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Abstract
Medical imaging is crucial in modern clinics to provide guidance to the diagnosis
and treatment of diseases. Medical image reconstruction is one of the most funda-
mental and important components of medical imaging, whose major objective is to
acquire high-quality medical images for clinical usage at the minimal cost and risk to
the patients. Mathematical models in medical image reconstruction or, more gener-
ally, image restoration in computer vision have been playing a prominent role. Earlier
mathematical models are mostly designed by human knowledge or hypothesis on the
image to be reconstructed, and we shall call these models handcrafted models. Later,
handcrafted plus data-driven modeling started to emerge which still mostly relies on
human designs, while part of the model is learned from the observed data. More
recently, as more data and computation resources are made available, deep learn-
ing based models (or deep models) pushed the data-driven modeling to the extreme
where the models are mostly based on learning with minimal human designs. Both
handcrafted and data-driven modeling have their own advantages and disadvantages.
Typical handcrafted models are well interpretable with solid theoretical supports on
the robustness, recoverability, complexity, etc., whereas they may not be flexible and
sophisticated enough to fully leverage large data sets. Data-driven models, especially
deep models, on the other hand, are generally much more flexible and effective in
extracting useful information from large data sets, while they are currently still in
lack of theoretical foundations. Therefore, one of the major research trends in medical
imaging is to combine handcrafted modeling with deep modeling so that we can enjoy
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benefits from both approaches. The major part of this article is to provide a conceptual
review of some recent works on deep modeling from the unrolling dynamics view-
point. This viewpoint stimulates new designs of neural network architectures with
inspirations from optimization algorithms and numerical differential equations. Given
the popularity of deep modeling, there are still vast remaining challenges in the field,
as well as opportunities which we shall discuss at the end of this article.

Keywords Medical imaging · Deep learning · Unrolling dynamics · Handcrafted
modeling · Deep modeling · Image reconstruction

Mathematics Subject Classification 60H10 · 92C55 · 93C15 · 94A08

1 Introduction

Medical image reconstruction can often be formulated as the following mathemat-
ical problem:

f = Au ⊕ η, (1.1)

where A is a physical systemmodeling the image acquisition process. Operator A can
be a linear operator or nonlinear operator that depends on the specific imagingmodality.
Variable u is the unknown image to be reconstructed, and f is the measured data that
might be contaminated by noise η with known or partially known noise statistics, e.g.,
Gaussian, Laplacian, Poisson, Rayleigh, etc. The operator ⊕ is a notation to denote
addition when Gaussian noise is assumed, a certain nonlinear operator when Poisson
noise or Rician noise is assumed. In different image reconstruction tasks, A takes
different forms:

– Denoising: A is an identity operator.
– Deblurring: A is a convolution operator. When the convolution kernel is unknown,
the problem is called blind deblurring [1].

– Inpainting: A is a restriction operator which can be represented by a diagonal
matrix with value 0 or 1 [2].

– Magnetic resonance imaging (MRI): A is a subsampled Fourier transform which
is a composition of the Fourier transform and a binary sampling operator [3].

– X-ray based computed tomography (CT): A is a subsampled Radon transform,
which is a partial collection of line integrations [4].

– Quantitative susceptibility mapping (QSM) [5–8]: A is the dipole kernel

A(X) = 2z2 − x2 − y2

4π(x2 + y2 + z2)5/2
, X = (x, y, z) ∈ R

3.

The inverse problem (1.1) is in general challenging to solve due to the large-scale and
ill-posed nature of the problem in practice.
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1.1 Image ReconstructionModels

The above inverse problem (1.1) covers a wide range of image restoration tasks
which are not limited to medical image reconstruction. To solve the inverse problem
(1.1), it is common practice to consider the following optimization problem:

min
u∈D

L (u) = F(Au, f ) + λΦ(W , u). (1.2)

The solution u� ∈ argminu L (u) is an approximate solution to the inverse problem
(1.1). In (1.2), the term F(Au, f ) is the data fidelity term thatmeasures the consistency
of the approximate solution to themeasured data f . Its specific form normally depends
on the noise statistics. For example:

– Gaussian noise: F(Au, f ) = 1
2‖Au − f ‖22,

– Poisson noise: F(Au, f ) = 〈1, Au〉 − 〈 f , log(Au)〉, with 〈a, b〉 = ∑
i ai bi ,

– Impulse noise: F(Au, f ) = ‖Au − f ‖1,
– Multiplicative noise [9]: F(Au, f ) = λ1

〈
Af
u , 1

〉
+ λ2

∥
∥
∥
Af
u − 1

∥
∥
∥
2
.

The second termΦ(W , u) in (1.2) is the regularization term encoding the prior knowl-
edge on the image to be reconstructed. The regularization term is often themost crucial
part of the modeling, and what people have mostly focused on in the literature. The
parameter λ in (1.2) provides a balance between the data fidelity term and the regu-
larization term. Mathematical modeling has been playing a vital role in solving such
inverse problems. Interested readers can refer to [10–13] for more extensive reviews
on mathematical models for image restoration.

Deep learning models can also be casted into the form of (1.2). However, there are
differences as well. In handcraft or handcraft + data-driven modeling, the transfor-
mationW is often a certain linear transformation that is able to extract sparse features
from the images. In handcraft models, W is often given by design (e.g., a differential
operator or wavelet transform); in handcraft + data-driven models, W (or a portion
of it) is often learned from the given data. Sparsity is the key to the success of these
models. Deep learning models follow a similar modeling philosophy by considering
nonlinear sparsifying transformations rather than linear ones. In general, we define a
parameterized nonlinear mapping V (·,Θ) : F → U , f �→ u that maps the input
data f to a high-quality output image u. The mapping V is parameterized byΘ which
is trained on a given data setF ×U by solving the following optimization problem:

min
Θ

1

#(F × U )

∑

( f ,u)∈F×U

C (V ( f ,Θ), u),

where C (·, ·) is a metric of difference between the approximated image V ( f ,Θ) and
the ground truth image u, and #(F ×U ) is the cardinality of the data setF ×U . To
prevent overfitting, we can introduce a regularization term to the above optimization
problem as in (1.2). We then have the problem
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min
Θ

L ( f , u;Θ) = 1

#(F × U )

∑

( f ,u)∈F×U

C (V ( f ,Θ), u) + R(Θ), (1.3)

whereR(·) is the regularization term that can be chosen as, for example, the �2 or �1
norm. Good examples of the nonlinear mapping V (·) include the stacked denoising
autoencoder (SDAE) Vincent et al. [14], the U-Net [15], the ResNet [16,17], etc.
We postpone a detailed discussion on these networks and how to interpret them in
mathematical terms in later sections.

The development of modeling in image reconstruction for the past three decades
can be summarized to three stages.

– Handcraft modeling (1990-).Models are designed based onmathematical charac-
terizations on the desirable recovery of the image. For example, the ideal function
space a “good” image should belong to, ideal local or global geometric proper-
ties the image should enjoy, or sparse approximation by certain well-designed
basis functions, etc. Successful handcraft models include total variation (TV) [18]
model, Perona–Malik diffusion [19,20], shock-filters [21,22], nonlocal methods
[23–27], wavelet [28,29], wavelet frames [30,31], BM3D [27], WNNM [32], etc.
These models mostly have solid theoretical foundations and high interpretability.
They work reasonably well in practice, and some of them are still the state-of-the-
art methods for certain tasks.

– Handcraft + data-driven modeling (1999-). Starting from around 1999, models
that combine data-driven or learning with handcraft modeling started to emerge.
Thesemodels rely on some generalmathematical or statistical framework by hand-
craft designs. However, the specific form of the model is determined by the given
image data or data set. Comparing to purely handcrafted models, these models can
better exploit the available data and outperform their corresponding none data-
driven counterparts. Meanwhile, the handcrafted framework of the models grants
certain interpretability and theoretical foundation to the models. Successful exam-
ples include themethod of optimal directions [33], the K-SVD [34], learning based
PDE design [35], data-driven tight frame [36,37], Ada-frame [38], low-rank mod-
els [39–43], piecewise-smooth image models [44,45], and statistical models [46],
etc.

– Deep learning models (2012-). 2012 is the year that signifies the uprise of deep
learning in computer visionwith the introduction of a convolutional neural network
(CNN) called AlexNet [47] for image classification. Then, various types of CNNs
such as ResNet [16,17] and generative adversarial networks (GANs) [48] were
introduced and applied in image reconstructions. We shall refer to these models
as deep learning based models (or deep models for short). Most deep models have
millions to billions of parameters. These parameters are trained (optimized) on
large data sets via parallel computing (e.g., on graphics processing units (GPUs)).
Deep models have greatly advanced the state of the art of many image reconstruc-
tion tasks and have changed the research landscape of computer vision in general.
The success of deep models is mainly due to the presence of large image data sets
with high-quality labels, and the accessibility ofmassive computing resources. The
reliance of deep models on large labeled data sets limits, at least for the moment,
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the application of deep learning in medical image reconstruction or healthcare in
general. The major focus of this review is to recall and discuss deep models in
medical image reconstruction, and the limitations, challenges, and opportunities
in this new and exciting research direction.

Note that what makes medical image reconstruction different from image restora-
tion in computer vision is quality metrics on the reconstructed image. Although
researchers use standard metrics such as the peak signal-to-noise-ratio (PSNR), mean
square error, structure similarity (SSIM),meaningful qualitymetrics of a reconstructed
medical image should be clinically relevant and task dependent. Furthermore, most
medical images are 3D arrays which pose computation challenge as well.

1.2 AlgorithmDesign for Image ReconstructionModels

The difficulties of solving the image reconstruction models motivate the opti-
mization community to design highly efficient numerical algorithms for large scale,
nonsmooth, and even nonconvex optimization problems. Representative algorithms
include the alternating directionmethod ofmultipliers (ADMM) [49–51], primal–dual
algorithm [52–54], split Bregman algorithm [55,56], linearized Bregman algorithm
[57,58], iterative shrinkage-thresholding algorithm (ISTA) [59], and fast iterative
shrinkage-thresholding algorithm (FISTA) [60], among many others. Here, we briefly
review some of the algorithms that will be needed in later sections.

1.2.1 ISTA and FISTA

Consider the following optimization problem which is a special case of (1.2):

min
α

1

2
‖ f − WTα‖22 + λ‖α‖1, (1.4)

where W	 is a decoding operator that maps code α back to image domain. Then, the
ISTA solving (1.4) simply reads as

αk+1 = Tλτk

(
αk − 2τkW(WTαk − f )

)
, (1.5)

where τk > 0 is an appropriate step size and the soft-thresholding operator Tλ(·) is
defined component-wisely as Tλ(x) = sign(x)max(|x | − λ, 0),with x ∈ R. ISTA
was explicitly proposed in [59]. Its idea, however, can be traced back to the classical
proximal forward–backward algorithm [61,62]. Later, an accelerated version of ISTA,
called fast iterative soft-thresholding algorithm (FISTA),was introduced [60,63]which
is based on the idea of Nesterov’s [64]. FISTA takes following form

αk+1 = Tλ/L lip

(

yk − 1

L lip
W(WT yk − f )

)

,

tk+1 =
1 +

√
1 + 4t2k
2

,
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yk+1 = αk+1 + tk − 1

tk+1
(αk+1 − αk), (1.6)

where L lip is the Lipschitz constant of the quadratic term in (1.4).

1.2.2 ADMM/Split Bregman Algorithm

Consider the following special case of the optimization problem (1.2)

min
u

L (u) = 1

2
‖Au − f ‖22 + λ‖Wu‖1,

which can be written equivalently as

min
u,d

L (u, d) = 1

2
‖Au − f ‖22 + λ‖d‖1 s.t. Wu = d.

The corresponding augmented Lagrangian function [65, Chapter 17] is defined by

L (u, d; b) = 1

2
‖Au − f ‖22 + λ‖d‖1 + 〈Wu − d, b〉 + μ

2
‖Wu − d‖22

with the Lagrangian multiplier b. Then, the ADMM or split Bregman algorithm takes
the form [49,56]

uk+1 =
(
ATA + μWTW

)−1 [
AT f + μWT(dk − νk)

]
,

dk+1 = Tλ/μ

(
Wuk+1 + νk

)
,

νk+1 = νk + (Wuk+1 − dk+1), (1.7)

where λ and μ are tuning parameters.

1.2.3 The Primal–Dual Algorithm

Consider the following optimization problem

min
u

F(u) + Φ(Wu), (1.8)

where F(u) is the data fidelity term andΦ(Wu) is the regularization term appeared in
(1.2). Assume F : Rn → (−∞,+∞] and Φ : Rm → (−∞,+∞] are closed proper
convex functions. The problem (1.8) can be written equivalently as

min
u

max
w

F(u) + 〈Wu,w〉 − Φ∗(w). (1.9)

123



A Review on Deep Learning in Medical Image Reconstruction 317

Then, the primal–dual hybrid gradient (PDHG) algorithm [52–54] can be written as

wk+1 = (I + ∂Φ∗)−1
(
wk + αkWuk

)
,

uk+1 = (I + ∂F)−1
(
uk − βkW	wk+1

)
, (1.10)

where αk and βk are tuning parameters. Note that in [54], the authors introduced an
additional correction update step

ūk+1 = uk+1 + θ(uk+1 − uk) (1.11)

to the original PDHG algorithm (1.10) and replaced uk in wk+1-step by ūk .

1.2.4 SGD

It is very common in machine learning that an optimization problem takes the
following form

min
Θ

FN (Θ) = 1

N

N∑

i=1

fi (Θ). (1.12)

The main computation challenge, especially in deep learning, is that N can be huge,
e.g., in the magnitude of millions to billions. Therefore, the evaluation of the func-
tion value FN and its gradient can be rather slow. In such case, stochastic gradient
descent (SGD) algorithm [66–69] and its variants [70–72] are among the most popular
algorithms in deep learning.

The very basic form of (mini-batch) SGD is

Θk+1 = Θk − αk
1

|Sk |
∑

ik∈Sk

∇ fik (Θ
k),

where αk is the step size (or learning rate) andSk is a random subset of {1, 2, · · · , N }.
The evaluation of 1

|Sk |
∑

ik∈Sk
∇ fik (Θ

k) provides an unbiased estimation of the full
gradient and is computationally cheap. Other than SGD, numerous randomized algo-
rithms are being used in deep learning, such as Adam [73], AdaGrad [74], RMSProp
[75]. A comprehensive review on optimization algorithms for large-scale machine
learning problems can be found in [76].

1.3 When Handcraft ModelingMeets Deep Learning

Both handcrafted models and deep models have their advantages and drawbacks
depending on the applications. Most handcrafted models are designed with a solid
mathematical foundation and can be verywell interpreted. However, handcraftedmod-
els are not flexible enough to fully leverage large data sets. Deep models, on the other
hand, are generally much more flexible and can better extract useful information from
large data sets. However, they are generally more challenging to interpret. For the
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moment, they are also in lack of theoretical foundations in contrast to handcrafted
models. Therefore, there has been an increasing effort in the community to combine
handcrafted modeling and deep modeling so that we can enjoy benefits from both
approaches.

One of themost popularways of such combination is the so-called unrolling dynam-
ics approach. It started with the work of Gregor and LeCun [77] where the authors
showed that one could unroll the ISTA in (1.5) to create a feed-forward network. Then,
one can train ISTA in an end-to-end fashion to determine the parameters in ISTA so that
they are best suitable for the training data. They called the unrolled dynamics LISTA
and demonstrated its advantage over ISTA. This work showed that one could unroll
a discrete dynamic system to form a network for end-to-end training. More recently,
more and more examples showed that the unrolling dynamics approach seems a good
balance between model interpretability and efficacy. This includes unrolling discrete
forms of nonlinear diffusions for image restoration [35,78] and unrolling optimization
algorithms for medical imaging and inverse problems [79–85]. The unrolling dynam-
ics approach can often result in deep models that have better interpretability inherited
from the original dynamics.

Furthermore, these deep models normally have much fewer trainable parameters
than black box deep neural networks, which are more suitable for learning on rela-
tively small data sets. On the other hand, we may interpret certain classes of deep
convolutional networks, such as ResNet, as discrete dynamics, and hence relates deep
learning with optimal control [86,87]. Such viewpoint not only provides elegant inter-
pretation of deep neural networks [88], but also enables us to design more effective
deep networks for various tasks in machine learning [84,89–94], computer vision
[95], inverse problems [96,97], and natural language processing [98]. More recently,
intriguing relations between deep convolutional networks with multigrid method are
addressed [99] which lead to new interpretations to deep models.

The remainder of this paper is organized as follows. In Sect. 2, we will review
some recently proposed deep neural networks which are popular in medical imag-
ing. Section 3 shows the understanding of deep neural networks from the perspective
of representation learning and differential equations. Section 4 reviews some recently
proposed deepmodels formedical imaging,where Sect. 4.1 presents some examples of
post-processing deepmodels, Sect. 4.2 collects somemodels that are designed by com-
bining handcrafted modeling with deep modeling, and Sect. 4.3 reviews task-driven
deep models. To conclude, Sect. 5 summarizes the main challenge and opportunities
in deep learning based medical imaging.

2 Review of Deep Neural Networks

Deep neural networks (DNNs) are now proven to be powerful tools to represent
complex data. The main differences between DNNs and traditional machine learning
models are the composite nonlinearity of the DNNs and the end-to-end training, which
make DNNs very effectively in extracting features that are most suitable for a given
task. In recent years, DNNs are used in variousmedical imaging tasks, including image
reconstruction, segmentation, region-of-interest detection, super-resolution, classifi-
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cation, etc. In this section, we briefly recall some of the DNNs that are widely adopted
in medical imaging.

2.1 ResNet

In computer vision, the residual network (ResNet) [16,17] is one of themost popular
DNNs. The architecture of ResNet is shown in Fig. 1 which can also be formulated
mathematically as

uk+1 = uk + Fk(uk), (2.1)

where uk (resp. uk+1) indicates the input (resp. output) feature map of the k-th layer of
the ResNet andFk(uk) is called a nonlinear residual block with trainable parameters.
The skip connection of ResNet is crucial in facilitating stable training when the net-
work is very deep. Other DNNs with the similar skip connections include the learned
diffusion model TRD [78], DenseNet [100] and U-Net [15], among many others.

2.2 Autoencoder

Autoencoder (AE) [101,102] is a type of neural network that is used to learn data
representation in an unsupervised manner. It aims to learn an encoder from a set
of data together with a decoder so that we do not lose any essential information
during the encoding and decoding process. Figure 2 presents a typical example of the
AE architecture. For a given image X , the parameterized mapping fθ (e.g., a fully
connected or a convolutional neural network) is an encoder that extracts feature maps
from X . The encoded multi-channel feature maps are denoted by Y = fθ (X). The
encoded feature maps Y is then decoded by another parameterized mapping gθ ′ to
obtain the reconstructed data Z. The parameters θ and θ ′ are optimized on a data
set so that a properly chosen loss function that measures the average discrepancies

Fig. 1 ResNet

Conv

uk=uk-1+fk-1(uk-1)

uk-1

fk-1(uk-1)
Conv

Conv

uk +1=uk+fk(uk)

fk(uk)
Conv
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X Y Z
fθ gθ

input feature maps Reconstructed data

Encoding Decoding

Fig. 2 Autoencoder

between X and Z is minimized. AE resembles linear representations such as Fourier
and wavelet transform if we regard encoding as the decomposition, decoding as the
reconstruction, and feature maps as the coefficients of the representation. However,
the representation provided by AE is nonlinear and is learned from a data set.

To learn a more effective and robust representation, Vincent et al. [14] proposed
the stacked denoising autoencoder (SDAE). In SDAE, the encoder and decoder are
DNNs, and they are trained to recover Z ≈ X from noisy input X . Based on the
encoder/decoder framework, Badrinarayanan et al. [103] designed a DNN, called
SegNet, for image segmentation. In [104], the encoder/decoder framework is adopted
for image denoising and super-resolution. More recently, Chen et al. [105] designed a
residual encoder–decoder CNN to suppress the noise and preserve features in low-dose
CT images that are reconstructed using the filtered back projection (FBP) algorithm.

2.3 U-Net

In [15], aU-shaped deep neural network, calledU-Net,was proposed for biomedical
image segmentation which is by far one of the most successful deep image seg-
mentation models. The architecture of U-Net is shown in Fig. 3. It resembles the
encoder/decoder architecture of AE if we view the left half of the U-Net as an encoder
and the right half as a decoder. The main difference between the U-Net and AE is the
use of skip connections of U-Net. Similar to the U-Net, Milletari et al. [106] designed
a DNN, called V-Net, for 3D volumetric medical image segmentation. Motivated by
the U-Net and the convolutional framelets [107], Ye et al. [108] designed a multi-
resolution deep convolutional framelets. More recently, U-Net is extended to image
analysis tasks [109].

3 Interpretations of Deep Neural Networks

The development of traditional machine learning methods, such as support vec-
tor machine, decision tree, random forest, benefits tremendously from theoretical
studies in machine learning. However, existing machine learning theory, such as
PAC, VC-dimension, Rademacher complexity, may not be most suitable to analyze
DNNs. AlthoughDNNs are often composed of simple functions, such as convolutions,
pooling, element-wise activation functions, the entire networks are often difficult to
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analyze. Therefore, theoretical deep learning has become a popular area in machine
learning that has attracted a lot of attention from theoretical computer scientists, statis-
ticians, and mathematicians. In this section, we shall review some recent works on
interpreting DNNs from two different perspectives, namely representation learning
and differential equations. We will see that function approximation is a powerful
tool in characterizing the efficacy of the given representation. It provides a rigorous
analysis of the capacity of DNNs and how well they can approximate functions liv-
ing in various function spaces. The perspective through differential equations, on the
other hand, is more intuitive than function approximation and can explicitly guide
the design of architectures of DNNs and training algorithms. There are also several
other perspectives on the theoretical interpretations of deep learning. One may refer
to the course “Theories of Deep Learning” (STATS 385) hosted by David Donoho at
Stanford University and the references therein (https://stats385.github.io/).

3.1 Representation Learning Perspective

Images, such as medical images or natural images, are usually assumed to have
sparse (or low dimensional) structures. The sparse structures can be effectively
extracted by transformations. Successful examples include the (windowed) Fourier
transform, wavelet transform, curvelet transform, etc., and they are able to provide
efficient representations to images. They are pre-designed linear transformations and
are independent of the given image data. DNNs can also be viewed as sparse repre-
sentations that are able to extract sparse features from images. The difference is that
DNNs are learned from a set of images and are (highly) nonlinear.

The quality of a given representation can be measured by its ability to approximate
functions living in a certain function space. For example, let Φ := {φi (x) : x ∈
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R
n, i ∈ N+} be a set of atoms, and function f (x) be an element in function space

F equipped with norm ‖ · ‖. One of the most basic and important approximation
properties states as follows: for any given ε > 0, there exists f̃α,N := ∑N

i=1 αiφi (x)

with N ∈ N+ and α = {α1, · · · , αN } ∈ R
N such that

‖ f − f̃α,N‖ < ε.

A good representation requires fewer atoms (i.e., smaller N ) to achieve an ε-
approximation. The representation of various types of Φ has been well studied in
the literature, such as polynomials, splines, Fourier basis, and wavelets [28,29,110].

The neural network is a more efficient tool that can approximate a function arbi-
trarily well under suitable conditions [111–113]. Both the depth and width of a neural
network are among the most important factors that affect its approximation power. In
the following, we will review some of the existing characterizations of the approxi-
mation properties of shallow and deep neural networks.

Consider a shallow neural network with only one hidden layer

f̃N (x;Θ) =
N∑

i=1

aiσ(wT
i x + bi ),

where x ∈ R
n is the input image data, Θ = {ai ,wi , bi }, i = 1, · · · , N , are train-

able parameters, and σ(z) is an element-wisely applied nonlinear activation function.
Examples of σ(z) are ReLU(z) = max(0, z), tanh(z) = ez−e−z

ez+e−z , sigmoid(z) = 1
1+e−z

and more generally a sigmoidal function [114] that has the property

σ(z) =
{
1, if z → +∞,

0, if z → −∞.
(3.1)

ADNN is a neural networkwithmultiple hidden layers. It can be viewed as a successive
composition of multiple shallow networks. A typical DNN (for regression problems)
with depth L and width N = (N1, N2, · · · , NL) denoted as

f̃L,N (x;Θ) : Rn �→ R,

can be recursively defined as Θ� = (Θ�−1, θ�), f̃Θ� = (θ� ◦σ ◦ f̃Θ�−1), θ� : RN� →
R

N�+1 with θ�(x) = W�x + b�, and f̃L,N := f̃ΘL .
Earlier results on the approximation property, i.e., universal approximation, suggest

that a wide class of functions can indeed be approximated by neural networks with
only one hidden layer, though the number of neurons, i.e., N , may increase exponen-
tially as we decrease ε [114–116]. There are benefits in increasing the depth L of the
neural network when approximating a target function. For example, approximation
with DNNs leads to an exponential or polynomial reduction in the number of neurons
while maintaining the same level of approximation accuracy [117–120]. Delalleau
and Bengio [121], Telgarsky [122,123] presented concrete examples that there exist
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functions that can be more efficiently represented with DNNs rather than shallow net-
works. In particular, Telgarsky [123] showed that the DNNs with O(L3) layers and
constant width cannot be approximated by networks with O(L) depth and less than
2L width.

Lu et al. [124] investigated the efficiency of depth of ReLU activated DNNs from a
different view by proving that there exist classes of wide neural networks which cannot
be realized by any narrow network whose depth is no more than a polynomial bound.
Comparing to the known result that there are classes of deep networks which cannot
be realized by any shallow network whose size is no more than an exponential bound
[120], results from [124] indicated that depth might be more effective than width.
Although depth is more important than width, Hanin [125,126] proved that there is
a minimum width of ReLU activated DNNs to ensure approximation of continuous
functions. Their results indicated that a good DNN cannot be too narrow, otherwise
we cannot approximate continuous functions even with infinite depth.

More recently, Yarotsky [127] analyzed the dependence of optimal approximation
rate with respect to depth for ReLU activated DNNs.When approximating amultivari-
ate polynomial, Rolnick and Tegmark [128] proved that the total number of neurons in
DNNs should grow linearly with respect to the number of variables of the polynomial.
Shen et al. [129] provided intriguing analysis on ReLU activated DNNs via nonlinear
approximation of composite dictionaries. They demonstrated the advantage of depth
over width quantitatively by comparing the N -term approximation order of DNNs v.s.
one-hidden-layer neural networks. Other than generic DNNs, theoretical analysis on
the popular ResNet was also provided [130–132].

In [133], the authors investigated the connection between linear finite element
functions and ReLU deep neural networks. Firstly, they proposed an efficient ReLU
activated DNN to represent any linear finite element functions and theoretically estab-
lished that at least 2 hidden layers are needed in a ReLU activated DNN to represent
any linear finite element functions in Ω ⊆ R

d when d ≥ 2. Then, using this relation-

ship they established a straightforward error estimate as O(N− 1
d ) for a special kind

of ReLU activated DNNs with O(N ) nonzero parameters by involving the h-adaptive
linear finite element approximation theory [134].

Different from the approximation viewpoint, He and Xu [99] developed a unified
model, known as MgNet, that simultaneously recovers and extends some CNNs for
image classification and multigrid methods for solving discretized PDEs, by combin-
ing multigrid and deep learning methodologies.

3.2 Differential Equation and Control Perspective

Given a DNN f̃ (x;Θ) : Rn → R
m , due to its composite structure as described

in the previous subsection, we may view f̃ (x;Θ) as an iterative mapping between
R
n and R

m . Then it is natural to view a generic DNN as a certain dynamic system
[135]. However, a dynamic system that corresponds to a generic DNN is difficult to
analyze since it does not havemuch special structure to exploit. Fortunately, it has been
proven empirically that most of the effective DNNs have special structures in their
architecture. In fact, designing special structures of DNNs, i.e., the architecture design,
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to make them easy to train and generalize better is one of the major research directions
in deep learning. Furthermore, the objective of the emerging research topic neural
architecture search (NAS), a subfield of automating machine learning (AutoML), is
to search for effective DNN architecture for different data sets and tasks.

One of the most well-known DNNs with special structures is ResNet. Its bypasses
(or shortcuts) enable us to efficiently train ultra-deep networks and achieve high accu-
racies in multiple tasks. The success of ResNet inspired the design of numerous new
neural architectures. However, most of the design were based on empirical studies.
Although we can deploy NAS to search for new architectures, the current computa-
tion burden of NAS is still prohibitively high for researchers without access to heavy
computation resources, and NAS cannot guarantee to find sufficiently new and inter-
pretable neural structures. Therefore, we direly need a way to interpret ResNet and
their siblings properly and to seek for guiding principles for the architecture design of
DNNs.

Recently, Weinan [86] made an inspiring observation that ResNet can be viewed
as forward Euler scheme solving for an ordinary differential equation (ODE), and
links training of DNNs with optimal control. Sonoda and Murata [136] and Li and
Shi [88] also regarded ResNet as dynamic systems that are the characteristic lines of
a transport equation on the data distribution. Similar observations were also made by
Chang et al. [87,89]. A rigorous justification of the link betweenResNet andODEswas
given by Thorpe and van Gennip [137], and that of the link between deep learning and
optimal controlwas given byWeinan et al. [138]. The dynamics and control perspective
enabled us to design more efficient algorithms solving related deep learning problems
[94,95,139,140].

In [90], the authors suggested a general bridge between numerical ODEs and deep
neural architectures by observing that multiple state-of-the-art deep network archi-
tectures, such as PolyNet [141], FractalNet [142], and RevNet [143], can be viewed
as different discretizations of ODEs. Furthermore, Lu et al. [90] proved that ResNet
with certain stochastic training strategies weakly approximates stochastic differential
equations, which granted stochastic control perspective on randomized training of
DNNs. More importantly, such new perspectives enable us to systematically design
deep neural architectures through numerical (stochastic) differential equations, which
is a rather mature field in applied mathematics. In this section, we shall review some
of the findings of [90] and some other related works.

3.2.1 Numerical Difference Equations and Architecture Design

We first show that how ResNet is related to forward Euler scheme in numerical
ODEs. Considering a building block of ResNet (2.1) as shown in Fig. 1, it can be
rewritten as

uk+1 = uk + ΔtkF (uk, tk),

or equivalently as
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uk+1 − uk
Δtk

= F (uk, tk),

where Δtk is the step size and F (uk, tk) = 1
Δtk

Fk(uk). The above formula is the
forward Euler scheme solving the following ordinary differential equation (ODE):

du
dt

= F (u, t). (3.2)

Therefore, the ResNet can be viewed as the forward Euler discretization of the ODE
(3.2) with step sizeΔtk = 1 for every k. This was first observed byWeinan [86]. More
recently, Zhang et al. [144] showed that there are benefits of considering ResNet with
0 < Δtk < 1.

In [90], the authors further observed that many other DNNs with bypasses, e.g.,
PolyNet [141] (Fig. 4b), FractalNet [142] (Fig. 4c), and RevNet [143] (Fig. 4d), can
be interpreted as certain temporal discretizations of ODEs. For example, the PolyIn-
ception module (Fig. 4b) of PolyNet can be written mathematically as

Conv

uk=uk-1+fk-1(uk-1)

uk-1

fk-1(uk-1)
Conv

Conv

uk+1=uk+fk(uk)

fk(uk)
Conv
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Conv

x

Conv

Conv

Conv
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x

fk

fk
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fk

fk
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Fig. 4 Schematics of different neural network architectures
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(I + F + F 2)(x) = x + F (x) + F (F (x)),

where I is the identity map,F is a nonlinear operator and x is the input feature map.
Note that the above polynomial of mapping F is an approximation of (I − F )−1

using a truncated Neumann series

(I − ΔtF )−1 ≈ (I + ΔtF + Δt2F 2).

Therefore, PolyNet can be viewed as an approximation to the backward Euler scheme
solving the ODE (3.2). FractalNet (Fig. 4c) can be viewed as approximation of the
ODE (3.2) with Runge–Kutta scheme. See [90] for more examples and further details.

These examples suggest a potential link between numerical ODEs and deep neu-
ral architecture. A remaining question is whether deep neural architecture design can
benefit from such perspective. The authors of [90] designed a new ResNet-like mod-
ule, called the Linear Multi-step structure (LM-structure) using the linear multi-step
schemes in numerical ODEs [145]. The LM-structure (linear two-step structure to be
more precise) can be written mathematically as

uk+1 = (1 − γk)uk + γkuk−1 + F (uk, tk), (3.3)

where γk ∈ R is a trainable parameter in each layer. Note that when γk = 0 for all
k, the LM-structure reduces to ResNet. Figure 4e shows the LM-structure. Empirical
results of [90] showed that the LM-structure boost classification accuracies of ResNet-
like DNNs on CIFAR and ImageNet. It can also reduce the depth (hence number of
parameters) of ResNet-like DNNs by 50–90% without hampering accuracies. Other
than the LM-structure, one can use the midpoint scheme or the leapfrog scheme to
design new DNNs [89], or using the Runge–Kutta method [146].

The performance gain of the LM-structure can be explained using the concept of
modified equations [147]. By Taylor’s expansion, the modified equation associated
with the LM-structure (3.3) is

(1 + γk)u̇k + 1 − γk

2
Δt ük = F (uk, t). (3.4)

Comparing to ResNet, the LM-structure has the freedom to balance between ük of
uk . Having bigger weights on ük can speed up the information propagation of the
dynamics as shown by various earlier work such as [148–150]. This is why LM-
structure can achieve comparable accuracies with a much smaller depth than ResNet
and its siblings.

3.2.2 Stochastic Training and Optimal Control

Stochastic training, such as dropout andnoise injection, iswidely adopted in training
of DNNs. It helps with the generalization of the trained networks. In [90], the authors
showed that some stochastic training of ResNet, shake–shake [151], and stochastic
depth [152], can be viewed as stochastic control
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min
Θ

EX(0)∼data
[

E[L(X(T ))] +
∫ T

0
R(Θ)

]

s.t. dX = F (X, θ)dt + G (X, θ)dBt , (3.5)

where the stochastic differential equation (3.5) is the weak limit of the ResNet with
shake–shake mechanism or stochastic depth. This suggests a connection between
stochastic training and stochastic control, and a connection between DNNs with ran-
domness and stochastic differential equations. Later, Sun et al. [153] observed that the
stochastic training of ResNet and its variants is closely related to the optimal control of
backward Kolmogorov’s equations, and the popular dropout regularization essentially
introduces viscosity to the equations.

4 DeepModels in Medical Image Reconstruction

Classical medical image reconstruction methods, such as FBP and algebraic recon-
struction method (ART) for CT imaging, are highly efficient and widely used in
practice [154]. However, these methods are also prone to be sensitive to noise and
incompleteness of measured data. To obtain a high-quality image, numerous regu-
larization based models and algorithms have been developed [155–157] in the past
three decades. In recent years, there has been a continuous effort in the medical
imaging community to further advance medical image reconstruction by combin-
ing traditional image reconstruction methods with deep learning. When combining
traditional handcraft modeling with deep modeling, two general approaches are often
adopted: post-processing and raw-to-image. The validity of these two approaches are
generally supported by, though still rather incomplete, the analysis on the approxima-
tion properties of DNNs as described in Sect. 3.1, and by the dynamics perspective on
the DNNs with certain special structures as described in Sect. 3.2.

For post-processing, one needs to estimate the mapping between the initially recon-
structed low-quality image and its high-quality counterpart. This is possible since
DNNs can approximate generic functions or mappings as discussed in Sect. 3.1. This
approach is effective mostly when the initial reconstruction and its high-quality coun-
terpart are not drastically different. However, due to limited measurements and the
presence of noise, the initially reconstructed image may contain heavy and complex
artifacts which are difficult to remove even by deep models. Furthermore, the infor-
mation missing from the initial reconstruction cannot be reliably recovered by any
post-processing. Thus, the post-processing approach has limited performance and is
more suitable to handle initial reconstructions that are of relatively high quality.

For raw-to-image, one directly estimates the mapping between the raw data (e.g.,
the projection data of CT and k-space data for MRI) and the reconstructed image. The
challenge, however, is that the data distribution in the domain of raw data is often
vastly different from that in the image domain. Learning a direct mapping using a
DNN without special structures (e.g., a fully connected network or a vanilla CNN),
though not impossible, may require tons of training data, can be computationally
expensive and heavily relies on good initializations of the model parameters (e.g.,
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the AUTOMAP [158]). It is well-known in the literature of handcraft modeling that
the mapping ought to have certain dynamic structures which can be represented by a
carefully designed (partial) differential equation or an optimization algorithm solving
a certain objective function(al). Thus, it is more plausible to combine handcrafted
dynamics with deep learning. The way of such combination was depicted in Sect. 3.2
in a relatively general setting where we did not discuss how F should be designed
for a given image restoration problem. Nonetheless, it is rather convincing that there
are connections between dynamic systems and DNNs and the benefits of recognizing
such connections.

Our rich history of handcraft modeling in image restoration provides us with an
abundant set of tools that we can select freely for the mappingF via the general tech-
nique known as the unrolling dynamics [77,79]. To be more precise, this approach first
suggests us to unroll optimization algorithms that are introduced to solve handcrafted
models into feed-forward networks. Then, we incorporate our domain knowledge of
the problem in-hand to determine which parameters are best to be learned from the
data in an end-to-end fashion. The advantage of designing deep models via unrolling
optimization algorithms is threefold: (1) the deep model through unrolling dynamics
is more interpretable than a regular deep model such as U-Net; (2) the number of
parameters are normally less than regular deep models and thus more suitable for
small sample learning; (3) it provides a general way of combining domain knowledge
with deep learning so that we can easily decide on which component in the model need
to be learned and which can be handcrafted without losing much expressive power of
the model.

As mentioned in the introduction that one of the major differences betweenmedical
image reconstruction and image restoration in computer vision is the quality metric
of the reconstruction images. It has long been discussed in the medical imaging com-
munity that such a quality metric is best, in many scenarios, to be task-based rather
than generic metrics such as PSNR and SSIM. The importance of providing such a
task-based metric for medical imaging was recently discussed in the article [159].
The question is, however, how can we realize such task-based image quality met-
ric? Recently, the authors of [160] proposed to realize task-based quality metric by
“hooking” an image reconstruction network from unrolling dynamics with an image
analysis DNN, so that the reconstructed images by the first network will be implicitly
evaluated by the secondwhich effectivelymakes the qualitymetric task-based. Similar
idea appeared in computer vision for image denoising [161,162]. On the other hand,
these works also suggested a new “raw-to-task” modeling philosophy with encourag-
ing empirical results. Therefore, the entire pipeline of image reconstruction, analysis,
and decision making can be effectively integrated.

In the rest of this section, we provide more details on the aforementioned models.

4.1 Post-processing

Post-processing is a procedure to enhance the quality of an initially reconstructed
image. In this subsection, we use CT as an example. Due to the incompleteness of
measured data in sparse view and limited angle CT, the FBP reconstructed image is
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often degraded by streaking artifacts (Fig. 5b). Noise caused by low tube currents
is another source of degradation of CT images (Fig. 5c). In [105,163], a residual
encoder–decoderCNN (Fig. 2)was used to approximate themap between the degraded
image and the clean image. This model is efficient in removing noise from the FBP
reconstructed CT images. To protect subtle structures in CT images while suppressing
noise, Yang et al. [164] adopted a generative adversarial network (GAN) with the
loss function defined by a combination of Wasserstein distance and the perceptual
difference between input degraded image and the corresponding clean image.

To reduce the radiation dose and acquisition time, one can decrease the number
of projections of X-ray CT, which is known as the sparse view or limited angel CT.
Such incompleteness of measurements leads to streaking artifacts with global and yet
relatively simple structures in the FBP reconstructed CT images. In this case, a DNN
with multi-scale architecture can be used to capture the global patterns of streaking
artifacts. With such observation, Jin et al. [165] and Han et al. [166] utilized the U-Net
(Fig. 3) to reduce artifacts in FBP reconstructed sparse view CT images. The repaired
high-quality CT image is the subtraction of the learned artifacts by the U-Net from
the degraded input image. In some sense, U-Net takes a role of residual learning [16].

4.2 Raw-to-Image

We describe how optimization algorithms can be unrolled and set up as a deep
feed-forward network for end-to-end training. We remark that, under some specific
conditions, the learning empowered optimization algorithms via unrolling dynamics
can have better provable convergence than the original optimization algorithms [82,
167,168]. This was in fact the original motivation of Gregor and LeCun [77] to use
machine learning to improve optimization algorithms. In this subsection, however,
we shall focus on the “dual” aspect of unrolling dynamics, i.e., how optimization
algorithms inspire new and more effective deep network architectures for medical
image reconstruction or inverse problems in general.

Fig. 5 FBP reconstructed images
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ADMM-Net

The work of ADMM-Net proposed by Yang et al. [79] was the first to suggest the
potential benefit of designing deep neural networks for inverse problems by unrolling
optimization algorithms.

In the iteration scheme (1.7) of ADMM algorithm (Sect. 1.2.2), the tuning parame-
ters such as μ, λ and the handcrafted operator W are difficult to determine adaptively
for a given data set. In [79], the authors proposed to unroll the ADMM algorithm to
design a new deep model, named ADMM-Net. By doing so, the tuning parameters
and the predefined linear operatorW are now all learnable from the training data. The
proximal operator of the sparsity promoting function Φ = ‖ · ‖1 is parameterized by
a piecewise linear function with learnable parameters as well. As a result, the thresh-
olding operator Tλ(·) in ADMM algorithm is also learned from the training data. In
a basic version of ADMM-Net [79], dk+1 is updated by

dk+1 = TΘ1

(
WΘ2(u

k+1) + bk
)

, (4.1)

where TΘ1(·) is a parameterized piecewise linear function with parameters Θ1, and
WΘ2 is a parameterized convolution layer with parameters Θ2. The ADMM-Net was
later further improved by Yang et al. [169] and the new model was called the Generic-
ADMM-Netwhere different variable splitting strategywas adopted in the derivation of
the ADMM algorithm. The Generic-ADMM-Net achieved state-of-the-art MR image
reconstruction results with a significant margin over the BM3D-based algorithm.

Primal–Dual Networks (PD-Net)

In [80], the authors unrolled the iteration scheme (1.10) and (1.11) of the PDHG
algorithm todesign newdeepmodel forCT image reconstruction. This newdeepmodel
was called the primal–dual network (PD-Net). The main idea is to approximate each
resolvent/proximal operator [170] in the subproblem of PDHG by a neural network.
Thus, it circumvents the difficulties in choosing optimal forms Φ and F . One layer of
PD-Net takes the form

wk+1 = Nw

(
[wk,Wuk];Θk

w

)
,

uk+1 = Nu

(
[uk,WTwk+1, AT f ];Θk

w

)
, (4.2)

where f is the measured data, A is the imaging operator,Nw(·;Θk
w) andNu(·;Θk

u)

are neural networks parameterized by Θk
w and Θk

u, respectively. The notation
[v1, · · · , vm] denotes concatenation of the components v1, · · · , vm into a higher
dimension tensor. The linear operator W can be either fixed or learned from the data.
PD-Net has a significant performance boost comparedwith FBP and some handcrafted
reconstruction models [80,171].
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Joint Spatial-Radon (JSR)-Net

To suppress the artifacts induced by incomplete data and noise, Dong et al. [172]
proposed a JSRdomain reconstructionmodel for sparse viewCT imaging as following:

min
u, f

F (u, f ,Y) + R(u, f ), (4.3)

where the data fidelity termF (u, f ,Y) is defined by

F (u, f ,Y) = 1

2
‖RΓ c ( f − Y)‖2 + α

2
‖RΓ (Au − f )‖2 + γ

2
‖RΓ c (Au − Y)‖2,

and the regularization term defined by

R(u, f ) = ‖λ1 · W1u‖1,2 + ‖λ2 · W2 f ‖1,2.

The notation RΓ is a restriction operatorwith respect to themissing data region indexed
by Γ . RΓ takes value 1 if the element’s index contained in Γ and 0 elsewhere. Here,
Γ c indicates the region of available measured data and is the complement of Γ . A
is a discrete form of the Radon transform, Y is the measured projection data. Note
that, in JSR model u and f are the underlying CT image and the restored high-quality
projection data, respectively.W i , i = 1, 2, are tight frame transforms and λi , i = 1, 2,
are the regularization parameters.

The handcrafted JSRmodel (4.3) enforces the data consistency in theRadon domain
and image domain simultaneously. Thus, it leads to improved quality of the recon-
structed image. Similar data fidelity design was adopted in [173] to model the positron
emission tomography. Later, Zhan andDong [174] proposed to improve the JSRmodel
by learning the tight frame transformsW i from the data.More recently, a re-weighting
strategy was introduced in JSR model to reduce the metal artifacts in multi-chromatic
energy CT [175].

Existing work showed the potential of the JSR framework, and it is natural to
consider using unrolling to derive a deep model from algorithms solving the JSR
model. In [85], the authors designed the JSR-Net for sparse view and limited angle CT
image reconstruction. The JSR-Net is derived by unrolling an alternative optimization
algorithm with subproblems solved by ADMM. Similar to the PD-Net, JSR-Net also
adopted neural networks to approximate the proximal operators. The advantage of
JSR-Net is that it can efficiently utilize multi-domain image features to improve the
quality of the reconstructed image.

4.3 Raw-to-Task

The traditional workflow of medical image analysis has two separate stages: (1)
reconstruction of a high-quality image from raw data (see Fig. 6a), and (2) make a
diagnosis based on the high-quality reconstructed image (see Fig. 6b). The drawbacks
of the two-stages’ approach and the potential benefit of uniting the two stages were
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(a) Image reconstruction

(b) Image analysis

Raw Data CNN1 CT, MRI,
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Medical 
Image

CNN2

CNN3

CNN1

Raw Data

CNN2

(c) Image reconstruction and analysis

Fig. 6 CNN based workflows for medical image reconstruction and analysis

discussed earlier. Here, we shall describe how we can join the two stages into one
unified step (see Fig. 6c).

As discussed in Sect. 4.2 that we can design feed-forward deep networks for image
reconstruction. Once we have an image, there are plenty of choices of deep neural
networks for various image analysis tasks. The most simple and natural way of joining
image reconstruction and image analysis is to connect the two networks together
and conduct end-to-end training (from scratch or by fine-tuning). Such idea was first
introduced by Wu et al. [160] in medical imaging and by Liu et al. [161,162] in
computer vision for image denoising. By doing so, the second network for image
analysis can be regarded as a task-based image quality metric that is learned from the
data. As shown in Wu et al. [160], where the image analysis task was lung nodule
recognition, the learned image quality metric automatically placed more emphasis
within the lung areas and less emphasis elsewhere. Such a quality metric is specific to
the task of lung nodule recognition since the image quality outside of the lung region
is irrelevant to the task.

5 Challenge and Opportunities

Although deep learning based models continue to dominant medical imaging, there
are still plenty of remaining challenges in deep modeling which limit the application
and implementation of these new methods in clinical practice. These challenges also
present themselves as new opportunities for researchers working in related fields.
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– The everlasting hunger of labeled data. There are only limited labeled data available
to develop new deep models in medical imaging. Annotation of medical images is
time-consuming and requires expert knowledge from physicians. Can we design
effective learningmodels that canmake good use of both the (very limited) labeled
data and the (relatively more abundant) unlabeled data?

– The limited number of observations. Due to morbidity and privacy concerns, it is
generally difficult to gather very largemedical data for a specific task. Furthermore,
the number of rare cases is (by definition) small but can bemuchmore valuable than
common cases. Can we design learning models and data augmentation techniques
to effectively extract knowledge from these limited samples and acknowledge such
unequal importance among the samples?

– Radiologists do not make the clinical decision only based on images. More infor-
mation from the patients and the knowledge of the doctors from their years of
training in medical school are also crucial in decision making. Thus, incorporat-
ing data gathered from multiple diverse sources into deep modeling is important
in improving system performance.

– Reasoning is just as important as, if not more important than, inferencing. Cur-
rently, most deep models hide the reasoning procedure. There is a chance that
the model makes accurate predictions based on wrong reasoning. This makes the
model unreliable. Can we incorporate deep modeling with reasoning (such as
causal inference) or with medical knowledge graph? This may further reduce the
amount of annotated data we need to train deep models without hurting perfor-
mance.
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