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Abstract
In this paper, we investigate online scheduling problems on two parallel identical
machines under a grade of service provision with makespan as the objective function.
The jobs arrive over time and each job can be scheduled only when it has already
been arrived. We consider three different versions: (i) the two machines cannot be
idle at the same time until all arrived jobs have been processed; (ii) further to the first
problem, jobs are processed on a first-come, first-serviced basis; (iii) each job must
be assigned to one of the two machines as soon as it arrives. Respectively for three
online scheduling problems, optimal online algorithms are proposed with competitive
ratio (

√
5 + 1)/2, (

√
5 + 1)/2 and 5/3.
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1 Introduction

Enterprise competition is becoming more and more fierce; lots of papers have
studied the supply chain management [1]. Meanwhile, production and manufactur-
ing become most important and complex. Parallel machine scheduling is one of the
most common scheduling problems, which has been studied widely since 50 years
ago [2]. Quite rich studies have been published for the offline scheduling problem
on parallel machines, but rather few researches for the online scheduling problems.
For the sake of simplicity, we use the 3-field notation of Graham et al. [3]. To evaluate
the performance of an online algorithm, researchers use the competitive ratio of this
algorithm, which is obtained by makespan of the online schedule divided by the min-
imum makespan of the schedule generated by the offline version of the problem, e.g.
cA � maxI (CA

I /C∗
I ), where c

A,CA
I andC∗

I namely the competitive ratio of algorithm
A, the makespan by algorithm A and the optimal makespan for instance I [2, 4–11].

Machine eligibility constraints are very common in the parallel machine scheduling
and it is a common practice in any service industry to provide differentiated services
to the customers based on their entitle privileges, i.e., jobs are assigned according to
their grade of services (GoS) levels [4]. GoS means that customers with a higher level
will receive better services by assigning a customer (job) to a server only when the
GoS of the customer is no less than the GoS of the server. A few researches have
been published for online and semi-online scheduling (see “Appendix A”) on parallel
machines under a grade of service provision. Lee et al. [2] provided a survey of online
scheduling in parallel machine environments with machine eligibility constraints and
the makespan as objective function.

When dealing with online scheduling problems on parallel machines, there are two
basic online scheduling paradigms, namely online over list and online over time. For
the version of online over list, lots of papers have been published [4–11]. Both Park
et al. [4] and Jiang et al. [5] gave optimal algorithms with competitive ratio 5/3 and
3/2 for the online (P2

∣
∣online, Mj (GoS)|Cmax ) and semi-online (for explanation,

see “Appendix B”) problems. Wu et al. [6] proposed two optimal algorithms for two
different semi-online versions on two machines: The optimal offline value of the
instance is known in advance or the largest processing time of all jobs is known in
advance. Lu and Liu [12] studied the semi-online scheduling on two uniformmachines
under a GoS provision. The authors proposed optimal algorithms for three variants,
where the optimal makespan, the total size of jobs, and the largest job size are known
in advance, respectively.

A great amount of work has been done for the version of online over list, but very
few researches have been published for the second version, despite the fact that it
is more common and more realistic in our lives. For the online scheduling problem
on parallel machines Pm

∣
∣online, r j |Cmax , Chen and Vestjens [13] proved that the

algorithm of LPT has 3/2-competitive performance and the best ratio is 1.347; and
Noga and Seiden [14] proposed an optimal algorithm for the two machine schedul-
ing problem P2

∣
∣online, r j |Cmax with competitive ratio 1.382. When preemption is

allowed, Hong and Leung [15] provided an optimal algorithm for the problem P2
∣
∣online, r j , pmtn|Cmax with a competitive ratio of 1. Lee et al. [16] proposed opti-
mal algorithms for two problems concerning online scheduling of equal-length jobs on
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twomachines subject to arbitrary eligibility constraints andGoS eligibility constraints,
i.e., P2

∣
∣online, r j , Mj , p j � p|Cmax and P2

∣
∣online, r j , Mj (GoS), p j � p|Cmax .

Xu et al. [17] proposed an optimal algorithm for the online scheduling problem
P2

∣
∣r j , Mj (GoS), online|Cmax with competitive ratio 1.555 0. Li and Zhang [18]

considered two scheduling problems Q2
∣
∣r j , online|Cmax and Pm

∣
∣r j , online|Cmax

and proposed better algorithms for each of them. There are also some papers for
parallel-batch machines scheduling. Recently, Yuan et al. [19] studied online schedul-
ing on two uniform parallel-batch machines to minimize makespan. Cai and Liu
[20] proposed heuristic algorithms for parallel machine scheduling problem Pm
∣
∣r j , online, Mj (GoS)|Cmax .

In this paper, we consider three different versions for the online scheduling problem
on two parallel identical machines under a grade of service provision (online over
time), which have never been studied before. The first one is that we require the two
machines cannot be idle at the same time until all arrived jobs have already completed.
This constraint is more reasonable for real lives, e.g., the banks and the barber shop. It
is because customer experience comes first and the persons with higher grade probably
do not have a better experience than the ones with lower grade. Another important
reason is that the average competitive ratio is usually lower. At the same time it usually
adds the total completion time (the sum of two machines’ completion times) when
we let some customer wait while the two servers are both idle. The second problem is
that we must assign jobs with the same GoS (1 or 2) to the two machines according to
their arriving times, i.e., job i will be processed earlier than job j when job i arrives
earlier and they have the same GoS, which is more equitable as it satisfies the method
of FCFS (first-come-first-service). The third problem is that we must assign a job to
its available machine as soon as it arrives. Respectively for the three problems, we
propose algorithms which are proved to have optimal competitive ratios.

The rest of this paper is organized as follows: in Sect. 2, we give a detailed descrip-
tion of the first problem; then the best possible performance of any online algorithm is
analyzed at the last of this section; we propose an online algorithm and it is provedwith
the best competitive ratio. In Sect. 3 (Sect. 4), the second (third) problem is studied
with the same structure as Sect. 2. Finally, we give the conclusions and future research
in Sect. 5.

2 Optimal Algorithm for the First Problem

In this section, firstly we describe the first problem; then, the lower bound of this
problem is analyzed; at last, we propose an online algorithm, which is proved to be
optimal.

2.1 Problem Description

The considered online scheduling problem can be described as: there are n different
jobs Ji (i � 1, · · · , n), which have to be processed on one of the two parallel machines
Mi (i � 1, 2) without preemption. The GoS of machine Mi is i . Jobs are arrived over
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time with GoS (1 or 2). The two machines can be idle at the same time only when all
the jobs arrived are completed.

TheGoS of Job Ji is denoted as gi , which is 1 if the jobmust be processed on the first
machine M1 or 2 if the job can be processed on both the twomachines. The processing
(arriving) time of job Ji is pi (ri ). The constraint that the two machines can be idle at
the same time only when all the jobs arrived are completed is denoted as no-delay1.
The maximum complete time (makespan) is denoted as Cmax. Then, the considered
problem in this paper can be described as P2|online, ri , M(GoS), no-delay1|Cmax .
A job which is to be processed can be denoted by (J , r , p, g). For example, (4, 3,
7, 1) represents that it is job J4 with r4 � 3, p4 � 7, g4 � 1.

To get the minimum makespan, we need to decide the assignment of each job after
it arrives. The schedule can be seen as the partition of J into two sets, denoted by
S1 and S2, where S1 and S2 contain jobs indices assigned to machine M1 and M2
respectively.

2.2 The Lower Bound of the First Problem

In this subsection, we give the lower bound of any online algorithm for the problem.

Theorem 1 Any online algorithm for the first problem has a competitive ratio at least
(
√
5 + 1)/2.

Proof Note thatλ � (
√
5−1)/2,C∗ represents the optimal solution andCA represents

the solution of an online algorithm. At time t � 0, we generate J1 arrives with p1 � 1
and g1 � 2. If job J1 is assigned to the first machine, we generate J2 with p2 � 1,
r2 � ε(ε sufficiently small) and g2 � 1, then the competitive ratioCA/C∗ ≈ 2/1 � 2.
If J1 be assigned to machine M2, we generate J3 with p3 � 1 + λ, r3 � ε and g3 � 2,
the competitive ratio CA/C∗ � (1+λ)/1 � 1+λ if job J3 is assigned to machine M2;
if J3 is assigned to machine M1 at time a(a<1), we generate J4 with p4 � 1 + λ − a,
r4 � a + ε and g4 � 1, the competitive ratio CA/C∗ ≈ (2 +λ)/(1 +λ) � 1+λ. Above
all, we can conclude that the lower bound is at least 1 + λ � (

√
5 + 1)/2.

2.3 An Online Algorithm of the Problem

Here,we showanonline algorithmwhich is proved to have the optimal performance.
In order to describe the algorithm (or for the algorithm Alg_P2 and Alg_P3) clearly,
we make some parameters in Table 1, which will be used later.

First we give the update algorithm UA_P1 for decision moment. Here Ci is the
time machine Mi become idle. Then, the online algorithm Alg_P1 is proposed based
on UA_P1.

Algorithm UA_P1

Step 1 Let t be the current decision time, Ci be the time machine Mi become idle
after the decision at time t , A1(t), A2(t) be updated after the decision at time
t(A1(t) must be empty after updated).

Step 2 If A2(t) � ∅ and at least one of the twomachines is idle, the decisionmoment
is the arriving time of the next job (if all jobs have arrived, stop the algorithm);
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Table 1 Parameters used in the proposed algorithm

Parameters Definitions Values

t The decision time A job’s arriving time or completion time
A1(t) The ordered set of jobs with GoS 1 which

aren’t processed on machine M1 before
time t

The sequence of A1(t) is according to the
rule of ERT (earliest releasing time first)

A2(t) The ordered set of jobs with GoS 2 which
aren’t processed before time t

The sequence of A2(t) is according to the
rule of LPT (longest processing time
first)

S(t) The maximum time that one of the two
machines is idle before time t

The larger idle time before time t , 0 if the
two machines are always busy

|A2(t)| The number of elements in A2(t) Nonnegative integers

J tl The last job of A2(t) A specified job

L2,t The complete time of machine M2 when it
finishes all the assigned jobs before time
t

A time when M2 finishes its jobs which are
assigned before time t

C A
i The maximum completion time of machine

Mi using the proposed algorithm
A time when Mi finishes all jobs assigned
to it

Step 3 Else if both A1(t) and A2(t) do not decrease after the decision at time t, the
decision moment is the smaller one of the arriving time of the next job and
C2 (if all jobs have arrived, stop the algorithm).

Step 4 Else the decision moment is the smaller time of time min(C1, C2) and the
arriving time of the next job.

Algorithm Alg_P1

Step 1 Set the arriving time of the first job is zero, t :� 0, A1(t) :� ∅, A2(t) :� ∅,
J tl :� ∅, S(t) :� 0.

Step 2 Update A1(t), A2(t), t and S(t) in turn. Then update A1(t), A2(t) again when
there are new jobs arriving.

Step 3 If the two machines are both busy at time t and A1(t) � ∅, go to Step 2. Else
if A1(t) ∪ A2(t) � ∅ and there exist jobs arriving after t , go to Step 2; once
all the jobs are scheduled, end the algorithm.

Step 4 Else if A1(t) �� ∅, let all jobs of A1(t) be assigned to machine M1, go to Step
2.

Step 5 Else if A2(t) �� ∅ andmachine M2 is idle, let the first job of A2(t) be assigned
to machine M2, go to Step 2.

Step 6 Else if A1(t) � ∅ and machine M1 is idle:

6.1. If |A2(t)| � 2, let the second job of A2(t) be assigned to machine M1.
6.2. Else |A2(t)| � 1, assign job J tl to machine M1 if ptl /(L2,t − S(t)) � (1+√

5)/2. Go to Step 2.
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2.4 Competitive Ratio of the Proposed Algorithm

Firstly, when an instance is scheduled by the proposed algorithm and the two
machines are both idle at a time interval [a, b], then we only need to consider the
jobs arriving after time b by the following lemma.

Lemma 1 For the proposed algorithm, if a jobs arrives at time t and all the jobs
arrive before time t have been completed before t , then this algorithm has the optimal
solution if it has the best scheduling decision for jobs arriving after time t (including
time t).

Proof For any optimal schedule of any instance, as a job arrives at time t and all other
jobs arriving before time t are completed before time t , it is obviously that the two
machines are idle at time t and the jobs arriving after time t cannot be processed before
time t by the optimal algorithm.

We supposed that the two machines cannot be idle at the same time interval in
the following analysis. Then, we give a lemma which shows that the total remaining
processing time of jobs with GoS 1 and the remaining processing time of each job
with GoS 2 are not too big. According to Lemma 1, we just need to prove the case that
the two machines cannot be idle at the same time until all jobs are finished (Fig. 1).

Lemma 2 For any instance I, the sum of total remaining processing time of unpro-
cessed jobs with GoS 1 and the remaining processing time of the processing job on
machineM1 at time C∗ is no more than λC∗ at time C∗; the remaining processing time
of each jobwithGoS 2at timeC∗ is nomore thanλC∗ at timeC∗. Hereλ � (

√
5−1)/2.

Proof Without loss of generality, let C∗ � 1. As the optimal offline algorithm has
makespan 1, we denote the processing job on machine M1 and the unprocessed jobs
with GoS 1 is Ji (i � 1, 2, · · · , s), the total remaining processing time of these jobs is
p′
1+

∑s
i�2 pi (p

′
1 represents the remaining processing time of J1). If p′

1+
∑s

i�2 pi > λ,
then there must exist a job Jk which is processed on machine M1 with gk � 2 and
pk � p′

1 +
∑s

i�2 pi > λ. If the starting time of Jk is t , there must exist time t0 that the

Fig. 1 Illustration for Lemma 2
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two machines are both busy at time interval [t0, t0 + 1− λ] according to Step 6 of the
algorithm. The total processing time of two machines is more than 1− λ + 1 + λ � 2,
which contradicts the fact that makespan is 1.

For the remaining processing job J1′ with GoS 2, if J1′ is processing on machine
M1 in time 1, its remaining processing time is no more than λ according to the first
part of proving. There are also two remaining cases:

Case 1′ J1′ is processing on machine M2 at time 1.

Let the remaining processing time of J1′ be x(its total processing time is p1′ ).
Suppose that x > λ. Machine M2 must be busy in time interval [1 − p1′, 1] and
machine M1 must be busy in time interval [1 − p1′, 1 − p1′ + x]. Then we have
1 + x + x � 2, e.g. x � 1/2, which is contracted with the assumption.

Case 2′ J1′ is unprocessed at time 1.

With the same analysis with Case 1′, we can obtain p1′ � λ.
Using Lemma 2, we can get the competitive ratio of the proposed algorithm.

Theorem 2 The competitive ratio of Algorithm Alg_P 1 is at most 1 + λ.

Proof Without loss of generality, let C∗ � 1. There are two cases:

Case 1 CA
1 � CA

2 , e.g. C
A � CA

2 . If there just exists one job on machine M2 which
isn’t completed at time 1, we have CA � 1 + λ according to Lemma 2. When there
are at least two jobs processed on machine M2, let the last job be Jk and CA

2 > 1 + λ.
As C∗ � 1, the arriving time of Jk is before time 1 − pk . Machine M2 must be busy
between time 1− pk and time CA

2 − pk according to Step 5 of Algorithm Alg_P1 and
machine M1 must be busy between time 1 − pk and time CA

2 − pk . Then, the total
processing time of two machines is at least CA

2 + (CA
2 − 1) > 2, which contract with

the fact that C∗ � 1.

Case 2 CA
1 > CA

2 , e.g.C
A � CA

1 . If the last job Jk which is processed on machine M1
has GoS 1, we have CA

1 � 1+λ according to Step 4 of Algorithm Alg_P1 and Lemma
2. If the GoS of Jk is 2 and CA

1 > 1 + λ, machine M2 must be busy between time
1− pk and time CA

1 − pk as the arriving time of Jk is before time 1− pk . Machine M1
must be busy between time 1 − pk and time CA

1 − pk according to Step 6. Then, the
total processing time of two machines is at least CA

1 + CA
1 − pk > 2, which contract

with the fact that C∗ � 1.

3 Optimal Algorithm for the Second Scheduling Problem

In this section, with the same contracture as Sect. 2, firstly we describe the second
scheduling problem; then, the lower bound of this problem is analyzed; at last, we
propose an online algorithm, which is proved to be optimal.
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3.1 Problem Description

The considered problem can be described as: there are n different jobs Ji (i �
1, · · · , n),which have to be processed onone of the twoparallelmachinesMi (i � 1, 2)
without preemption. The GoS of machine Mi is i . Jobs are arrived over time with GoS
(1 or 2). The two machines can be idle at the same time only when all the jobs arrived
are completed. The jobs will be processed on a first-come-first-serviced (FCFS) basis.
The notations are the same with Sect. 2.1. Then, the second problem can be described
as P2|online, ri , M(GoS), no-delay1, FIFS|Cmax . To get the minimummakespan,
we need to decide the assignment of each job after it arrives. As the second problem
add a new requirement FCFS compared with the first one, with the same analysis as
Theorem 1, we can obtain the lower bound of the second problem.

Theorem 3 Any online algorithm for the second problem has a competitive ratio of at
least (

√
5 + 1)/2.

3.2 An Online Algorithm of the Second Problem

In this subsection, an online algorithm is proposed based on the algorithm of
Sect. 2.3. The notations are the same as subsection 2.3 except A2(t), which is defined
as: The set of jobs with GoS 2 which are not processed on the two machines before
time t , the sequence of A2(t) is according to the rule of ERT (earliest releasing time
first).

The proposed algorithm is almost the same as the algorithm in subsection 2.3 except
Step 6.

Algorithm Alg_P2

Step 1 Set the arriving time of the first job is zero, t :� 0, A1(t) :� ∅, A2(t) � ∅,
J tl :� ∅ and S(t) :� 0.

Step 2 Update A1(t), A2(t), t and S(t) in turn. Then update A1(t), A2(t) again when
there are new jobs arriving.

Step 3 If the two machines are both busy at time t and A1(t) � ∅, go to Step 2. Else
if A1(t) ∪ A2(t) � ∅ and there exist jobs arriving after t , go to Step 2; once
all the jobs are scheduled, end the algorithm.

Step 4 Else if A1(t) �� ∅, let all jobs of A1(t) be assigned to machine M1, go to Step
2.

Step 5 Else if A2(t) �� ∅ andmachine M2 is idle, let the first job of A2(t) be assigned
to machine M2, go to Step 2.

Step 6 Else if A1(t) � ∅ and machine M1 is idle:

6.1. If p1a/(L2,t +
∑

i∈I ,i ��1 p
i
a − S(t)) � (

√
5 + 1)/2, assign J 1a to machine

M1. Here pia is the processing time of J ia which is the i-th element of
set A2(t). Go to Step 2.
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3.3 Competitive Ratio of the Proposed Algorithm

It is obviously that Lemma 1 is also correct for the second problem. The following
analysis supposes that the two machines won’t be both idle at the same time until all
jobs are completed.

Lemma 3 If Jn is processed on machine M2, we have C/C∗ � (
√
5 + 1)/2.

Proof Without loss of generality, let C∗ � 1. Note that λ � (
√
5 − 1)/2. As Jn is

the last job on machine M2, then Sn � C − pn . Suppose that C > 1 + λ, we have
rn � 1 − pn and machine M2 must be busy between time interval [1 − pn,C−pn].
If machine M1 is busy between time interval [1 − pn, 1 + λ2 − pn], then the total
processing time of the two machines satisfies λ2 +C > 2. We let the first idle time of
machine M1 after time (1 − pn) is 1 − pn + x (0 � x < λ2), so A1(1 − pn + x) � ∅.
Let the processing job at time 1 − pn + x on machine M2 be Ja and the first job
of A2(1 − pn + x)(after assigning job Ja)be Jk . If Sk < Ca , then Jk is processed
on machine M1 and pk > (C − 1 + pn)/λ � 1 according to Step 6 of the proposed
algorithm. Then, we can obtain that Sk � Ca . If Jn and Jk are the same job, then
pn > (C − 1)/λ � 1. If Jn and Jk are different jobs, then pk > (C − 1 + pn − pk)/λ,
i.e. pk > λ2. Then, we can obtain machine M1 is busy between time interval [Sk,Ck],
so the total processing time of the two machines is more than 2. So we can conclude
that C � (1 + λ)C∗.

Lemma 4 If Jn is processed on machine M1, we have C/C∗ � (
√
5 + 1)/2.

Proof Without loss of generality, let C∗ � 1. Note that λ � (
√
5 − 1)/2. Suppose

that C > 1 + λ. There are two cases:

Case 1 The GoS of Jn is 2.

We haveC−L � pn , somachineM2 must be busy at time interval [1− pn,C− pn].
If machine M1 is also busy at the above time interval, it can be easily obtained that the
total processing time of the two machines is more than 2. We let the first idle time of
machine M1 after time (1− pn) be 1− pn + x . Let the processing job on machine M2
at time 1− pn + x be Ja and the first job of A2(1− pn + x) (after assigning job Ja) be
Jk . If Jn and Jk are the same job, we can obtain that pn > (C − 1)/λ � 1. If Jn and
Jk are different jobs, then pk > (C − 1 + pn − pk)/λ, i.e. pk > λ2. If Jk is processed
on machine M1, the total processing time of the two machines is more than 2, so Jk is
processed on machine M2. Then, we have machine M1 is busy between time interval
[Sk,Ck], which can also result that the total processing time of the two machines is
more than 2.

Case 2 The GoS of Jn is 1.

If there are no jobswithGoS 2 processed onmachineM1, we haveC � C∗ � 1. Let
the last job with GoS 2 processed on machine M1 be Jk , so C −C∗ � pk , i.e.pk > λ.
According to Step 6, we can obtain that the total processing time of the two machines
is more than 2.
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Theorem 4 The competition ratio of the proposed algorithm for the first problem is
(
√
5 + 1)/2.

Proof Combing Lemmas 3 and 4.

4 Optimal Algorithm for the Third Problem

In this section, with the same contracture as Sects. 2 and 3, firstly we describe the
third scheduling problem; then, the lower bound of this problem is analyzed; at last,
we propose an online algorithm, which is proved to be optimal.

4.1 Problem Description

The considered online scheduling problem can be described as: there are n different
jobs Ji (i � 1, · · · , n) which have to be processed on one of the two parallel machines
Mi (i � 1, 2) without preemption. The GoS of machine Mi is i . Jobs are arrived over
time with GoS (1 or 2). A job must be assigned to one of the two machines as soon
as it arrives, which can be denoted as no− delay2. Then, we can describe the second
problem as P2|online, ri , M(GoS), no − delay2|Cmax . With the same mark as
Sect. 2.1, a job which is to be processed can be denoted by (J , r , p, g). To get
the minimum makespan, we need to decide the assignment of each job as soon as it
arrives.

4.2 The Lower Bound of the Third Problem

In this subsection, we give the lower bound of any online algorithm for the second
problem.

Theorem 5 . Any online algorithm for the second problem has a competitive ratio of
at least 5/3.

Proof C∗ represents the optimal solution and CA represents the solution of an online
algorithm. At time t � 0, J1 arrives with p1 � 1 and g1 � 2. If J1 is scheduled on
machine M1, we generate J2 with p2 � 1, g2 � 1 and r2 � ε(sufficiently small),
and its competitive ratio is CA/C∗ ≈ 2/1 � 2. If J1 is scheduled on machine M2,
we generate J3 with p3 � 1, g3 � 2 and r3 � ε. With the same analysis, J3 should
be scheduled to machine M1(otherwise its competitive ratio is 2 when scheduled to
machine M2). We generate J4 with p4 � 1, g4 � 2 and r4 � 2ε. If J4 is scheduled to
machine M1, we generate J5 with p5 � 3, g5 � 1 and r5 � 3ε, which has competitive
ratio CA/C∗ ≈ 5/3. If J4 is scheduled to machine M2, we generate J6 with p6 � 3,
g6 � 2 and r5 � 3ε. If J6 is scheduled to machine M2, it has competitive ratio
CA/C∗ ≈ 5/3. If J6 is scheduled to machine M1, we generate J7 with p7 � 6, g7 � 1
and r5 � 4ε, which has competitive ratio CA/C∗ ≈ 10/6 � 5/3.
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4.3 An Online Algorithm for the Third Problem

Here, we show an online algorithmwhich is proved to have the optimal competitive
ratio. The notations are almost the same with Sect. 2.3 except that Ai (t) does not need
to be sequenced. The decision moment is the arriving time of each job.

Algorithm Alg_P3

Step 1 Set the arriving time of the first job is zero, t :� 0, A1(t) :� ∅, A2(t) � ∅,
J tl :� ∅, S(t) :� 0, CA

1 :� 0, CA
2 :� 0.

Step 2 Update t , A2(t), A1(t) and S(t) in turn.
Step 3 If A1(t) �� ∅, put all jobs in A1(t) to machine M1 and update CA

1 .
Step 4 While A2(t) �� ∅

Step 5 Pick the first job Jk in A2(t) and delete it from A2(t).
Step 6 If CA

1 � CA
2 or machine M2 is idle or CA

1 − S(t) + pt > 2(CA
2 − S(t)), put Jk

to machine M2 and update CA
2 .

Step 7 Else, put Jk to machine M1 and update CA
1 .

Step 8 end
Step 9 Go to Step 2 until all jobs are scheduled.

4.4 Competitive Ratio of the Proposed Algorithm

It is apparently that Lemma 1 is also correct for the third problem, so we suppose
that the two machines won’t be both idle at the same time interval. To simplify the
analysis, Lemma 5 is used to limit the range of instances.

Lemma 5 If the competitive ratio of Algorithm Alg_P3 is α when we consider all
instances with the condition that there is at most one job arrived at any time, its
competitive ratio must be α for all instance (without the condition).

Proof For any instance I , we add iεk to ri , i � 1, 2 · · · , n, and εk → 0, k → ∞.
When k → ∞, the new instance Ik satisfies the condition that there is at most one job
arrived at any time. It is obviously that Lemma 5 is correct.

For any instance (the following analysis just considers the instances with the above
condition), we cannot have the structure the jobs with GoS 1 are processed before the
jobs with GoS 2 after time C∗ on machine M1. The following lemma just considers
the jobs on machine M2.

Lemma 6 For any instance I , the remaining processing time of each job on machine
M2 at time C∗ is no more than 2C∗/3 at time C∗.

Proof Without loss of generality, let C∗ � 1. For any instance I , suppose that the
remaining processing time (p

′
k) of Jk on machine M2 at time C∗ is more than 2/3 at

time 1. As rk � 1 − pk and the starting time of Jk is Sk > 5/3 − pk , then the two
machines must be both busy at time interval [1 − pk, 4/3 − pk] according to Steps
6 and 7. Then, we get the total processing time of all jobs must be more than 2, i.e.
CA
2 + 1/3 > 2, which contract with the fact that C∗ � 1.
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Then, the competitive ratio of Algorithm Alg_P3 is proved to be 5/3 by Theorem 6.

Theorem 6 The competitive ratio of Algorithm Alg_P3 is at most 5/3 for the third
problem.

Proof Let C∗ � 1. There are two cases:

Case 1 CA
1 � CA

2 � CA.

We denote the last completed job as Jl . If there is only an uncompleted job on
machine M2 at time 1, we have CA � 5/3 according to Lemma 6. When there are at
least two uncompleted jobs on machine M2 at time 1, suppose that CA

2 > 5/3. As
rl � 1− pl and the starting time of Jl isCA

2 − pl , we have [1− pl , 4/3− pl ] according
to Steps 6 and 7 of Algorithm Alg_P3. Then, we get the total processing time of all
jobs must be more than 2, i.e.CA

2 +1/3 > 2, which contract with the fact that C∗ � 1.

Case 2 CA
2 < CA

1 � CA.

Let the last job processed on machine M1 be Jl . If the GoS of Jl is 2 andCA
1 > 5/3,

we can conclude that machine M1 and M2 are both busy at time interval [1− pl ,CA
1 −

pl ]. Then, we get the total processing time of all jobs must be more than 2, i.e.
sum � CA

1 + 2/3 > 2, which contract with the fact that C∗ � 1. If the GoS of Jl is
1 and CA

1 > 5/3, machine M1 processes jobs with GoS 2 with total processing time
more than 2/3 (put these jobs to set B). For the first processed job in set B, denoted
as J1, machine M2 must process jobs with total processing time at least p1/2. For the
second processed job in set B, if machine M2 is busy at time interval [S1, S2](Si is the
starting time of Ji ), then the total processing time of machine M2 is at least (p1+ p2)/2
according to Steps 6 and 7; else, the total processing time is at least the sum of two
parts, i.e. (p1 + p2)/2. Then, we obtain that the total processing time of machine M2
is at least 1/3. As the processing time that we compute on machine M2 makes sure
that the two machines are both busy, the total processing time of all jobs must be more
than 2, i.e. sum � CA

1 + 1/3 > 2, which contract with the fact that C∗ � 1.

5 Conclusion and Future Research

In this paper, we investigate three online scheduling problems on two parallel iden-
tical machines under a grade of service provision. The jobs arrive over time in all
the three problems. The first problem requires that the two machines cannot be idle
at the same time until all arrived jobs have been processed, and the second problem
further requires that jobs are processed by the rule of FCFS, while the third problem
has the requirement that each job must be assigned to one of the two machines as
soon as it arrives. We propose optimal algorithms for all the three problems. The three
algorithms and the analysis are very novel and simple.

The future research mainly includes two parts: (1) the algorithm designing can be
used for both two types of online scheduling problem: over time or over list; (2) the
proving method can be used to analysis the competitive ratio of online scheduling
problem.
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Appendix A: Notations

In “Appendix A”, some common notations in this article are introduced in detail,
especially notations in the section of introduction.

α|β|γ : the 3-field notation proposed by Graham et al. [2]. This notation can
uniquely characterize a scheduling problem. α represents the machine environment,
which contains only one item. β represents processing features and constraints, etc.
γ describes minimization goal. In this paper, α includes the following situations:

Pm m parallel machines. Here m machines have the same speed. m � 2 means
there are two available machines;

Qm m uniform machines. Here m machines have the different speed. m � 2
means there are two available machines;

β field may include multiple processing features and constraints. In this paper,
we use the following notations;

online represents that each job information is known only after it arrivals, which is
the antonym of offline. Semi-online means that some information is known
such asmaximum processing time of all jobs. Semi-online scheduling need to
add the additional information in β field such as using max when maximum
processing time of all jobs is known in advance;

Mj machine eligibility constraints, i.e., not all machines can process job j . It
means that each job must be processed in some machines. Mj (GoS) is a
special case of Mj , which means that a job can only be processed in the
machine whose grade is not higher than the its grade;

r j release time. It means that a job j cannot be processed before time r j ;
pmtn preemption is allowed, which means that the jobs can be rescheduled to other

machines even when they have not been finished;
γ is used to describe the minimizing objectives. In this paper, only makespan

is involved;
Cmax makespan, its definition is max(C1,C2, · · · ,Cn).

Appendix B: Competitive Ratios of Online Scheduling

In “Appendix B”, wemainly introduce the research situation of the related problems
in this paper (online over times and not batch scheduling).

Scheduling problem Reference Competitive ratio Best ratio?

P2
∣
∣online, r j , Mj , p j � p|Cmax [15] 1.618 0 Yes

P2
∣
∣online, r j , Mj (GoS), p j � p|Cmax [15] 1.414 2 Yes

P2
∣
∣online, r j , Mj (GoS)|Cmax [16] 1.555 0 Yes

Q2
∣
∣r j , online|Cmax [17] 1.618 0 No

Pm
∣
∣r j , online|Cmax [17] 1.359 6 No

P2
∣
∣online, r j |Cmax [13] 1.382 Yes

P2
∣
∣online, r j , pmtn|Cmax [14] 1 Yes
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