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Abstract
In this paper, we consider a class of optimal control problems where the dynamical
systems are time-delay switched systems with the delay being a function of time.
By applying the control parameterization method, the control heights and switching
times become decision variables that need to be optimized. It is well-known that, for
this type problem, the variable switching times cannot be optimized directly. To work
around this problem, we introduce a time-scaling transformation technique so that the
original system is transformed an equivalent system, which is defined on a new time
horizonwith fixed switching times. Based on the relationship between the original time
scale and the new time scale, we derive the gradients of the objective and constraint
functions with respect to the control heights and durations. Then, the new problem can
be solved by gradient-based optimization approach. To demonstrate the effectiveness
of the time-scaling transformation technique, two example problems are solved.

Keywords Switched systems · The time-scaling transformation · Gradient-based
optimization

Mathematics Subject Classification 90C30 · 49M37

This work was supported by the National Natural Science Foundation of China (Nos.11871039 and
11771275).

B Chang-Jun Yu
yuchangjun@126.com

Ning Zhang
315827880@qq.com

Fu-Sheng Xie
fushengx@sina.com

1 Department of Mathematics, Shanghai University, Shanghai 200444, China

2 School of Economics, Shanghai University of Finance and Economics, Shanghai 200433, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-020-00299-5&domain=pdf
http://orcid.org/0000-0002-1728-9846


582 N. Zhang et al.

1 Introduction

Many real-world dynamic systems are operated by switching between different
subsystems or modes. Such systems are called switched systems. In practice, the
performanceof the systems, formost switched systems, depends not only on the current
state and control, but also on the previous state and control, and these systems are called
time-delay switched systems. Time-delay switched systems are widely employed in
different areas, such as evaporation and purification processes [1–3], Fermentation
Processes [4–10] and so on.

For general optimal control problems with time-delay switched systems, the delay
h is normally a constant or a decision variable which needs to be chosen optimally.
However, in many real-world applications, the delay might be a function of time [11].
In this paper, we mainly focus on the optimal control problems with time-varying
time-delay switched systems(TVTDSS). The mathematical expression of the standard
TVTDSS is as follows:

ẋ(t) = f k(x(t), x(t − d(t)), u(t), u(t − d(t))), t ∈ [�k−1, �k), k = 1, 2, · · · , M,

(1.1)
and the initial condition:

x(t) = φ(t), t ∈ [−h, 0], (1.2)

u(t) = ω(t), t ∈ [−h, 0), (1.3)

where x(t) ∈ R
n and x(t − d(t)) ∈ R

n are, respectively, the trajectory of the state in
the current time and the past time; u(t) ∈ R

r and u(t − d(t)) ∈ R
r denote the control

vectors in the current time and the past time, respectively; �k, k = 1, 2, · · · , M − 1
are the switching times; �0 = 0 is the initial time, �M = T > 0 is a given terminal
time; h > 0 is a given constant and d(t) : [0, T ] → [0, h] is a given continuously
differentiable function; f k : Rn × R

n × R
r × R

r → R
n and φ(t) : R → R

n are the
given continuously differentiable functions; ω(t) : R → R

r is the given piecewise
continuous function.

The main theoretical tool for solving optimal control problems governed by (1.1)–
(1.3) analytically is the famousPontryaginminimumprinciple.However, it is generally
very difficult, especially for practical problems, to obtain a closed-form solution,
and hence numerical methods are indispensable for solving optimal control prob-
lems involving TVTDSS. One of the most popular numerical methods is the control
parameterization method [12–18].

In the switched system of (1.1)–(1.3), the switching sequence is assumed to be
fixed and the decision variables that need to be optimized are the control vectors and
switching times. However, there are some difficulties when taking the switching times
as decision variables: (i) the partial derivatives of the cost and constraint functions
with respect to the switching times exist only when the switching times are different;
(ii) the numerical integration of dynamic systems over variable length subintervals is
difficult to implement numerically [13,14,19,20].

The time-scaling transformation technique is an efficient method for handling these
difficulties, and it was first proposed by Lee et al. in 1997 (originally called the control
parameterization enhancing transform) [15]. It works by introducing a new so-called
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control duration vector to map variable switching times to another time horizon; this
leads to an equivalent optimization problem in which switching times are fixed [14–
16,20–26]. The time-scaling transformation technique has been successfully applied
to a range of optimal control problems, and it was used to solve optimal control
problems where the range of the control function is a discrete set in [16]. On the
basis of reference [16], this technique is used to convert approximate optimal con-
trol problems with variable partition points into equivalent standard optimal control
problems with multiple characteristic times in 2002 [17]. In 2006, Li et al. applied
it to the optimal control problems governed by switched systems for the first time,
and the original problem was transformed into a parameter selection problem on a
new time horizon [12]. Based on the prior research work, Ryan et al. first adopted the
time-scaling transformation technique to transform the optimal control problems with
nonlinear continuous inequality constraint on the state and the control into a class of
corresponding semi-infinite programming problems, and an algorithm that computed
a sequence of suboptimal controls for the original problem was proposed to solve the
problem in 2009 [21]. Since then, Li et al. applied this technique to a class of optimal
control problems subject to equality terminal state constraints and continuous state
and control inequality constraints, and they solved the problem by using the exact
penalty function method in 2011 [22].

Despite its success in optimizing control switching times, the time-scaling trans-
formation technique encounters serious problem when the dynamic system under
consideration contains delay in state/control. In fact, when applying the time-scaling
transformation technique, a pre-given time-delay becomes a variable in the new time
horizon, which leads to difficulties in solving the new dynamic system. In order to
handle this issue, Yu et al. presented a hybrid time-scaling transformation method for
solving nonlinear time-delay optimal control problems in 2016. The reason that it’s
called the hybrid time-scaling transformation method is that this approach is related
to two coupled time-delay systems, one is defined on the original time scale and the
switching times are variable, the other is defined on the new time scale, in which
the switching times are fixed [13]. However, the closed form expression of variable
delay cannot be expressed in the new time horizon, so it is very difficult to obtain the
delay state in the new time horizon. Furthermore, the duration for each subsystem is
required to be greater than or equal to a pre-given positive value. In [20], Wu et al.
presented a new computational method to solve optimal control problems of multiple
delay dynamic system, and derived the analytical formulate of the time-delay in the
new time scale, in such away that the durations between switching times do not have to
be greater than or equal to a pre-given positive value. By using the new computational
method, the time-delay system is completely converted to a new time scale and the
switching times are fixed.

In the above-mentioned optimal control problemswith time-delay dynamic system,
the delay is a given constant, but in practical applications, the delay usually changes
with time, that is, the delay is a time-dependent function. In addition, the time-scaling
transformation technique has not been used in the optimal control problems with
TVTDSS. Therefore, the main idea of this paper is adopting the time-scaling transfor-
mation technique to deal with the optimal control problems with time-delay switched
systems, where the delay is a function of time t .
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The rest of the paper is organized as follows. We first give a standard mathematical
formula for optimal control problems with TVTDSS in Sect. 2. In Sect. 3, the original
problem is transformed into an equivalent problem by applying the control parameter-
ization method and the time-scaling transformation technique. In Sect. 4, we provide
the technical details for calculating the gradients of cost function and constraint func-
tions with respect to the corresponding decision variables, then the equivalent problem
could be solved by some gradient-based methods. Finally, we verify the correctness
of our theory through several examples.

2 Problem Formulation

Consider a time-varying time-delay switched system defined in [0, T ] with M
subsystems:

ẋ(t) = f k(x(t), x(t − d(t)), u(t), u(t − d(t))), t ∈ [�k−1, �k), k = 1, 2, · · · , M,

(2.1)
and the initial conditions are

x(t) = φ(t), t ∈ [−h, 0], (2.2)

u(t) = ω(t), t ∈ [−h, 0). (2.3)

Define

U := {u(t) = [u1(t), u2(t), · · · , ur (t)]� ∈ R
r , aq � uq(t) � bq , t ∈ [0, T ]},

where aq and bq , q = 1, · · · , r are given real numbers such that aq � bq . Any Borel
measurable function u : [−h, T ] → R

r is called an admissible control if u(t) ∈ U
for almost all t ∈ [0, T ], and u(t) = ω(t) for all t ∈ [−h, 0). Let U denote the set of
all such admissible control.

Define

Ξ := {� = [�1, �2, · · · , �M−1]� ∈ R
M−1, �k−1 � �k, k = 1, · · · , M},

as the set of all admissible switching time vectors. For each � ∈ Ξ and u(t) ∈ U ,
let x(· | �, u(t)) denote the solution of (2.1)–(2.3), and we assume that the following
conditions are satisfied.

A1:

‖ f k(e,υ, τ ,α)‖ � C(1 + ‖e‖ + ‖υ‖ + ‖τ‖ + ‖α‖),

where C > 0 is a real number and (e,υ, τ ,α) ∈ R
n × R

n × R
r × R

r .
A2 : f k is twice continuously differentiable.

A1 and A2 ensure the uniqueness of the solution of the dynamic system considered
in this paper. In particular, under the assumption of A1, the solution of the dynamic
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system (2.1)–(2.3) is bounded [27]. In addition, A2 guarantees the existence of the
gradients of the cost function and constraint functions with respect to their arguments.
These two assumptions arewidely used in optimal control literatures [12,13,19–22,28–
30].

Our optimization problem is formally defined as follows.

Problem 1 Given the dynamic system (2.1)–(2.3), find an admissible control vector
u(t) ∈ U and an admissible switching time vector � ∈ Ξ such that the cost function

J0(�, u(t)) = Ψ0(x(T | �, u(t)))

is minimized subject to the canonical constraints

Jn(�, u(t)) = Ψn(x(T | �, u(t)))

{= 0,
� 0,

n = 1, · · · , m,

where Ψn : Rn → R, n = 0, · · · , m are given continuously differentiable functions.

3 Problem Transformation

3.1 Control Parameterization

The control parameterizationmethod involves approximating the control by a linear
combination of basis functions, thereby yielding an approximate optimization problem
with a finite number of decision variables [14].

In this paper, we approximate the control signal u(t) as follows:

u(t) ≈ uM (t) = ϑk, t ∈ [�k−1, �k), (3.1)

where ϑk ∈ R
r , k = 1, · · · , M are the values of control vector on [�k−1, �k), M � 1

is the number of subsystems.
Similarly, the control vector in the past time u(t − d(t)) can be approximately

represented

u(t − d(t)) =
⎧⎨
⎩

ϑk′ , if t − d(t) ∈ [�k′−1, �k′ ),
for some k

′ ∈ {1, · · · , M},
ω(t − d(t)), if t − d(t) < 0.

(3.2)

Define

Ω := {ϑ = [ϑ1
1 , · · · , ϑr

1 , · · · , ϑ1
M , · · · , ϑr

M ]� ∈ R
M×r , aq � ϑ

q
k � bq},

as the set of all admissible parameter vectors, where q = 1, · · · , r , k = 1, · · · , M
and aq , bq are given real numbers such that aq � bq .
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Substituting (3.1)–(3.2) into (2.1)–(2.3) yields the following new switched system,
which is defined on the subinterval t ∈ [�k−1, �k):

ẋ(t) =
⎧⎨
⎩

f k(x(t), x(t − d(t)),ϑk,ϑk′ ), if t − d(t) ∈ [�k′−1, �k′ ),
for some k, k

′ ∈ {1, · · · , M},
f k(x(t),φ(t − d(t)),ϑk,ω(t − d(t))), if t − d(t) < 0,

(3.3)
and the initial condition is

x(t) = φ(t), t ∈ [−h, 0]. (3.4)

Let xM (· | �,ϑ) denote the solution to the switched system above when (�,ϑ) ∈
Ξ × Ω . After applying the control parameterization method, Problem 1 becomes
an optimal parameter selection problem, which is a finite dimensional optimization
problem, and the new optimization problem is formally defined as follows.

Problem 2 Given the dynamic system (3.3)–(3.4), find an admissible control param-
eter vector ϑ ∈ Ω and an admissible switching time vector � ∈ Ξ such that the cost
function

J0(�,ϑ) = Ψ0(xM (T | �,ϑ))

is minimized subject to the canonical constraints

Jn(�,ϑ) = Ψn(xM (T | �,ϑ))

{= 0,
� 0,

n = 1, · · · , m,

where Ψn : Rn → R, n = 0, · · · , m are given continuously differentiable functions.

3.2 The Time-Scaling Transformation

We first introduce a new time variable s ∈ [−h, M], and the relationship between
new time variable s and original time variable t as follows:

t(s) = ν(s|δ) =

⎧⎪⎪⎨
⎪⎪⎩

s, s ∈ [−h, 0],
�s	∑
i=1

δi + δ�s	+1(s − �s	), s ∈ (0, M),

T , s = M,

(3.5)

where δi = �i − �i−1 is the length of the ith subinterval, and �·	 represents floor
function.

Clearly,
ν(i |δ) = δ1 + · · · + δi = �i , i = 1, · · · , M . (3.6)
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Let Δ denote the set of all duration vectors δ := [δ1, · · · , δM ]� ∈ R
M satisfying

the following conditions:

(a) δi � 0, i = 1, · · · , M, (b) δ1 + · · · + δM = T . (3.7)

There are some properties about the function ν(·|δ) in the following lemma.

Lemma 1 For each admissible duration vector δ ∈ Δ, the function ν(·|δ) has the
following properties:

[1] ν(·|δ) is continuous;
[2] ν(·|δ) is non-decreasing;
[3] ν(·|δ) is strictly increasing on [i − 1, i] if and only if δi > 0.

Proof For part [1], let i � M be an integer and consider ν(s|δ) on the open interval
(i − 1, i)

ν(s|δ) =
i−1∑
l=1

δl + δ�s	+1(s − �s	), s ∈ (i − 1, i), (3.8)

where the summation term is empty if i � 1. It is clear from (3.8) that ν(s|δ) is
linear—and therefore continuous—on (i − 1, i). Using Eq. (3.5) and (3.6), it is easy
to see that for any integer i ,

lim
s→i− ν(s|δ) = lim

s→i+ ν(s|δ) = ν(i |δ). (3.9)

Equations (3.8) and (3.9) show that the time-scaling function ν(·|δ) is continuous on
[0, M].

It is clear from Eqs. (3.8) and (3.9) that ν(·|δ) is linear with gradient δi � 0 on
(i − 1, i). Parts [2] and [3] then hold immediately.

Let
z(s) = x(ν(s | δ)) = x(t). (3.10)

Substituting (3.5) into the switched system (3.3)–(3.4), for s ∈ [k − 1, k), we can
transform the time-varying time-delay switched system into the following form:

ż(s) =
⎧⎨
⎩

δk f k(z(s), x(μ(s | δ)),ϑk,ϑk′ ), if μ(s | δ) ∈ [�k′−1, �k′ ),
for some k, k

′ ∈ {1, · · · , M},
δk f k(z(s),φ(μ(s | δ)),ϑk,ω(μ(s | δ))), if μ(s | δ) < 0,

(3.11)
and the initial condition is

z(s) = φ(s), s ∈ [−h, 0], (3.12)

where μ(s | δ) = ν(s | δ) − d(ν(s | δ)).
Note that there are two different state vectors in the above switched system: the

state vector defined on the original time scale and the state vector defined on the new
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time scale. As mentioned in [14], the key to fully converting the state vector to the
new time scale is to find the relationship between s and ν(s | δ) − d(ν(s | δ)) as we
can see in the switched system.

To find the relationship between s and ν(s | δ) − d(ν(s | δ)), for each δ ∈ Δ, we
define a new function κ(s|δ) in the new time scale as follows:

κ(s|δ) = sup
{
γ ∈ [−h, M] : ν(γ |δ) = ν(s|δ) − d(ν(s|δ)) }

, s ∈ [−h, M].
(3.13)

From the properties of the ν(s|δ), we know that for each s ∈ [−h, M], the set on
the right-hand side of (3.13) is non-empty and hence κ(·|δ) is well-defined.

Since the time-scaling function ν(·|δ) is continuous and non-decreasing, so we can
easy to obtain

ν(κ(s|δ)|δ) = ν(s|δ) − d(ν(s|δ)). (3.14)

The relationship between (s, ν(s|δ)) and (κ(s|δ), ν(s|δ) − d(ν(s|δ))) is illustrated
in Fig. 1.

Lemma 2 For each admissible duration vector δ ∈ Δ, the function κ(·|δ) has the
following property κ(s|δ) � s for all s ∈ [−h, M].
Proof For notational simplicity, we omit the argument δ in ν(·|δ) and κ(·|δ).

Suppose that κ(s) > s. Since ν(·|δ) is non-decreasing, we obtain from Eq. (3.14)
that

ν(s) − d(ν(s)) = ν(κ(s)) > ν(s), (3.15)

which is a contradiction because d(ν(s)) � 0. Hence, κ(s) � s for all s ∈ [−h, M].
In order to obtain the explicit formula of κ(s), we give the following lemma.

Lemma 3 For any given s ∈ [0, M) and δ, there exists a unique u ∈ {1, · · · , M} such
that δu > 0 and s ∈ [ν(u − 1|δ), ν(u|δ)).

s

t

0

ν(s|δ)

ν(s|δ)

ν(s|δ)− d(ν(s|δ))

ν(j − 1|δ)

�j = ν(j|δ)

j − 1 js

αj

tanαj = δj

κ(s|δ)

d(ν(s|δ))

Fig. 1 The relationship between (s, ν(s|δ)) and (κ(s|δ), ν(s|δ) − d(ν(s|δ)))
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Proof The proof of Lemma 3 is similar to the proof of Lemma 1 in [20], and hence is
omitted here.

Now, we will give an explicit formula for κ(s). This is presented as a theorem
below.

Theorem 3.1 Let δ ∈ Δ, for each s ∈ [−h, M], if ν(s|δ) − d(ν(s|δ)) < 0, then

κ(s|δ) = ν(s|δ) − d(ν(s|δ)).

Otherwise, let ρ(s|δ) denote the unique integer such that δρ(s|δ)+1 > 0 and

ν(s|δ) − d(ν(s|δ)) ∈
[ ρ(s|δ)∑

k=1

δk,

ρ(s|δ)+1∑
k=1

δk

)
. (3.16)

Then, the following equation holds:

κ(s|δ) = ρ(s|δ) +
�s	∑

l=ρ(s|δ)+1

δ−1
ρ(s|δ)+1δl + δ−1

ρ(s|δ)+1δ�s	+1(s − �s	) − d(ν(s|δ))δ−1
ρ(s|δ)+1.

Proof The proof of Theorem 3.1 is similar to the proof of Theorem 1 in [20], and
hence is omitted here.

Let
z(κ(s)) = x(ν(s | δ) − d(ν(s | δ))) = x(t − d(t)). (3.17)

For s ∈ [k − 1, k), we can transform the time-varying time-delay switched system
into the following form:

ż(s) =
⎧⎨
⎩

δk f k(z(s), z(κ(s)),ϑk,ϑk′ ), if κ(s) ∈ [k ′ − 1, k
′
),

for some k, k
′ ∈ {1, · · · , M},

δk f k(z(s),φ(κ(s)),ϑk,ω(κ(s))), if κ(s) < 0,
(3.18)

and the initial condition is
z(s) = φ(s). (3.19)

Let z(· | δ,ϑ) denote the solution of (3.18)–(3.19) and the Problem 2 can be
transformed into the Problem 3.

Problem 3 Given the dynamic system (3.18)–(3.19), find (δ,ϑ) ∈ Δ × Ω such that
the cost function

J̃0(δ,ϑ) = Ψ̃0(z(M | δ,ϑ))

is minimized subject to the canonical constraints

J̃n(δ,ϑ) = Ψ̃n(z(M | δ,ϑ))

{= 0,
� 0,

n = 1, · · · , m,
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590 N. Zhang et al.

where Ψ̃n : Rn → R, n = 0, · · · , m are given continuously differentiable functions.

4 Gradient Computation

Since we adopt gradient optimization method to solve Problem 3, we need to com-
pute the gradients of cost function and constraint functions with respect to δ and ϑ .

Firstly, we need the gradients of the cost function and constrain functions with
respect to δ. Note that

∂ J̃n(δ,ϑ)

∂δ
=∂Ψ̃n(z(M |δ,ϑ)

∂ z(M |δ,ϑ)
· ∂ z(M |δ,ϑ)

∂δ
. (4.1)

Thus, we need to calculate
∂ z(M |δ,ϑ)

∂δ
. (4.2)

To achieve that, we have the following theorem.

Theorem 4.1 For each pair (δ,ϑ) ∈ Δ × Ω , we have

∂ z(s | δ,ϑ)

∂δ
= Υ (s | δ,ϑ), s ∈ [0, M],

where Υ (· | δ,ϑ) is the solution of the following auxiliary dynamic system on each
subinterval [k − 1, k):

Υ̇ (s | δ,ϑ) = ∂ f̂ k(z(s), z(κ(s | δ)), δ,ϑ)

∂ z(s)
Υ (s | δ,ϑ)

+ ∂ f̂ k(z(s), z(κ(s | δ)), δ,ϑ)

∂ z(κ(s | δ))
[Υ (κ(s | δ) | δ,ϑ)

+∂ z(κ(s | δ))

∂κ(s | δ)

∂κ(s | δ)

∂δ

]
+ ∂ f̂ k(z(s), z(κ(s | δ)), δ,ϑ)

∂δ
(4.3)

with the initial condition
Υ (s | δ,ϑ) = 0, s � 0, (4.4)

for s ∈ [k − 1, k),

f̂ k(z(s), z(κ(s)), δ,ϑ) =
{

δk f k(z(s), z(κ(s)),ϑk,ϑk′ ), κ(s) ∈ [k ′ − 1, k
′
),

δk f k(z(s),φ(κ(s)),ϑk,ω(κ(s))), κ(s) < 0,

where k, k
′ = 1, · · · , M.

Proof The proof of Theorem 4.1 is similar to that given for Theorem 3.1 in [13], and
hence is omitted.
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From Theorem 4.1, it is clear that we need calculate the derivative of κ(·|δ) with
respect to δk , k = 1, · · · , M . Let S ′ denote the set of points s such that κ(s|δ) ∈
{0, 1, · · · , M − 1}. We have the following result.

Theorem 4.2 For all s /∈ S ′,

∂κ(s|δ)
∂δk

= δ−1
ρ(s|δ)+1

{
∂ν(s|δ)

∂δk
(1 − ∂d(ν(s|δ))

∂ν(s|δ) ) − ∂ν(κ(s|δ)|δ)
∂δk

}
, k = 1, · · · , M,

where ρ(s|δ) is defined in Theorem 3.1.

Proof We omit the argument δ in ν(·|δ) , κ(·|δ) and ρ(·|δ) for simplicity. First, note
from the definition of ν(·) that for arbitrary s,

∂ν(s)

∂δk
=

⎧⎪⎨
⎪⎩
1, if s � 0 and k = 1, · · · , �s	,
s − �s	, if s � 0 and k = �s	 + 1,

0, otherwise.

Now, for all s /∈ S ′, we can differentiate Eq. (3.14) with respect to δk to obtain

∂ν(s)

∂δk
= ∂ν(κ(s))

∂δk
+ ∂ν(κ(s))

∂κ(s)

∂κ(s)

∂δk
+ ∂d(ν(s|δ))

∂ν(s)

∂ν(s)

∂δk
. (4.5)

Clearly,
∂ν(s)

∂s
= δ�s	+1, s ∈ [k − 1, k), k = 1, · · · , M . (4.6)

Since s /∈ S′, ∂ν(κ(s))/∂κ(s) exist, it follows from (4.6) that

∂ν(κ(s))

∂κ(s)
= δ�κ(s)	+1 = δρ(s)+1. (4.7)

Since κ(s) /∈ {0, · · · , M − 1}, it follows from the definition of κ(s) that δρ(s)+1 =
δ�κ(s)	+1 > 0. Substituting (4.7) into (4.5) and rearranging the terms, we obtain

∂κ(s|δ)
∂δk

= δ−1
ρ(s|δ)+1

{
∂ν(s|δ)

∂δk

(
1 − ∂d(ν(s|δ))

∂ν(s|δ)
)

− ∂ν(κ(s|δ)|δ)
∂δk

}
. (4.8)

Similarly, we also need the gradients of the cost function and constraint functions
with respect to ϑ , which is given in the following theorem.

Theorem 4.3 The gradients of J̃n(δ,ϑ), n = 0, 1, · · · , m, with respect to ϑ can be
written as:

∂ J̃n(δ,ϑ)

∂ϑ
=∂Ψ̃n(z(M |δ,ϑ))

∂ z(M |δ,ϑ)
· ∂ z(M |δ,ϑ)

∂ϑ
. (4.9)

Proof The proof follows by applying the chain rule.
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In Theorem 4.3 we know that if we want to compute the gradients of cost function
and constraint functions with respect to ϑ , we should compute the gradient of the state
vectors with respect to ϑ . Thus, we have the following theorem.

Theorem 4.4 For each pair (δ,ϑ) ∈ Δ × Ω , we have

∂ z(s | δ,ϑ)

∂ϑ
= Π(s | δ,ϑ), s ∈ [0, M],

where Π(· | δ,ϑ) is the solution of the following auxiliary dynamic system on each
subinterval [k − 1, k):

Π̇(s | δ,ϑ) = ∂ f̂ k(z(s), z(κ(s)), δ,ϑ)

∂ z(s)
Π(s | δ,ϑ)

+ ∂ f̂ k(z(s), z(κ(s)), δ,ϑ)

∂ z(κ(s))
Π(κ(s) | δ,ϑ)

+ ∂ f̂ k(z(s), z(κ(s)), δ,ϑ)

∂ϑ
(4.10)

with the initial condition
Π(s) = 0, s � 0, (4.11)

for s ∈ [k − 1, k),

f̂ k(z(s), z(κ(s)), δ, ϑ) =
⎧⎨
⎩

δk f k(z(s), z(κ(s)), boldsymbolϑk , ϑk′ ), κ(s) ∈ [k ′ − 1, k
′
),

δk f k(z(s),φ(κ(s)),ϑk , ω(κ(s))), κ(s) < 0,

where k, k
′ = 1, · · · , M.

Proof The proof of Theorem 4.4 is similar to that given for Theorem 3.3 in [13], and
hence is omitted.

After obtaining the gradients of the cost function and the constraints with respect
to the decision variables, we can now use the existing constrained nonlinear optimiza-
tion packages such as FMINCON in MATLAB or NLPQLP in FORTRAN to solve
Problem 3. In the next section, we will demonstrate the effectiveness of this approach
through solving two numerical examples.

5 Numerical Examples

5.1 Example 1: Optimal Control Problemwith Time-Varying Time-Delay Switched
System

Consider the following nonlinear time-varying time-delay switched system with
two subsyetems, it is slightly different from the second example in [31] with the delay
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being replaced by a function of t :

S1 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −5x1(t) − 4x2(t) − 3x1(t − exp(−t/3))

+ 2x2(t − exp(−t/3)) + u1(t)x1(t) + u2(t)x2(t)

+ 0.1 tanh(x1(t)),

ẋ2(t) = 0.1x1(t) − 7x2(t) + 0.5u1(t)x1(t) + 0.5u2(t)x2(t)

− sin(x2(t − exp(−t/3))),

if 0 < t � �1,

(5.1)

S2 :

⎧⎪⎨
⎪⎩

ẋ1(t) = −4x1(t) + 0.5x2(t) + 0.2 sin(x2(t)) + t2 + 8,

ẋ2(t) = 5x1(t) − 5x2(t) + 0.5 sin(x2(t − exp(−t/3)))

− u1(t)x1(t) − u2(t)x2(t),

if �1 < t � 1.5,

(5.2)

and the initial state are given by

x1(t) = 6, x2(t) = t2 + 2, t � 0, (5.3)

where the switching time �1 and control vector u(t) = [u1(t), u2(t)]� are decision
variables that need to be optimized.

Our optimal control problem is thus stated as follows: Subject to the initial con-
ditions (5.3) and the dynamic systems (5.1)–(5.2), choose the switching time �1 and
control vector u(t) = [u1(t), u2(t)]� to minimize

J0(T , u(t), �) = (x1(1.5) − 2)2 + (x2(1.5) − 1)2, (5.4)

where (x1(1.5), x2(1.5)) denotes the desired final state.
A switched system consists of a number of subsystems and a switching law, so

we assume that the switching sequence of this switched system is S1 ⇒ S2. In order
to using the control parameterization method and the time-scaling transformation
technique for this problem, we introduce two new variables δ = [δ1, δ2]� and ϑ =
[ϑ1, ϑ2, ϑ3, ϑ4]� represent the duration of the subsystem and parameter vector, where
δ1 = �1 and δ2 = 1.5 − �1. Moreover, we have that δ1 + δ2 = 1.5.

By applying the control parameterization method and the time-scaling transforma-
tion technique, (5.1)–(5.2) can be converted into the following form:

S̃1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1(s) = δ1(−5z1(s) − 4z2(s) − 3z1(κ(s)) + 2z2(κ(s))

+ ϑ1z1(s) + ϑ3z2(s) + 0.1 tanh(z1(s))),

ż2(s) = δ1(0.1z1(s) − 7z2(s) + 0.5ϑ1z1(s) + 0.5ϑ3z2(s)

− sin(z2(κ(s)))),

if 0 < s � 1, (5.5)

S̃2 :

⎧⎪⎨
⎪⎩

ż1(s) = δ2(−4z1(s) + 0.5z2(s) + 0.2 sin(z2(s)) + ν(s)2 + 8),

ż2(s) = δ2(5z1(s) − 5z2(s) + 0.5 sin(z2(κ(s)))

− ϑ2z1(s) − ϑ4z2(s),

if 1 < s � 2,

(5.6)
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where z(s) = x(t(s)) and z(κ(s)) = x(t(s) − d(t(s))).
The initial conditions (5.3) become

z1(s) = 6, z2(s) = ν(s)2 + 2, s � 0, (5.7)

Furthermore, the cost function (5.4) becomes

J̃0(s, δ,ϑ) = (z1(2) − 2)2 + (z2(2) − 1)2. (5.8)

Thus, the transformed problem can be stated as follows: Subject to the new dynamic
systems (5.5)–(5.6) and the new initial conditions (5.7), choose the mode durations
δi , i = 1, 2 and parameter vectors ϑi , i = 1, 2, 3, 4, to minimize J̃0.

Let the control constraints be −4.0 < ϑ1, ϑ2, ϑ3, ϑ4 � 6.0. We suppose the initial
optimal parameterization vector is [0.1, 0.2, 0.5, 0.8]� and the initial time of duration
vector is [0.9, 0.6]� in the new problem.

By comparing the numerical results obtained by using the new method with tradi-
tional control parameterization we know that using the new method is more accurate
than using traditional control parameterization method in optimal value. The details
of the numerical results we get will be listed in Tables 1 and 2. In addition, the optimal
trajectories of the state obtained by using different methods are illustrated in Figs. 2
and 3, the optimal control by using different methods are illustrated in Figs. 4 and 5.

Table 1 Numerical results of
Example 1 by using the
traditional control
parameterization method

The item of comparison The experimental value

Optimal value 2.251 1 × 10−12

CPU time 171.125 0

Number of function calls 781

The optimal δ δ� = [0.750 0, 0.750 0]�
The optimal ϑ ϑ� =

[3.5246,−0.6884,
0.5916,−3.4023]�

Table 2 Numerical results of
Example 1 by using the new
method

The item of comparison The experimental value

Optimal value 6.791 6 × 10−17

CPU time 186.968 8

Number of function calls 709

The optimal δ δ� = [1.065 9, 0.434 1]�
The optimal ϑ ϑ� = [0.132 1, 0.513 3, 0.502 7, 0.948 4]�
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Fig. 2 Optimal state trajectory for Example 1 by using traditional control parameterization method

Fig. 3 Optimal state trajectory for Example 1 by using the new method

5.2 Example 2: Optimal Control Problemwith Time-Varying Time-Delay Switched
System

Consider the following nonlinear time-varying time-delay switched system with
three subsyetems, again, the dynamic system comes from the first example in [31,32]
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Fig. 4 Optimal control value for Example 1 by using the new method

Fig. 5 Optimal control value for Example 1 by using the traditional control parameterization method

with the delay being replaced by another function of t :

S1 :
{

ẋ1(t) = 2x1(t)x2(t) + x2(t − exp(−t)),
ẋ2(t) = 3x1(t) + 4x2(t − exp(−t)),

if 0 < t � �1, (5.9)

S2 :
{

ẋ1(t) = −2x1(t)x2(t) + sin(x2(t − exp(−t))),
ẋ2(t) = x1(t)x2(t) + x1(t − exp(−t))x2(t − exp(−t)),

if �1 < t � �2,

(5.10)
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S3 :
{

ẋ1(t) = t2 − 2x1(t) + 3x2(t − exp(−t)),
ẋ2(t) = −x2(t) + x1(t − exp(−t))x2(t − exp(−t)),

if �2 < t � 1,

(5.11)

and the initial conditions are

x1(t) = t − 1, x2(t) = t2 + 1, t � 0, (5.12)

where the switching time vector � = [�1, �2]� is decision variable that needs to be
optimized.

Our optimal control problem is thus stated as follows: Subject to the initial condi-
tions (5.12) and the dynamic systems (5.9)–(5.11), choose the switching time vector
� = [�1, �2]� to minimize

J0(T ) = (x1(1) − 0.5)2 + (x2(1) − 0.25)2, (5.13)

where (x1(1), x2(1)) denotes the desired final state.
As in [31], we assume that the switching sequence is S1 ⇒ S2 ⇒ S3. Let δ1 = �1,

δ2 = �2 − �1 and δ3 = 1 − �2, clearly, δ1, δ2 and δ3 represent the duration of the
subsystem S1, S2 and S3, respectively. Moreover, we have that δ1 + δ2 + δ3 = 1, δi �
0, i = 1, 2, 3.

By applying the time-scaling transformation technique, (5.9)–(5.11) can be con-
verted into the following form:

S̃1 :
{

ż1(s) = δ1(2z1(s)z2(s) + z2(κ(s))),
ż2(s) = δ1(3z1(s) + 4z2(κ(s))),

0 < s � 1, (5.14)

S̃2 :
{

ż1(s) = δ2(−2z1(s)z2(s) + sin(z2(κ(s)))),
ż2(s) = δ2(z1(s)z2(s) + z1(κ(s))z2(κ(s))),

1 < s � 2, (5.15)

S̃3 :
{

ż1(s) = δ3(ν(s)2 − 2z1(s) + 3z2(κ(s))),
ż2(s) = δ3(−z2(s) + z1(κ(s))z2(κ(s))),

2 < s � 3. (5.16)

The initial conditions (5.12) become

z1(s) = ν(s) − 1, z2(s) = ν(s)2 + 1, s � 0. (5.17)

Furthermore, the cost function becomes

J̃0(s, δ) = (z1(3) − 0.5)2 + (z2(3) − 0.25)2. (5.18)

Thus, the transformed problem can be stated as follows: Subject to the new dynamic
systems (5.14)–(5.16) and the new initial conditions (5.17), choose the mode durations
δi , i = 1, 2, 3, to minimize J̃0.

In the new problem, we let the initial time of durations be δ1 = 0.1, δ2 = 0.7,
δ3 = 0.2, and the new time horizon is s ∈ [0, 3]. We can obtain the optimal cost is
J̃ ∗
0 = 9.536 0× 10−5. The other numerical results are described in Table 3 and Fig. 6

shows the optimal state trajectory.
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Table 3 Numerical result of
Example 2

The item of comparison The experimental value

Optimal value 9.536 0 × 10−5

CPU time 29.562 5

The optimal δ δ� = [0.151 8, 0.651 0, 0.197 2]�
Number of function calls 138

Fig. 6 Optimal state trajectory for Example 2

6 Conclusion

In this paper, we consider a class of optimal control problems with TVTDSS. We
first transform the original problem into a parameter selection problem with finite
dimensional decision variables by control parameterization method. In order to obtain
the optimal switching times, we adopt the time-scaling transformation technique to
convert the optimization problem with variable switching times into an equivalent
new problem defined on a new time horizon with fixed switching times. Then, we
calculate the gradients of the objective and constraint functions with respect to the
control heights and durations. Finally, the examples were provided to illustrate the
effectiveness of the proposed approach.
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