player, given the contributions of the others, does best by
contributing nothing because r < n.

To show the relation between PGG and PD game, we consider a two-player PGG
with discrete choices. We define C as contributing all the endowment and D as con-
tributing nothing. Thus, the payoff matrix for this two-player PGG can be written as

C D
C

D

(
cr cr

2
c
(
1 + r

2

)
c

)
. (5)

This simplified PGG is a special case of the PD game, where D is the only dominant
strategy.
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2.2 Equilibrium Analysis

2.2.1 Nash Equilibrium

The most commonly used equilibrium notation in game theory is the Nash equilib-
rium (NE). In a game, if each player has chosen a strategy and no player can benefit
by changing his/her strategy while the other players keep theirs unchanged, then the
set of strategy choices is called a Nash equilibrium [5].

Consider a 2-person n-strategy symmetric game, where for each player S �
{s1, s2, · · · , sn} is the strategy set. A strategy pair (si , si ) is a NE if u(s j , si ) � u(si , si )
for any j �� i , where u(s j , si ) is the payoff to the player using strategy j when the
other player adopts strategy i .

It has been shown that every game has at least one Nash equilibrium [5], but in
general there are many. Trying to select the “best” equilibrium for each game is a
difficult problem. Methods to do this have been suggested by Harsanyi and Selten [6],
inventing the risk dominant equilibrium, and by many other researchers.

2.2.2 Evolutionarily Stable Strategy

One well-known refinement for NE is the evolutionarily stable strategy (ESS).
More than 40 years have passed since the concept of ESS was introduced by Maynard
Smith, evolutionary game theory has become a powerful tool to analyze evolutionary
processes and human behaviors [7, 8].

A strategy is called evolutionarily stable if all themembers of the population adopted
it, then no other strategy could invade the population. In a 2-person symmetric game,
a strategy si is an ESS if for any j �� i , (i) u(s j , si ) � u(si , si ), and (ii) u(s j , s j ) �
u(si , s j ) when u

(
s j , si

) � u(si , si ). Condition (i) is the NE condition and condition
(ii) guarantees that the strategy is evolutionarily stable that can prevent the invasion
of other strategies.

We now provide a biological explanation for ESS. Consider that mutations occur
in a population of strategy si , where the frequency of mutate strategy s j is x . Thus,
the expected payoffs for the resident strategy si and the mutate strategy s j are u(si ) �
(1 − x)u(si , si ) + xu(si , s j ) and u(s j ) � (1 − x)u(s j , si ) + xu(s j , s j ), respectively. If
si is an ESS, then we always have u(si ) > u(s j ) in the limit of x → 0. This implies
that any mutate strategy cannot invade the population under the influence of natural
selection.

2.2.3 Quantal Response Equilibrium

The definition of NE relies on perfect rationality, where at a NE all players are
using the best response strategies given the strategies of the others. However, people in
reality are bounded rational andmaymakemistakes in decision making. In the context
of bounded rationality, one important equilibrium notation is the quantal response
equilibrium (QRE) introduced byMcKelvey and Palfrey [9]. In a QRE, players do not
always choose best responses. Instead, they make decisions based on a probabilistic
choice model and assume other players do so as well. A general interpretation of this
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model is that players observe randomly perturbed payoffs of strategies and choose
optimally according to those noisy observations [9–13]. For a given error structure,
QRE is defined as a fixed point of this process.

For instance, in a 2-person n-strategy symmetric game, the set of QRE at noise
level λ is defined as

πλ � {x � (x1, . . . , xn)|xi � σ(λu(x))}, (6)

where u(x) � (u1(x), · · · , un(x)) is the vector for the expected payoffs of the n
strategies. The quantal response function has one free parameter λ, whose inverse 1/λ
has been interpreted as the temperature, or the intensity of noise. At λ � 0, players
have no information about the game and each strategy is chosenwith equal probability.
As λ approaches infinity, players achieve full information about the game and choose
best responses. In particular, if σ satisfies continuity and cumulativity, then the limit
set lim

λ→∞πλ consists of NE only [14].

McKelvey and Palfrey [9] then defined an equilibrium selection from the set ofNash
equilibria by tracing the branch of the QRE correspondence starting at the centroid
of the strategy simplex (the only QRE when λ � 0) and following this branch to its
terminus at λ � +∞. If σ satisfies C2 continuity, monotonicity and cumulativity, then
the graph of QRE correspondence generically includes a unique branch that starts at
the centroid of the strategy simplex and converges to a unique Nash equilibrium as
noises vanish [15, 16]. This equilibrium is called the limiting QRE of the game.

2.3 Evolutionary Dynamics

In addition to static equilibrium analysis, dynamic approaches have been widely
used to study the evolution of strategies or behaviors. Dynamic approaches in game
theory could be roughly classified into two categories. Evolutionary game theory
considers the behavior of large populations, where individuals choose which actions
to play genetically or using simple myopic rules (e.g., imitation, best response). In
contrast, learning models focus on the behavior of small groups in repeated games.
Individuals make decisions according to explicit learning rules, which could be sim-
ple myopic rules (called heuristic learning or adaptive learning) or more complicated
Bayesian rules (called coordinated Bayesian learning or rational learning). The heuris-
tic learning is close to the spirit of evolutionary approach. In contrast, in the Bayesian
learning, individuals play the best response to their beliefs about other individuals’
strategies and update the beliefs over rounds. For instance, a representative class of
Bayesian learning methods is homotopy approaches, such as the tracing procedure of
Harsanyi and Selten [6] or the QRE of McKelvey and Palfrey [9], see also McKelvey
and Palfrey [11], Turocy [13], and Zhang [15].

In this paper, we mainly focus on the evolutionary game method. One well-known
evolutionary dynamics is the replicator dynamics [7, 17, 18]. Replicator dynamics was
first motivated biologically in the context of evolution and is still applied in this field.
Later, economists related replicator dynamics to learning [19–21] and defined several
equilibrium notions [22, 23].
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Replicator dynamics describes the evolution of the frequencies of strategies. It
assumes that the per capita growth rate of each strategy is proportional to its payoff
and the evolutionary success of a strategy is measured quantitatively by the difference
between its payoff and the average payoff of the population. When a strategy has
payoff above the average, then this strategy is expected to spread.

Consider a symmetric game and denote the frequency of strategy si in the population
by xi . The replicator dynamics are then written as

dxi
dt

� xi (ui (x) − u(x)), (7)

where ui (x) � ∑n
j�1x j u(si , s j ) is the expected payoff for strategy i and u(x) �∑n

i�1xi ui (x) is the average payoff of the population.
A statex∗ � (x∗

1 , · · · , x∗
n ) is called evolutionarily stable if it is an asymptotically sta-

ble fixed point of the replicator dynamics. The stability analyses of replicator dynamics
were given in the framework of population games [17, 18, 21, 24–26], asymmetric
games [7, 27–31], and genetically structured population [7, 32–34]. In a symmetric
game, a symmetric NEmust be a fixed point of the replicator dynamics, and any stable
fixed point must be a NE. In particular, in the case of two strategies, a stable fixed
point corresponds to an ESS [17].

Other common evolutionary game dynamics include replicatory-mutator dynam-
ics, adaptive dynamics, birth-death/death-birth process, exploration dynamics, Fermi
update, best response dynamics, fictitious play, perturbed best response dynamics,
logit dynamics, stochastic dynamics, and learning-mutation dynamics. Table 1 sum-
marizes the biological or economic context of these dynamics and related equilibrium
notations. More details can be found in Hofbauer and Sigmund [17] and Sandholm
[12].

3 Repeated Game

The two basic games introduced in Sect. 2.1, the PD game and PGG, are one-shot,
where the only NE/ESS is defection (D). However, most of interactions in our daily
life (e.g., with colleagues or friends) are not one-shot. We now consider that the game
is repeatedly played between the two players. Furthermore, we assume that the two
players do not know how many rounds their game will last. They only know that after
every round, a further round can occur with a probability w < 1, i.e., the expected
number of rounds is t � 1/(1 − w). If the number of rounds is known to the both
players, then backward induction predicts that rational players ought to play D in each
round.

We note that strategies in the repeated game can be very complicated because the
choice in a round could depend on what happens in previous rounds. In fact, in the
repeated PD game, there is no strategy that can strictly dominate all other strategies.
For instance, if the coplayer uses an unconditional strategy such as always defects
(AllD) or always cooperates (AllC), then the best response is to play D. However, if
the coplayer uses a conditional strategy that punishes defection, then it is better to
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Table 1 Evolutionary dynamics. This table provides biological and economic contexts and related equilib-
rium notations for different evolutionary dynamics. Details for dynamics 1,2,3,6 can be found in Hofbauer
and Sigmund [17]. Details for dynamics 1, 4, 5, 6, 7, 8 can be found in Sandholm [12]

Evolutionary dynamics Biological and economic context Equilibrium notation

1 Replicator dynamics Infinite population +
imitation/selection

NE, ESS

2 Replicator-mutator dynamics Infinite population +
imitation/selection + mutation

NE, ESS

3 Adaptive dynamics Continuous strategy +
imitation/selection + mutation

ESS

4 Birth–death/death-birth process Finite population + selection +
mutation

ESS

5 Exploration dynamics/Fermi update Finite population + imitation +
mutation

ESS

6 Best response dynamics/fictitious
play

Best response NE

7 Perturbed best response/logit
dynamics

Best response + decision error QRE

8 Stochastic/learning mutation
dynamics

Finite population + best response +
mutation

Long-run equilibrium

play C in every round. In this section, we will introduce some typical strategies in
the repeated social dilemma games and discuss their evolutionary stabilities against
defection.

3.1 Evolution of Cooperation in the Repeated PD Game

One of the most famous strategy in the repeated PD game is tit-for-tat (TFT). A
player using this strategy chooses C in the first round and then does whatever the
opponent did in the previous round. TFT was first introduced by Rapoport, and it is
both the simplest and the most successful strategy in Axelrod’s computer tournaments
[2, 35]. The success of TFT may attribute to four reasons. First, it is never the first to
defect. Thus, cooperation can be sustainedwhen both players are using TFT. Second, it
is provocable into retaliation by a defection of the other. As a result, TFTwill be not by
exploited by defective strategies. Third, it is forgiving after just one act of retaliation.
Thus, if the coplayer switches back to C, then the TFT player resumes to C forthwith.
Finally, it never tries to get more than its coplayer. In fact, in the repeated PD game, the
only way to do better than the coplayer is to choose D. However, if both players want
to get a higher payoff, then they will fall into mutual defection. Subsequent empirical
studies found that the success of TFT is not limited to human society but that it also
extends to animal populations [36].

However, TFT has an Achilles’ heel, it cannot correct mistakes. When players may
make mistakes in decision making, the expected payoff for two TFT players in an
infinitely repeated PD is same as random players (see Fig. 1a). This implies that TFT
is evolutionarily unstable in an uncertain world. In the next few years, evolutionary
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Fig. 1 TFT, GTFT, and WSLS in
repeated PD games with errors.
(a) TFT cannot correct mistakes.
(b) GTFT can correct mistakes
in few rounds. (c) WSLS can
exploit AllC. (d) WSLS is a
deterministic corrector

game method has been applied to find the “best” strategy in the repeated PD game.
The evolution of strategies has been analyzed by adaptive dynamics and replicatory
dynamics in the set of reactive strategies and stochastic strategies [37–43].

A reactive strategy iswritten as a 3Dvector (x, pC, pD),where x is the probability of
cooperating in the first round and pC, and pD are the conditional probabilities of play-
ing C after the coplayer choosing C and D, respectively. For instance, AllC, AllD, and
TFT can be denoted by (1, 1, 1), (0, 0, 0), and (1, 1, 0), respectively. Adaptive dynam-
ics show that in the set of reactive strategies, there is no evolutionary tendency towards
TFT. Once a cooperative population has been established, TFT will be replaced by a
more generous strategy, (1, 1, p). This strategy is called generous tit-for-tat (GTFT).
A GTFT player starts with C, choose C when the coplayer has cooperated and chooses
C with probability p when the coplayer has defected. Comparing with TFT, GTFT is
more forgiving when faced with D. Thus, mistakes can be corrected in few rounds.
Specifically, when the error probability is small, the expected payoff for two GTFT
players per round is very close to the full reward for mutual cooperation (see Fig. 1b).

A memory-one strategy is written as a 5D vector (x, pCC, pCD, pDC, pDD), where
x is the probability of cooperating in the first round and pCC, pCD, pDC and pDD
are the conditional probabilities of playing C after CC,CD,DC and DD interactions,
respectively (see Table 2). Thus, reactive strategies form a 3D subset of the memory-
one strategies. Evolutionary simulation based on selection and mutation shows that
in the set of memory-one strategies, a GTFT population will be replaced by AllC
through neutral drift, and the AllC population will be undermined by either AllD or a
new strategy, (1,1,0,0,1) [41]. This strategy is called Win-Stay Lose-Shift (WSLS). In
the repeated donation game, a WSLS player starts with C, repeats the previous action
if the payoff>0 and switches if the payoff � 0. Comparing with GTFT, WSLS has
three advantages. First, it can exploit AllC (see Fig. 1c). Second, it can against the
invasion of ALLD if b/2 > c(in contrast, GTFT cannot defeat AllD when p is large).
Finally, it is a deterministic corrector, where a mistake can be correct in 2 rounds (see
Fig. 1d).

We now let natural selection to design a strategy in the set ofmemory-one strategies.
As shown in Fig. 2, a TFT population can be established if the initial cooperation rate
is higher, after which TFT will be replaced by more generous strategies such as GTFT
andAllC; finally, the populationwill be undermined byWSLSorAllD.However, there
are two remaining questions for the evolution of cooperation in repeated games. First,
AllD and TFT are bistable under deterministic evolutionary dynamics (e.g., replicator
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Table 2 Typical memory-one strategies in the repeated PD game. A memory-one strategy is written as a
5D vector (x, pCC, pCD, pDC, pDD), where x is the probability of cooperating in the first round and pCC,

pCD, pDC and pDD are the conditional probabilities of playing C after CC, CD, DC and DD interactions,
respectively. The ESS condition is condition that the strategy can prevent the invasion ofAllD in the repeated
donation game (with parameters b, c, and w)

Strategy Description Memory-1 strategy ESS condition

AllC Always choose C (1, 1, 1, 1, 1) Never
AllD Always choose D (0, 0, 0, 0, 0) Neutral
GRIM Starts with C, and turns to D if any player has defected (1, 1, 0, 0, 0)

c
b < w

TFT Starts with C, then does whatever the co-player did in
the previous round

(1, 1, 0, 1, 0)
c
b < w

GTFT Starts with C, choose C when the co-player has
cooperated and chooses C with probability p when
the co-player has defected

(1, 1, p, 1, p)
c
b < (1 − p)w

WSLS Starts with C, repeats the previous action if the
payoff>0 and switches if the payoff � 0

(1, 1, 0, 0, 1) c < 0

STFT Starts with D, then does whatever the co-player did in
the previous round

(0, 1, 0, 1, 0) Neutral

Fig. 2 Evolutionary cycles. In the
set of memory-one strategies,
natural selection favors AllD and
WSLS in the long run

dynamics). If the population evolves to AllD, how does TFT establish a regime of
cooperation? Second, the AllC population can be invaded by both AllD and WSLS.
How to prevent the evolutionary trend from AllC to AllD?

For the first question, there are two possible explanations. The first explanation
is that TFT can invade AllD through random mutation [40, 44–47]. In the limit of
weak selection, natural selection can favor the invasion and replacement of the AllD
strategy by TFT if the payoff of the PD game satisfies a one-third law [3, 47]. The
second explanation is that suspicious tit-for-tat (STFT) can invade the AllD population
through neutral drift. Whenmost of the players become STFT, TFT-like strategies will
obtain a higher payoff. The population will then evolve to a conditional cooperative
regime, which cannot be invaded by non-cooperative strategies [4, 48]. For the second
question, incentive mechanisms such as reward and punishment are often used to
sustain cooperation, and this point will be discussed in Sect. 4.

3.2 More on Repeated Game Strategies

Recently, Press andDyson revealed that the repeated PDgame (andPGG) includes a
special class of memory-one strategies, zero-determinant (ZD) strategy [42]. A player
using a ZD strategy can unilaterally enforce a linear relation between the two play-
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ers’ payoffs [37, 38, 42, 43, 137]. Furthermore, a subset of ZD strategies allows for
implicit forms of extortion, where a player using extortionate strategies can enforce
a unilateral claim to an unfair share of rewards such that the partner’s best response
is to be fully cooperative. Thus, extortioners cannot be outperformed by any oppo-
nent in a pairwise encounter. Experimental studies showed that computers using such
strategies can defeat each of their human opponents in repeated PD game, but extor-
tion resulted in lower payoffs than generosity [49]. This is because human subjects
showed a strong concern for fairness. They often punished extortion by refusing to
fully cooperate, thereby reducing their own, and even more so, the extortioner’s gains.
However, when the repeated game is sufficiently long, human subjects’ cooperation
rates increased after they realized that punishment cannot change the behavioral pat-
tern of their (computer) partners [50]. As a result, the extortionate strategy earns more
than the generous strategy.

We note that strategies such as TFT, GTFT, WSLS, and ZD can be generalized to
gameswith continues strategies and gameswithmore than 2 players. Some researchers
have examined models of continuous PD game (or equivalently, 2-person PGG) based
on the linear reactive strategy method. They found that cooperative strategies such as
TFT and GTFT are more difficult to invade a non-cooperative equilibrium than in the
discrete PD game [51–53]. TFT and WSLS have also been generalized to n-person
PD game (or equivalently, PGG with discrete choices) [46, 54–56]. In an n-person
PD, a TFTk (0 < k < n) strategist cooperates if at least k individuals cooperated
in the previous round [46, 54, 55], and a WSLS strategist cooperates if all them
group members cooperated or defected in the previous round [56]. Both TFTm−1 and
WSLS can sustain cooperation in sizable group, and sometimes large group size can
facilitate the evolution of cooperation [46, 56]. Finally, Hilbe et al. [49] showed that
multiplayer social dilemma games also include ZD like strategies. They distinguished
several subclasses of ZD strategies, e.g., fair strategies ensure that the own payoff
matches the average payoff of the group, extortionate strategies allow a player to
perform above average, and generous strategies let a player perform below average.

Finally, we summarize recent empirical results for strategies in the multi-player
repeated PD games and PGG. On the one hand, a strategy called “moody conditional
cooperation” was observed in experiments based on the multiplayer spatial PD game
[57–61]. The definition of this strategy comprises two main ingredients. The first is
conditional cooperation, i.e. people cooperate more when more of their neighbors
cooperated in the previous round. The second is that the probability that they display
condition cooperation depends on whether they cooperated or defected in the previ-
ous round. If defected, then this player is less likely to cooperate in this round. On the
other hand, conditional cooperative strategies have been widely observed in repeated
PGG experiments, where a conditional cooperator changes his/her contribution in the
next round in the direction of the group average contribution of the current round
[62–66]. Experimental studies have revealed that about half of the individuals in the
repeated PGG can be classified as conditional cooperator [49, 62, 63]. Recent experi-
ments based on PGGwith institutionalized incentives show that this proportion seems
to be independent of the incentive modes. The proportion of individuals displaying
conditional cooperative behavior is stabilized at around 50% in all nine treatments
[66].
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3.3 Separable PD Game

For the repeated PDgame, one of the key assumptions is that the interaction between
a pair of individuals will be repeated for several rounds [2, 4, 67, 68]. In most of
real-world interactions, people are able to stop the interaction with their coplayers.
Some researchers then considered a variant of the repeated PD game, the separable
PD game. In this game, players can choose to keep or stop the interaction after they
know the choices of their coplayers. At the end of each round, all single subjects form
new interaction pairs through random meeting in the next round. Based on individual
self-interest in the PD game, both cooperators and defectors prefer a coplayer who
cooperates. Thus, if players are able to unilaterally terminate the interactions with
their coplayers, then a simple rule will be followed by all individuals: I would like to
keep my opponent if he/she is a cooperator; and if my opponent is a defector, I will
stop the interaction with him/her and seek a new partner instead (see Fig. 3). This
class of conditional dissociation strategies is called “out-for-tat” (OFT) [56, 69–75,
138]. Since OFT means that an individual displaying cooperation (C) will respond to
defection (D) by merely leaving, OFT will not tolerate defection but, unlike TFT, it
does not seek revenge.

Theoretical analysis based on evolutionary game method shows that OFT leads to
the stable coexistence of C and D. Furthermore, when all individuals use OFT, non-
OFT strategies (e.g., AllD, TFT) cannot successfully invade this population [14, 56,
70, 73, 76]. Empirical studies confirmed that most of subjects in separable PD game

Fig. 3 Separable PD game with OFT players. OFT-cooperators and OFT-defectors are marked by blue and
red balls, respectively. At the end of a round, C-D pairs and D-D pairs will be broken since all individuals
immediately stop the interaction with a defector. In a C-C pair, both individuals are willing to continue.
Thus, the C-C pair will be terminated with probabilityw (as in the repeated PD game). All single individuals
will be paired with a new partner through random meeting in the next round
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adopted OFT-like strategies, and the cooperation rate stabilized at about 60% in the
repeated play.

In addition to stop the interaction with the current coplayer, another class of studies
allows abstaining from a game [71, 74, 77, 78], with players choosing between an
outside option (i.e., to be a loner) and the PDgame. In such case, cooperators, defectors
and loners can coexist if the payoff of the outside option is higher than the payoff of
mutual defection. However, replicator dynamics show that voluntary participation
usually does not lead to a stable equilibrium, but to an unending limit cycle [77, 78].

4 Reward and Punishment

Although direct reciprocity provides satisfactory explanations of cooperation in
social dilemma games with repeated interactions, the sustaining of cooperation in
one-shot interaction (or game between strangers) remains a problem [79, 80]. Exam-
ples such as the PD game and PGG (see Sect. 2.1) show that self-interested players
should prefer a free-rider strategy, whereas it is to everyone’s advantage for all play-
ers to contribute [4]. In real-life situations that include this sort of dilemma between
individual rationality and collective advantage, incentives are often used to promote
cooperation, where contributors may be rewarded and free-riders may be punished.
In fact, positive and negative incentives exist not only in human societies but also in
animal behavior [81]. Understanding the consequences of such ‘carrots and sticks’ in
boosting cooperation is a core topic in the economics and management sciences (see
[82–84] for three recent review papers).

4.1 Peer Incentive

Several types of incentives have been proposed to promote cooperation in social
dilemma games. Most of these investigations addressed so-called peer (or decentral-
ized) incentives. In this scenario, players are allowed to reward and/or punish others at
a cost to themselves. A typical social dilemma gamewith peer incentives is a two-stage
game, where in the first stage players play the social dilemma game and in the second
stage they can reward and/or punish their group members based on the result of the
first stage (see Fig. 4a).

The social dilemma game with peer incentives can be simplified as a two-stage
asymmetric game [4, 85, 86]. To show this, we consider a two-player donation game
with peer incentives, where one player is donor and the other is recipient. In the first
stage, the donor has two possible strategies, C and D, and in the second stage, the
recipient has three strategies, no action (No), R (reward), and P (punishment). We
assume that players are pro-social in the sense that they only reward cooperators and
punish defectors. Denote the cost of incentive by CI and the amounts of reward and

123



Game Theory and the Evolution of Cooperation 391

Fig. 4 Peer incentives and institutional incentives. (a) A social dilemma game with peer incentives can be
formalized as a two-stage game. (b) A social dilemma game with institutional incentives can be formalized
as a three-stage game

punishment by R and P, respectively. The payoff matrix of this two-stage game can
be written as

No R P
C
D

(−c, b −c + R, b − CI −c, b
0, 0 0, 0 −P,−CI

)
, (8)

where the rows are the strategies of the donor and columns are the strategies of the
recipient.

It is clear that the defective state (D,No) is a NE, and the cooperative state (C,P)
becomes a NE ifP > c. The subgame perfect NE of this game can be derived by
backward induction. Since the incentive is costly, rational players will not choose R
and P in the second stage. Thus, the subgame perfect NE in this game is same as the
game without peer incentives, i.e., (D,No). Evolutionary game theory analysis based
on replicator dynamics also shows that the cooperative state (C,P) is evolutionarily
unstable in one-shot game [85–94]. However, when subjects may make mistakes in
decision making, intermediate errors can increase cooperation in for games with peer
punishment [16, 95]. Furthermore, if the game is played repeatedly, incentive may
help to enhance the effects of direct reciprocity and indirect reciprocity [4, 85, 86]. In
particular, punishment promotes cooperation better than reward in the case of indirect
reciprocity (i.e., players may know the historical behaviors of their coplayers), where
the cooperative state can be evolutionarily stable.

Laboratory experiments confirmed that peer punishment can curb free-riding in
human populations [96–112]. However, peer punishment suffers from several draw-
backs. First, the use of incentives is costly, which then raises an issue of second-order
free-riding. In fact, the incentive system itself is a common good that can be exploited,
and the use of punishment is individually disadvantageous [99, 112]. Second, pun-
ishment decreases the total welfare. As a result, the average payoff for group with
punishment often less than group without punishment [103, 104]. Finally, punish-

123



392 B.-Y. Zhang, S. Pei

ment often some players abuse sanctioning opportunities by engaging in antisocial
punishment, which harms cooperators [97–99, 106, 107].

In contrast, the effect of peer reward is controversial. Some experimental studies
showed that reward can promote cooperation if the reward-to-cost ratio (i.e., R/C I )
is greater than one. However, given the budget-balanced condition (i.e., R/C I � 1),
peer reward alone is relatively inefficient in promote cooperation [110, 113].

4.2 Institutional Incentive

In the institutional incentive scenario, it is not individuals who reward or punish.
Rather, an institution rewards and punishes individuals based on their contributions.
The use of institutional incentives is a common feature in many parts of human soci-
ety such as government institutions and businesses. It can overcome the problem of
second-order free-riding and avoid antisocial punishment. However, this approach is
more wasteful than peer incentives because subjects have to pay a fee to maintain
the institution even if no one is being rewarded or punished (which can be viewed as
paying for the upkeep of a police force).

A social dilemma game with institutional incentives can be formalized as a three-
stage game. In the first stage, players can decide to pay for the incentive institution. In
the second stage, they play the social dilemma game. In the third stage, the institution
will reward or punish each player based on his/her behaviors in the two-stage game,
where the amount of incentive depends on the total payment in the first stage. In
particular, players do not need to make decisions in the third stage.

We consider an n-person PGGwith institutional incentives [114–122]. For simplic-
ity, we first assume that the institutional incentive is compulsory, where each player
is forced to pay CI in the first stage. Thus, the total amount of incentive is CI n. In the
second stage, they play PGGwith discrete choices. Specifically, each player can decide
whether to contribute a fixed amount c0 knowing that this amount will be multiplied
by r > 1 and divided equally among all n players in the group. If nC is the number
of those players who contribute (i.e. cooperators) and nD the number of those who do
not (i.e. defectors), then the payoffs of a cooperator and a defector are (rcnC)/ n − c
and rcnC/ n, respectively.

In the case of institutional reward (IR), the incentive is shared among the nC coop-
erators. Thus, each cooperator obtains a reward of CI n/nC. In the case of institutional
punishment (IP), each defector analogously receives a punishment of CI n/nD. Payoff
for cooperators and defectors in IR are

uC � rcnC
n

− c − CI +
CI n

nC
,

uD � rcnC
n

− CI , (9)

and in IP are

uC � rcnC
n

− c − CI ,
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uD � rcnC
n

− CI − CI n

nD
. (10)

Theoretical studies based on evolutionary game theory have revealed that the effect
of institutional incentives on cooperation can be understood in terms of the incentive
size [114, 115, 118, 119, 123, 124]. If CI < c

n − rc
n2
, then both reward and punishment

have no effect on promoting cooperation, and selfish players maintain a free-riding
strategy. If CI > c − rc

n , then both reward and punishment compel all players to
cooperate. If c

n − rc
n2

< CI < c− rc
n , then full contribution and free-riding are bistable

under punishment, and reward can cause only the stable coexistence of free-riders
and cooperators. Experimental results are consistent with the theoretical prediction,
where an intermediate size of punishment is sufficient to support high cooperation
level, but reward can maintain stable cooperation only for a large incentive size [66,
113, 125–129].

4.2.1 Compulsory Institution vs Voluntary Institution

In the above model, every player has to pay for the incentive institution before
contributing to the PGG. In fact, this payment can be seen as an entry fee for the
PGG. If the payment is voluntary (e.g., players may choose not to pay for the incentive
institution in the first stage), then the issue of second-order free-riding is raised because
the incentive institution itself is a common good that can be exploited. Previous studies
show that IP with voluntary payment is functional if punishment is also imposed on
second-order free-riders, i.e. subjects who cooperate but do not pay for the institution
should also be punished [121, 127, 129]. By contrast, if IR is budget-balanced, then
rational players will not pay for the institution [94, 123].

Since the entry fee in our model is compulsory, a subsequent question is whether
people will choose such an incentive institution. One experimental study showed that
comparingwith standard PGGor PGGwith peer punishment, people aremore likely to
choose institutional punishment if the institution punishes both first-order and second-
order free-riders [129]. Another experimental study indicated that approximately half
of the subjects would like to pay 20% of their wealth for a reward mechanism before
playing the PGG [130]. These findings suggest that the incentive institution could be
sustainable.

4.2.2 Absolute Incentive vs Relative Incentive

In PD game or PGGwith discrete choices, a reasonable incentive institution should
reward cooperators and punish defectors. However, in PGG with continuous choices,
it is difficult to determine who should be rewarded or punished.

Incentive institutions considered in the previous studies could be roughly classified
into two types. One type is characterized as an absolute incentive institution, where
the institution punishes (or rewards) all individuals whose contribution is less (or
higher) than a predefined threshold [114, 118, 121, 123, 127, 129]. A similar institution
is that the reward (or punishment) amount increases (decreases) with the absolute
contribution, see e.g., Galbiati and Vertova [140] and Putterman et al. [126]. Both
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theoretical and experimental studies indicated that absolute punishment can eliminate
extremely selfish behaviors in a cooperative population [121, 127, 129]. In contrast,
absolute reward is relatively ineffective in moving the equilibrium from the selfish one
to the cooperative one [114, 118].

Another type is characterized as a relative incentive institution, where individuals
who contribute an amount lower than the group average aremore likely to be punished,
and those who contribute higher than the group average are more likely to be rewarded
[66, 115, 125, 128, 131–134]. A similar institution would be that the reward (or
punishment) amount increases (decreases) with the relative contribution, see e.g.,
Falkinger et al. [135]. For relative punishment, a full contribution becomes a Nash
equilibrium if the institution punishes the lowest contributor such that his or her payoff
is slightly lower than that of the second lowest contributor [131]. In contrast, relative
reward can promote cooperation only if lower contributors also have the chance to
win the reward [136].

5 Summary

In this paper, we provide a review of sustaining cooperation in groups of unrelated
individuals from the perspective of game theory.Wemainly focus on twomechanisms,
direct reciprocity and incentives.

Direct reciprocity relies on the repeated interaction. In the framework of direct
reciprocity, a vast amount of strategies can help to promote cooperation. In the repeated
PD game, strategies that can sustain full cooperation including GRIM, TFT, and some
strategies in the set of ZD strategies. However, when subjects may make mistakes in
decision making, the above strategies can no longer sustain cooperation because they
cannot correct mistakes. Evolutionary game analysis shows that successful strategies
in repeated PD with errors are GTFT and WSLS. Finally, when subjects are able to
stop the interaction with their coplayers, OTF performs better than TFT, where anOFT
player responds to defection by breaking the interaction rather than seeking revenge.
However, OFT cannot sustain full cooperation, it leads to the stable coexistence of C
and D. This implies that promoting cooperation in separable PD is a more difficult
issue.

Comparing to direct reciprocity, incentive mechanism can promote cooperation
even in one-shot interaction. Incentive mechanisms can be classified to two classes.
One class is peer (or decentralized) incentives, where players can impose fines or
bonuses on others at a cost to themselves. Another class is institutional (or centralized)
incentives. In this scenario, it is not individuals who reward or punish but rather an
institution that rewards and punishes individuals based on their contributions. Thus,
Institutional incentives canovercome the problemof second-order free-riding,whereas
peer incentives cannot.

Finally, when devising incentive systems, it is important to recognize that the effect
of reward is not equivalent to punishment. Punishment can eliminate extremely selfish
behaviors in a cooperative population but it does not work for the selfish population.
In contrast, rewards alone are relatively ineffective in moving the equilibrium from
the selfish one to the cooperative one. Finally, combining rewards and punishments
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has a very strong effect. Rewards can act as a catalyzer if the population consists of a
majority of defectors.
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