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Abstract
Distributionally robust optimization is a dominant paradigm for decision-making
problems where the distribution of random variables is unknown. We investigate a
distributionally robust optimization problem with ambiguities in the objective func-
tion and countably infinite constraints. The ambiguity set is defined as a Wasserstein
ball centered at the empirical distribution. Based on the concentration inequality of
Wasserstein distance, we establish the asymptotic convergence property of the data-
driven distributionally robust optimization problem when the sample size goes to
infinity. We show that with probability 1, the optimal value and the optimal solu-
tion set of the data-driven distributionally robust problem converge to those of the
stochastic optimization problem with true distribution. Finally, we provide numerical
evidences for the established theoretical results.
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1 Introduction

Stochastic programming is a useful decision-making paradigm for dealing with
optimization problems under parameter uncertainty [1]. For themodeling or analyzing
of stochastic programming problems, it may be essential to take into account multiple
criteria [2,3]. To deal with this issue, the decision model may involve infinitely many
constraints. For example, the stochastic optimizationmodelwith stochastic dominance
constraints proposed in [4,5] is a semi-infinite constrained stochastic programming
problem. One way to handle the semi-infinite constraints is to view them as a robust
risk measure constraint and use tractable risk measures to approximate it [6]. [7]
utilized the sample average approximation method to solve a stochastic programming
problem with second-order stochastic dominance constraints.

Classical stochastic programming is sometimes questioned in reality, because the
true distribution of random parameters cannot be precisely known. An alternative
modeling scheme is the distributionally robust optimization, where one considers
the worst-case expectation instead of the expectation under the true distribution. The
worst-case expectation is taken over an ambiguity set, which is a collection of all
possible probability distributions characterized by specific known properties. Here, the
true distribution is supposed to be in the ambiguity set (at least with a high confidence
level). Distributionally robust optimization was first introduced in the seminal works
[8,9] and has developed rapidly in the last decade [10,11].

Different ambiguity sets have been proposed in the literature. The following two
types of ambiguity sets have been widely adopted. Moment-based ambiguity sets
contain distributions characterized by certain moment information. [12] considered
an ambiguity set with known variance or covariance matrix and known bounds on the
mean value. [11] studied an ambiguity set based on support and moment information
obtained from samples. [13] developed a unified framework where the ambiguity set
is based on known mean and nested cones. [14] studied a robust two-stage stochastic
linear programming model with mean-CVaR recourse under the moment ambiguity
set. [15] investigated the approximation scheme for distributionally robust stochastic
dominance constrained problems under a moment-based ambiguity set, which has
infinitely many constraints. An alternative method for specifying the ambiguity set
is to contain all the distributions close to a nominal distribution under a prescribed
probabilitymetric. [16] considered an ambiguous chance-constrained problemwith an
ambiguity set determined by the Prohorovmetric.Wasserstein distance was adopted in
[17,18] to construct ambiguity sets. The phi-divergence family, such as the Kullback–
Leibler divergence, total variation, and χ2-divergence, has also been used to define
ambiguity sets [10,19,20].

The Wasserstein distance-based ambiguity set has attracted much attention among
all these ambiguity sets [18,21,22]. It has the following three advantages: firstly,

123

526



Data-driven Stochastic Programming with Distributionally…

Wasserstein distance intuitively describes the minimum cost to move from one mass
distribution to another [23]; secondly, there are some probabilistic guarantees on the
a priori estimation such that the true distribution belongs to the Wasserstein ambi-
guity set [24]; thirdly, [22] established the out-of-sample performance guarantee for
stochastic optimization problems under the Wasserstein ambiguity set. Therefore, in
this paper, we consider the Wasserstein distance-based ambiguity set centered at the
empirical distribution, which is constituted by N historical i.i.d. samples. Different
from most of the current models, we consider distributionally robust counterparts in
both the objective and the countably infinite constraints. We discuss the asymptotic
convergence property of the data-driven distributionally robust semi-infinite optimiza-
tion problem when the sample size goes to infinity.

The main differences between our work and that in [22] lie in three aspects. Firstly,
we consider the Wasserstein distance with any order p � 1, while [22] only inves-
tigated the case p = 1. Secondly, the distributionally robust optimization problem
we consider involves infinite constraints, which includes a broad class of problems
such as the stochastic dominance constrained problem. Infinite constraints naturally
increase the difficulties in analyzing asymptotic convergence properties. Finally, the
convergence of the optimal solution set is also examined in this paper, which is not
considered in [22].

We use the following notations. The m-dimensional random vector ξ is governed
by a probability distribution P. LetΞ ⊂ R

m be the support of ξ . The N -fold Cartesian
product of distribution P on Ξ is denoted by PN , which is supported on the Cartesian
product space Ξ N . Pp(Ξ) denotes the collection of probability distributions Q sup-
ported on Ξ with

∫
Ξ

‖ξ‖pQ(dξ) < ∞. For a fixed distribution Q ∈ Pp(Ξ), L1(Q)

denotes the space of all Q-integrable functions. The distance between two sets A and
B is defined as D(A, B) := supx∈A dist(x, B) = supx∈A inf y∈B ‖x − y‖.

2 Data-driven Distributionally Robust Optimization Under
Wasserstein Distance

We consider the following infinitely constrained stochastic optimization model

(SP) min
z∈Z0

f (z) := EP[ f (z, ξ)]
s.t. EP[h(η, z, ξ)] � 0, ∀η ∈ Γ,

where f (z, ξ) : R
n × Ξ → R is continuous with respect to z for every ξ , h(η, z, ξ) :

Γ ×R
n×ξ → R̄ is continuous with respect to z for every (η, ξ) and is continuous with

respect to η for every (z, ξ), Γ is a set with infinitely many elements, and Z0 ⊂ R
n

is a compact set. Denote the optimal value and the optimal solution set of problem
(SP) by J ∗ and S∗, respectively. We assume that P is unknown, but can be estimated
from i.i.d. samples {ξ̃i }Ni=1. The sample set Ξ̃N := {ξ̃i }Ni=1(⊂ Ξ) can be considered
as a random collection of samples governed by the distribution PN . We always use
superscript ‘˜’ to emphasize that a variable is treated as random. We first recall the
definition of Wasserstein distance.

123

527



Y. Mei et al.

Definition 1 Let p � 1. The Wasserstein distance Wp(Q1,Q2) between Q1,Q2 ∈
Pp(Ξ) is defined via

Wp(Q1,Q2)

:=
(

inf

{∫

Ξ2
‖ξ1 − ξ2‖pΠ(dξ1, dξ2) : Π is a joint distribution of ξ1 and ξ2

with marginals Q1 and Q2, respectively

}) 1
p

.

(1)

Wasserstein distance corresponds to the minimum cost of moving from one mass
distribution Q1 to another Q2. When Q1 and Q2 are both discrete distributions, the
optimization problem in Wasserstein distance can be viewed as Monge’s mass trans-
portation problem by treating Π as the transportation plan [23]. Wasserstein distance
has the following dual representation [17, eq. (7)]

W p
p (Q1,Q2) = sup

u∈L1(Q1),v∈L1(Q2)

{∫
Ξ
u(ξ1)Q1(dξ1) + ∫

Ξ
v(ξ2)Q2(dξ2) :

u(ξ1) + v(ξ2) � ‖ξ1 − ξ2‖p,∀ξ1, ξ2 ∈ Ξ

}

.

(2)

Due to the representation (2), we immediately have the following observation.

Lemma 1 [17] Let Ψ : Ξ → R. Suppose that Ψ satisfies |Ψ (ξ1)−Ψ (ξ2)| � L0‖ξ1 −
ξ2‖p + M0 for all ξ1, ξ2 ∈ Ξ and some L0, M0 � 0. Then,

|EQ1 [Ψ (ξ)] − EQ2 [Ψ (ξ)]| � L0W
p
p (Q1,Q2) + M0.

We now define

Q̃N = {Q ∈ Pp(Ξ) : Wp(Q, P̃N ) � εN }, (3)

where P̃N := 1
N

∑N
i=1 δξ̃i

is the empirical distribution, and εN is a given radius. We
consider the following data-driven distributionally robust counterpart of problem (SP)

(RP) min
z∈Z0

f̃N (z) := sup
Q∈Q̃N

EQ[ f (z, ξ)]

s.t. sup
Q∈Q̃N

EQ[h(η, z, ξ)] � 0, ∀η ∈ Γ.

Denote the optimal value and the optimal solution set of problem (RP) by J̃ ∗
N and S̃∗

N ,
respectively.

It is worth noting that problem (RP) differs from another kind of distributionally
robust model

min
z∈Z0

sup
Q∈Q̃N

{EQ[ f (z, ξ)] : EQ[h(η, z, ξ)] � 0, ∀η ∈ Γ }. (4)
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Problem (RP) aims to define the distributionally robust counterparts in the objective
function and in constraints, separately. While, problem (4) tries to define the distri-
butionally robust counterpart in terms of the optimal value function. In problem (4),
all the expectations in the objective function and the constraints are taken under the
same worst-case distribution. While, in problem (RP), the worst-case distribution for
the objective function Q∗

f ∈ argmaxQ∈Q̃N
EQ[ f (z, ξ)] is probably different from the

worst-case probability distributions for the constraint functions Q∗
η ∈ argmaxQ∈Q̃N

EQ[h(η, z, ξ)], η ∈ Γ . Problem (RP) derives a more robust solution, which keeps the
constraints feasible for all possible distributions in the ambiguity set. While, the opti-
mal solution of problem (4) is only feasible for those constraints under the worst-case
distribution. In this paper, we focus on the model (RP), and we do not require that
Q∗

f = Q∗
η, η ∈ Γ .

3 Asymptotic Convergence Property

In this section, we will show that with probability 1, the optimal value and the
optimal solution set of problem (RP) tend to those of problem (SP) when N → ∞.
For this purpose, we assume that the tail of the distribution P decays at a fast speed.
Concretely, we introduce the following assumption.

Assumption 1 There exist α > p, γ > 0 such that

A :=
∫

Ξ

exp{γ ‖ξ‖α}P(dξ) < ∞.

This assumption is mild and has been widely adopted in related researches, such as
[18,22,25]. If Ξ is compact, Assumption 1 holds trivially.

Based on [24, Theorem 2], Esfahani and Kuhn stated a measure concentration
property in [22, Theorem 3.4] for p = 1. We generalize this result to any integer order
p � 1.

Lemma 2 (Concentration Inequality) Given Assumption 1, there exist positive con-
stants c1 and c2 depending only on α, γ , A and m such that

PN {Wp(P, P̃N ) � εN } �
{
c1 exp

(
−c2Nε

max{m,2p}
N

)
, if εN � 1,

c1 exp
(−c2Nεα

N

)
, if εN > 1,

(5)

for all N � 1, m 	= 2p.

This lemma can be easily proved by using [24, Theorem 2]. When m = 2p, a
similar inequality also holds. The detailed proof is thus omitted here.

Lemma 2 provides a probabilistic estimation that the true distribution P lies outside
theWasserstein ballB(̃PN , εN ). This probability can be set as some prescribed disaster
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level βN . Solving εN in the equation

βN =
{
c1 exp

(
−c2Nε

max{m,2p}
N

)
, if εN � 1,

c1 exp
(−c2Nεα

N

)
, if εN > 1,

(6)

we obtain the smallest radius of the Wasserstein ball containing P with confidence
1 − βN . Namely

εN (βN ) :=

⎧
⎪⎨

⎪⎩

( log( c1
βN

)

c2N

) 1
max{m,2p}

, if N �
log( c1

βN
)

c2
,

( log( c1
βN

)

c2N

) 1
α
, if N <

log( c1
βN

)

c2
,

(7)

such that

PN {Wp(P, P̃N ) � εN (βN )} � 1 − βN . (8)

Note that for a fixed level βN ≡ β > 0, the radius εN (βN ) goes to zero as N tends
to infinity. We now want to show that, when N tends to infinity, f̃N converges to f
with probability 1. To this end, we introduce the following assumptions.

Assumption 2 There exists an L � 0 such that | f (z, ξ1) − f (z, ξ2)| � L‖ξ1 − ξ2‖p

for all z ∈ Z0.

Assumption 3 βN ∈ (0, 1) satisfies
∑∞

N=1 βN < ∞ and limN→∞ logβN
N = 0.

The following theorem establishes the pointwise convergence result.

Theorem 1 (Convergence) Given Assumptions 1, 2 and 3, P∞-almost surely we have
that f̃N converges pointwise to f .

Proof We have from (8) that

PN {P ∈ Q̃N } � 1 − βN ,

which further yields

PN { f̃N (z) � f (z), ∀z ∈ Z0} � 1 − βN .

Applying Borel–Cantelli Lemma (see, e.g., [26, Theorem 2.18]), we obtain

P∞{ f̃N (z) � f (z), ∀z ∈ Z0, for all sufficiently large N } = 1.

Hence, it holds that

P∞
{

lim inf
N→∞ f̃N (z) � f (z), ∀z ∈ Z0

}

= 1. (9)
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On the other hand, from the definition of supremum and the fact that Q̃N is con-
nected, for any ε > 0, there exists a Q̃N ∈ Q̃N such that

EQ̃N
[ f (z, ξ)] � f̃N (z) − ε/2.

Then, we have

f̃N (z) � EQ̃N
[ f (z, ξ)] + ε/2

=
∫

Ξ

f (z, ξ)P(dξ) +
∫

Ξ

f (z, ξ)Q̃N (dξ) −
∫

Ξ

f (z, ξ)P(dξ) + ε/2

� EP[ f (z, ξ)] + LW p
p (P, Q̃N ) + ε/2

� EP[ f (z, ξ)] + L[Wp(P, P̃N ) + Wp (̃PN , Q̃N )]p + ε/2.

The last but one inequality follows directly from Lemma 1 and Assumption 2. Thus
by (8), we obtain

PN
{
f̃N (z) � EP[ f (z, ξ)]+L(2εN (βN ))p+ε/2, ∀z ∈ Z0

}
� PN {

P ∈ Q̃N
}

� 1−βN .

Since limN→∞ εN (βN ) = 0, there exists an N1 such that for all N � N1, we have
L(2εN (βN ))p < ε/2. This further implies that

PN {
f̃N (z) � EP[ f (z, ξ)] + ε, ∀z ∈ Z0

}
� 1 − βN .

Again by Borel-Cantelli Lemma, we have

P∞ {
f̃N (z) � f (z) + ε, ∀z ∈ Z0, for all sufficiently large N

} = 1.

Therefore, it holds that

P∞
{

lim sup
N→∞

f̃N (z) � f (z) + ε, ∀z ∈ Z0

}

= 1.

Since ε can be chosen arbitrarily, we obtain

P∞
{

lim sup
N→∞

f̃N (z) � f (z), ∀z ∈ Z0

}

= 1. (10)

The proof follows immediately from (9) and (10).

We notice that if moreover, f (z, ξ) is Lipschitz continuous with respect to z, then
f̃N converges uniformly to f .

Assumption 4 There exists a κ(ξ) such that | f (z1, ξ) − f (z2, ξ)| � κ(ξ)‖z1 − z2‖
for all z1, z2 ∈ Z0 and K := supQ∈Pp(Ξ) EQ[κ(ξ)] < ∞.
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Theorem 2 (Uniform convergence) Suppose that Assumptions 1, 2, 3 and 4 hold, then
P∞-almost surely f̃N converges uniformly to f on Z0.

Proof According to the Arzelà-Ascoli theorem, a sequence in a compact Hausdorff
space converges uniformly if and only if it is equicontinuous and converges pointwise.
Therefore, what remains to prove is that { f̃N (z)} is equicontinuous. By

| f̃N (z1) − f̃N (z2)| = | sup
Q∈Q̃N

EQ[ f (z1, ξ)] − sup
Q∈Q̃N

EQ[ f (z2, ξ)]|

� sup
Q∈Q̃N

|EQ[ f (z1, ξ)] − EQ[ f (z2, ξ)]| � sup
Q∈Q̃N

EQ| f (z1, ξ) − f (z2, ξ)|

� sup
Q∈Q̃N

EQ[κ(ξ)]‖z1 − z2‖ � K‖z1 − z2‖,

the equicontinuity follows directly.

Equipped with the convergence of the objective function, we can establish the con-
vergence of the optimal value and the optimal solution set. To make a clear statement,
we need to consider the following intermediate problem:

(RCP) min
z∈Z0

f (z):= EP[ f (z, ξ)]
s.t. sup

Q∈Q̃N

EQ[h(η, z, ξ)] � 0, ∀η ∈ Γ.

Denote the optimal value and the optimal solution set of problem (RCP) by J̃N and
S̃N , respectively.

Firstly, we establish the finite sample guarantee and the asymptotic convergence
property between the intermediate problem (RCP) and the true problem (SP).

Theorem 3 (Finite sample guarantee) Given Assumption 1,

PN {
Ξ̃N : J ∗ � J̃N

}
� 1 − βN .

Proof Let z̃N ∈ S̃N . (8) implies that

PN

{

EP [h(η, z̃N , ξ)] � sup
Q∈Q̃N

EP [h(η, z̃N , ξ)] , ∀η ∈ Γ

}

� 1 − βN .

Note that problems (RCP) and (SP) have the same objective function. Hence, if z̃N
satisfies all the constraints in problem (SP), then it would hold that J ∗ � f (̃zN ).
Therefore, we have

PN {J ∗ � J̃N } = PN {
J ∗ � f (̃zN )

}
� PN {EP[h(η, z̃N , ξ)] � 0, ∀η ∈ Γ }

� PN

{

EP [h(η, z̃N , ξ)] � sup
Q∈Q̃N

EP [h(η, z̃N , ξ)] , ∀η ∈ Γ

}

� 1 − βN .
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To establish the asymptotic convergence property, we need the following technical
assumptions.

Assumption 5 There exists an L(η) such that |h(η, z, ξ1) − h(η, z, ξ2)| � L(η)‖ξ1 −
ξ2‖p for all z ∈ Z0.

Assumption 6 Γ is a countable and compact set.

For simplicity of exposition, let ϑ(η, z) := EP[h(η, z, ξ)], ϑ̃N (η, z) := supQ∈Q̃N

EQ[h(η, z, ξ)], v(z) := supη∈Γ ϑ(η, z) and ṽN (z) := supη∈Γ ϑ̃N (η, z). Since h is
continuous with respect to z and Γ is compact, ϑ, ϑ̃N , v, and ṽN are all continuous
with respect to z. Problems (SP) and (RCP) can be rewritten in the following compact
forms, respectively

min
z∈Z0

f (z) s.t. v(z) � 0,

and

min
z∈Z0

f (z) s.t. ṽN (z) � 0.

Next, we will prove the pointwise convergence result of ṽN (z).

Theorem 4 (Convergence of constraints) Given Assumptions 1, 3, 5, for every η ∈ Γ ,
P∞-almost surely we have that ϑ̃N (η, z) converges to ϑ(η, z) pointwise. Moreover, if
Assumption 6 also holds, then ṽN (z) converges pointwise to v(z).

Proof Similar to the proof of Theorem 1, the first conclusion can be established imme-
diately.

We know that the intersection set of countable sets with probability 1 also has
probability 1. If Γ is countable, then P∞-almost surely it holds that

lim
N→∞ ϑ̃N (η, z) − ϑ(η, z) = 0,∀η ∈ Γ, ∀z ∈ Z0. (11)

Since h(η, z, ξ) is continuous with respect to η and Γ is compact, we can easily show
that for any z ∈ Z0, there exists an η∗ such that

|̃vN (z) − v(z)| � sup
η∈Γ

∣
∣ϑ̃N (η, z) − ϑ(η, z)

∣
∣ = ∣

∣ϑ̃N (η∗, z) − ϑ(η∗, z)
∣
∣ . (12)

(11) and (12) together ensure that P∞-almost surely, we have

lim
N→∞ ṽN (z) = v(z)

for all z ∈ Z0. This completes the proof.

To establish the asymptotic convergence property of problem (RCP), we need the
following assumption like that in [27].
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Assumption 7 Assume that there exists an optimal solution z̄ of the true problem (SP)
such that for any ε > 0, there is a z ∈ Z0 with ‖z − z̄‖ � ε and v(z) < 0.

Theorem 5 (Asymptotic convergence property) Given Assumptions 1, 3, 5, 6 and 7,
P∞-almost surely J̃N → J ∗ and D(S̃N , S∗) → 0 as N → ∞.

Proof By Theorem 3 and Borel-Cantelli Lemma, we have

P∞
{

J ∗ � lim inf
N→∞ J̃N

}

= 1.

On the other hand, for any ε > 0, there exists a zε ∈ Z0 with ‖zε − z̄‖ � ε and
v(zε) < 0. Assume that zε → z̄ when ε → 0, by passing to a subsequence if
necessary. It is known from Theorem 4 that such zε satisfies

P∞ {̃vN (zε) < 0 for all sufficiently large N } = 1,

and consequently,

P∞ {
f (zε) � J̃N for all sufficiently large N

} = 1.

We immediately get

P∞
{

f (zε) � lim sup
N→∞

J̃N

}

= 1.

Since f is continuous, we have that

P∞
{

J ∗ = f (z̄) = f ( lim
ε→0

zε) = lim
ε→0

f (zε) � lim sup
N→∞

J̃N

}

= 1.

For the second claim, the following discussions are all understood in the P∞-
almost surely sense. Assume that D(S̃N , S∗) � 0. Then, there must exist an ε0 > 0
and z̃N ∈ S̃N such that dist(̃zN , S∗) � ε0 for all sufficiently large N . Since Z0 is
compact,we assumebypassing to a subsequence if necessary that z̃N → z∗. Therefore,
z∗ /∈ S∗. Noticing z̃N ∈ S̃N , from the facts that ṽN converges to v pointwise and ṽN
is continuous, we know that v(z∗) = limN→∞ ṽN (̃zN ) � 0 and thus z∗ is a feasible
solution of problem (SP). Hence f (z∗) > J ∗. By the continuity of f , we have

lim
N→∞ J̃N = lim

N→∞ f (̃zN ) = f (z∗) > J ∗,

which contradicts J̃N → J ∗ .

Next, let us investigate problem (RP). We will discuss how J̃ ∗
N approximates J ∗

and how S̃∗
N approximates S∗ when N → ∞.
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Theorem 6 Given Assumptions 1-7, P∞-almost surely J̃ ∗
N → J ∗ and

D(S̃∗
N , S∗) → 0 as N → ∞.

Proof The following discussions are all understood in the P∞-almost surely sense.
Let z̃N ∈ S̃N and z̃∗N ∈ S̃∗

N . From Theorem 2, for any ε > 0, there exists an
N1 = N1(ε) such that for all N � N1, it holds that

∣
∣ f̃N (z) − f (z)

∣
∣ � ε/2, ∀z ∈ Z0.

Thus we have

f̃N (̃zN ) − f (̃zN ) � ε/2 (13)

and

f (̃z∗N ) − f̃N (̃z∗N ) � ε/2. (14)

Notice that the constraints in problems (RP) and (RCP) are the same and it is obvious
that

f̃N (̃zN ) � J̃ ∗
N := f̃N (̃z∗N ) (15)

and

f (̃z∗N ) � J̃N := f (̃zN ). (16)

Therefore, (13) and (15) mean that

J̃ ∗
N − J̃N � ε/2, (17)

while (14) and (16) lead to

J̃N − J̃ ∗
N � ε/2. (18)

By Theorem 5, for the above ε, there must exist an N2 = N2(ε) such that for all
N � N2, it holds that | J̃N − J ∗| � ε/2. Let N0 = max{N1, N2}. We obtain

| J̃ ∗
N − J ∗| � | J̃ ∗

N − J̃N | + | J̃N − J ∗| � ε, ∀N � N0.

Hence it holds that J̃ ∗
N → J ∗.

Assume that D(S̃∗
N , S∗) � 0. Then, there must exist an ε0 > 0 and z̃∗N ∈ S̃∗

N
such that dist(̃z∗N , S∗) � ε0 for all sufficiently large N . Since Z0 is compact, we
assume by passing to a subsequence if necessary that z̃∗N → z∗. Therefore, z∗ /∈ S∗.
From the facts that ṽN converges to v pointwise and ṽN is continuous, we know that
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v(z∗) = limN→∞ ṽN (̃z∗N ) � 0 and thus z∗ is a feasible solution of problem (SP).
Hence f (z∗) > J ∗. By the uniform convergence of f̃N , we have

lim
N→∞ J̃ ∗

N = lim
N→∞ f̃N (̃z∗N ) = f (z∗) > J ∗,

which contradicts J̃ ∗
N → J ∗.

Theorem6 guarantees that problem (RP) is a “good” approximation to problem (SP)
in the sense of the optimal value and the optimal solution set. Thus, it is reasonable to
consider problem (RP) instead of problem (SP) in practical applications.

4 Numerical Experiments

To examine the asymptotic convergence results in Theorem 6, we consider a data-
driven distributionally robust portfolio selection problemwith second-order stochastic
dominance constraints.

4.1 Portfolio OptimizationModels

We recall the portfolio optimizationmodel with second-order stochastic dominance
constraints proposed in [4]

min
z∈Rn

EP[−zTξ ]
s.t. EP[(ηk − zTξ)+] � EP[(ηk − Y (ξ))+], k = 1, · · · , J ,

n∑

j=1

z j = 1,

z j � 0, j = 1, · · · , n.

(19)

Here, we assume that there are n risky assets, z denotes the portfolio vector, and ξ

denotes the random return rate vector of the risky assets. We assume that the support
set Ξ of the random return rate vectors is finite [17, Corollary 4]. Y represents the
benchmark which is a prespecified random variable with finite realizations ηk =
Y (ξk), k = 1, · · · , J . (·)+ denotes the positive part function, i.e., (·)+ = max(0, ·).
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We further consider the data-driven distributionally robust counterpart of model (19)

min
z∈Rn

sup
Q∈Q̃N

EQ[−zTξ ]

s.t. sup
Q∈Q̃N

EQ[(ηk − zTξ)+ − (ηk − Y (ξ))+] � 0, k = 1, · · · , J ,

n∑

j=1

z j = 1,

z j � 0, j = 1, · · · , n,

(20)

where Q̃N is the ambiguity set defined in (3).
From the strong duality result in [17, Corollary 2], problem (20) can be equivalently

written as

min
z∈Rn+,λ0�0,λ∈RJ+

λ0ε
p
N + 1

N

N∑

i=1

sup
ξ∈Ξ

[−zTξ − λ0‖ξ − ξ̃i‖p]

s.t. λkε
p
N + 1

N

N∑

i=1

sup
ξ∈Ξ

[(ηk − zTξ)+ − (ηk − Y (ξ))+ − λk‖ξ − ξ̃i‖p] � 0,

k = 1, · · · , J ,
n∑

j=1

z j = 1. (21)

By introducing auxiliary variables, problem (21) can be reformulated as

min
z,λ0,λ,α,β,s

λ0ε
p
N + 1

N

N∑

i=1

αi

s.t. λkε
p
N + 1

N

N∑

i=1

βik � 0, k = 1, · · · , J ,

αi � −zTξ j − λ0‖ξ j − ξ̃i‖p, i = 1, · · · , N , j = 1, · · · , J ,

βik � s jk − (ηk − Y (ξ j ))+ − λk‖ξ j − ξ̃i‖p,

i = 1, · · · , N , j = 1, · · · , J , k = 1, · · · , J ,

s jk � ηk − zT ξ j , j = 1, · · · , J , k = 1, · · · , J ,

n∑

j=1

z j = 1,

z ∈ R
n+, λ0 � 0, λ ∈ R

J+, α ∈ R
N , β ∈ R

N×J , s ∈ R
J×J+ . (22)

Therefore, problem (20) can be solved through the linear programming reformu-
lation (22), which can be efficiently solved by many optimization software. We solve
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it by Mosek solver in CVX package in MATLAB R2016a on a Dell G7 laptop with
Windows 10 operating system, Intel Core i7-8750H processor, and 16 GB RAM.

4.2 Data

We select eight risky assets to constitute the stock pool, which are U.S. three-
month treasury bills, U.S. long-term government bonds, S& P 500, Willshire 5000,
NASDAQ, Lehmann Brothers corporate bond index, EAFE foreign stock index, and
gold. We use the same historical annual return rate data as that in [4], whose statistics
and more details can be found in Table 8.1 therein. The benchmark is the return rate
of the equally weighted portfolio.

4.3 Numerical Evidences

Firstly, we examine the conservativeness of the data-driven distributionally robust
model (20). We fix the sample set to be the support set (i.e., ξ̃i = ξi , i = 1, · · · , N
with N = J ) and solve problem (22) for εN = 0.2, p = 1, 2. We also solve problem
(19) with the empirical distribution P̃N as a comparison by using the solution method
in [4]. The optimal values and the optimal solutions of the three models are shown in
Table 1. We can see that problem (22) always gives a more conservative solution than
problem (19) since P̃N is contained in the ambiguity set Q̃N . The optimal values of
the distributionally robust model are larger than that of the stochastic programming
model under the true distribution, which can be viewed as the price of robustness.

Next, we investigate the trend of the optimal value when the sample size increases.
We carry out 5 groups of tests with the sample size being N = 5, 10, 20, 50, 100,
respectively. For each group of tests, we randomly generate N independent samples
and solve the tested problems. Due to the randomness of sampling, for each group,
we repeatedly generate the samples and test the model for 20 times, which provide
20 optimal solutions as well as 20 optimal values. Here, we set εN = 5/N to satisfy
Assumption 3.We summarize in Table 2 the descriptive statistics of the optimal values
for each group, which include maximum (max.), minimum (min.), median, mean, and
standard deviation (std.). We can see from Table 2 that as the sample size increases,
the maximum value, the minimum value, the median value, and the mean value of
the optimal values all increase. Then, it is reasonable to infer that the optimal value
increases with a high probability when the sample size increases. The standard devi-

Table 1 Comparison of data-driven distributionally robust model and the empirical model

Problem Optimal value/% Optimal solution

(22) with p = 1 −10.9371 (0, 0, 0.0299, 0.2329, 0, 0.3907, 0.2236, 0.1230)

(22) with p = 2 −11.0077 (0, 0, 0.0677, 0.1883, 0, 0.3914, 0.2309, 0.1217)

(19) −11.0082 (0, 0, 0.0680, 0.1880, 0, 0.3914, 0.2309, 0.1217)
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Table 2 Descriptive statistics of the optimal values under different sample sizes

Statistics N = 5 N = 10 N = 20 N = 50 N = 100

Max/% −7.9369 −8.9760 −8.7072 −7.9071 −9.3030

Min/% −17.6376 −17.4964 −16.8976 −14.0841 −12.9365

Median/% −14.0631 −13.0935 −11.9106 −11.5660 −11.2986

Mean/% −13.2652 −12.9046 −12.2369 −11.5416 −11.2008

Std. 3.1050 2.0927 2.4285 1.4256 1.0013

ation of the optimal values decreases, which means that model (20) becomes more
robust with the increase in the sample size.

Then, we adopt a box-plot to characterize the optimal values between mean±std.,
shown in Fig. 1. From Fig. 1, we can see that the box gets smaller as the sample size
increases. This means that the optimal values fluctuate less and thus the model (20)
becomes more robust with the increase in the sample size. We also observe that the
mean value and the median value of the optimal values increase when the sample
size increases, but their increase rates are decreasing. These observations verify the
asymptotic convergence results in Theorem 6.

Finally, we briefly show the influence of the order p in the data-driven dis-
tributionally robust model (20). We carry out 4 groups of tests with (p, N ) =
(1, 20), (2, 20), (1, 50), (2, 50), respectively. For each group, we repeat the tests for
20 times. Let ε = 5/N . The box-plot showing the max., min., mean, mean±std, and
median of the optimal values for the four groups is exhibited in Fig. 2. We can see that
for fixed N , the model (20) with p = 2 generates a larger optimal value than that with

N=5 N=10 N=20 N=50 N=100

Sample size
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Fig. 1 Variation of the optimal value with respect to the sample size
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Fig. 2 Variation of the optimal value with respect to p and N

p = 1. Additionally, Fig. 2 verifies the asymptotic convergence results for p = 2 as
well.

5 Conclusion

We studied a data-driven distributionally robust stochastic optimization problem
with countably infinite constraints. We considered an ambiguity set which contains
all probability distributions close to the empirical distribution measured under the
Wasserstein distance.

We established the asymptotic convergence property of the distributionally robust
optimization problem when the sample size goes to infinity. We proved that with
probability 1, the optimal value and the optimal solution set of the data-driven distri-
butionally robust optimization problem tend to those of the stochastic programming
problem under the true distribution.

The asymptotic convergence properties lay a foundation for the practical solution
and application of distributionally robust optimization problems with infinite con-
straints. Finally, we solved a data-driven distributionally robust portfolio optimization
problemwith second-order stochastic dominance constraints to numerically verify the
theoretical results.

One of the future research topics would be the relaxation of assumptions in order
to generalize the asymptotic convergence properties to non-smooth distributionally
robust optimization problems.
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