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Abstract
The k-component edge connectivity cλk(G) of a non-complete graph G is the mini-
mum number of edges whose deletion results in a graph with at least k components.
In this paper, we extend some results by Guo et al. (Appl Math Comput 334:401–
406, 2018) by determining the component edge connectivity of the locally twisted
cubes LTQn , i.e., cλk+1(LTQn) = kn − exk

2 for 1 � k � 2[ n2 ], n � 7, where
exk = ∑s

i=0 ti2
ti + ∑s

i=0 2 · i · 2ti , and k is a positive integer with decomposi-
tion k = ∑s

i=0 2
ti such that t0 = �log2k� and ti = �log2(k − ∑i−1

r=0 2
tr )� for i � 1.

As a by-product, we characterize the corresponding optimal solutions.
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1 Introduction

Fault tolerance concerns the capability of an interconnection network to transmit
messages; it is a very important property to study. In general, the network structure
is modeled as graphs, and the properties of the network can be evaluated by the
parameters of the graphs. There are many parameters that have been introduced to
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measure the reliability of a network structure. Perhaps, edge connectivity λ(G) of
a graph G is the most important one. The larger the edge connectivity is, the more
reliable the interconnection network is.

However, this criterion has its shortcoming: The further properties of discon-
nected components are not depicted. Under this consideration, Harary [2] introduced
the concept of conditional connectivity by attaching some conditions on connected
components and Latifi et al. [3] generalized the concept conditional connectivity by
introducing restricted h-connectivity. The concept considered here is slightly different
from theirs.

As a natural extension of traditional edge connectivity λ(G), Sampathkumar [4]
proposed the concept of component edge connectivity. LetG be a non-complete graph.
A k-component edge cut of G is a set of edges whose deletion results in a graph with
at least k components. The k-component edge connectivity cλk(G) of a graph G is
the size of the smallest k-component edge cut of G. Obviously, λ(G) = cλ2(G) �
cλ3(G) � · · · � cλk(G).

In recent years, as we know, the k-component edge connectivity has been studied
for several famous networks (hypercubes Qn , folded hypercubes FQn , twisted cubes
TNn) in [1,5–7]. Very recently, Guo et al. [1] determined cλk(LTQn) of the locally
twisted cubes LTQn for k � 4. In this paper, we extend their results by determining
cλk(LTQn) for k � 2[ n2 ].

The rest of the paper is organized as follows: In Sect. 2, we introduce some prelim-
inary knowledge. In Sect. 3, we give the main result of this paper.

2 Preliminaries

For graph-theoretical terminology and notation not mentioned here, we follow [8].
Let G = (V , E) be a graph. For each node u ∈ V , the neighborhood of u in a
subgraph H ⊆ G, denoted by NH (u), is defined as the set of all nodes adjacent to u in
H , and dH (u) = |NH (u)| is the degree of u in H . We simply denote NH (u) = N (u)

if H = G. For a node subset S ⊆ V , G[S] (resp. G − S) denotes the subgraph of G
induced by the node set S (resp. V − S), and ES denotes the set of edges in which
each edge contains exactly one end node in S. Similarly, for an edge subset F ⊆ E ,
G − F denotes the subgraph of G induced by the edge set E − F . Let “⊕” represent
the modulo 2 addition.

Definition 2.1 [9] For an integer n � 2, the locally twisted cubes LTQn with
node set {0, 1}n were introduced by Yang et al. [9]. It can be defined recur-
sively as follows: LTQ2 is a 4-cycle with node set {00, 01, 10, 11} and edge set
{(00, 01), (01, 11), (11, 10), (10, 00)}. For n � 3, LTQn can be built from 0LTQn−1
and 1LTQn−1, where 0LTQn−1 (resp. 1LTQn−1) denotes the graph obtained from
LTQn−1 by prefixing the label of each node with 0 (resp. 1), according to the follow-
ing rule. Connect each node 0x2x3 · · · xn of 0LTQn−1 to the node 1(x2 ⊕ xn)x3 · · · xn
of 1LTQn−1 with an edge.

Locally twisted cubes LTQ2, LTQ3, LTQ4 are depicted in Fig. 1. Yang et al. [9]
introduced the n-dimensional (n � 2) two-twisted cubes Qn,2 and showed that Qn,2
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Fig. 1 Locally twisted cubes LTQ2, LTQ3 and LTQ4

is isomorphic to Qn . On the basis of the concepts of Qn,2 and Qn , the locally twisted
cubes LTQn can also be defined as follows:

Definition 2.2 [9] The locally twisted cubes LTQn can be built from Qn−1 and Qn−1,2
by the following steps:

(1) Let Qn−10 be the graph obtained from Qn−1 by suffixing the labels of all nodes
with 0.

(2) Let Qn−1,21 be the graph obtained from Qn−1,2 by suffixing the labels of all nodes
with 1.

(3) Connect each node x1x2 · · · xn−10 of Qn−10 to the node x1x2 · · · xn−11 of Qn−1,21
by an edge.

As an attractive alternative to hypercubes Qn , LTQn is a member of hypercube-like
networks HLn , and has been studied for many years and found many good properties,
see, for example, [10–18] and the references therein.

Each node u ∈ V (LTQn) can be denoted by an n-bit binary string, i.e., u =
unun−1 · · · u1, and also can be represented by decimal number, i.e., u = ∑n

i=1 ui2
i−1.

Letm be an integer and
∑s

i=0 2
ti be the decomposition ofm such that t0 = �log2m�,

and ti = �log2(m − ∑i−1
r=0 2

tr )� for i � 1. We denote by exm
2 the maximum size of

the subgraph of LTQn induced by m nodes, i.e., exm =max{2|E(LTQn[S])| : S ⊆
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V (LTQn) and |S| = m} is the maximum possible sum of degrees of the nodes in the
subgraph of LTQn induced by m nodes.

Zhang et al. [19] and Yang et al. [20] have proved the following important results.

Lemma 2.3 [19] Let S be a node subset of LTQn, where |S| = m and m = ∑s
i=0 2

ti .
Then, exm(LTQn) = ∑s

i=0 ti2
ti + ∑s

i=0 2 · i · 2ti .
Lemma 2.4 [20] Let 1 � i, j � 2n and i + j � 2n. Then, exi + ex j + 2min{i, j} �
exi+ j .

In the same paper, they introduced a method to pick a connected subgraph G0
in LTQn such that |V (G0)| = m = ∑s

i=0 2
ti and |E(G0)| = exm

2 . Take (s + 1)
ti -dimensional sub-LTQn (we use the notation sub-LTQn for the lower dimensional
LTQn) for i = 0, 1, · · · , s as follows:

LTQ0 : X1 · · · Xto︸ ︷︷ ︸
t0

0 · · · 0,

LTQ1 : X1 · · · Xt1︸ ︷︷ ︸
t1

0 · · · 0
︸ ︷︷ ︸

t0

10 · · · 0,

LTQ2 : X1 · · · Xt2︸ ︷︷ ︸
t2

0 · · · 0
︸ ︷︷ ︸

t1

10 · · · 010 · · · 0,

· · · .

(2.1)

Note that LTQ0 is given andLTQi is taken froma ti−1-dimensional sub-LTQn which
is obtained from LTQi−1 by changing the 0 of (ti−1 + 1)th-coordinate of LTQi−1 to
1. Denote G0 = LTQn[V (LTQ0) ∪ · · · ∪ V (LTQs)]. It is not difficult to count the
number of edges of G0 by considering the edges within LTQi ’s ( 12 · ∑s

i=0 ti2
ti ) and

the edges between LTQi ’s ( 12 · ∑s
i=0 2 · i · 2ti ).

Remark 1 Note that each LTQi is connected for 0 � i � s. Then, G0 is connected.

3 Main Result

In this section, we extend Theorem 3.1 of Guo et al. [1] by determining
cλk+1(LTQn) for k = 1, 2, · · · , 2[ n2 ], n � 7.

Theorem 3.1 [1] cλ3(LTQn) = 2n − 1, cλ4(LTQn) = 3n − 2 for n � 2.

Lemma 3.2 [21] Let S = {0, 1, · · · ,m − 1} be a node subset of Qn. Then,
|E(Qn[S])| = exm(Qn)

2 , where exm(Qn) =max{2|E(Qn[S])| : S ⊆ V (Qn) and |S| =
m}.
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Lemma 3.3 Let S be a node subset of LTQn, where |S| = m and m = ∑s
i=0 2

ti . Then,
|ES| � nm − exm. Moreover, the function ξ(m) = nm − exm

2 is strictly increasing
(with respect to m) if m � 2n−1 − 1.

Proof By Lemma 2.3, we can immediately obtain |ES| � nm − exm . Note that the
inequality ξ(m + 1) − ξ(m) = n − (s + 1) > 0 is equivalent to s < n − 1. Since
m = ∑s

i=0 2
ti � 2n−1 − 1 = 2n−2 + 2n−3 + · · · + 21 + 20, s < n − 1, which implies

that ξ(m) is strictly increasing for m � 2n−1 − 1.

Note that LTQn is n-regular. LetG0 be a subgraph of LTQn induced bym nodes. By
Lemma 2.3, |E(G0)| � exm

2 . Moreover, if m � 2n−2, then one can pick the subgraph
G0 in an (n − 2)-dimensional sub-LTQn such that |E(G0)| = exm

2 . Thus, we have the
following observation.

Observation If m � 2n−2, then (n − 2)m − exm � 0.

Zhao et al. showed the following results in [6]:

Lemma 3.4 [6] Let q and qi be positive integers. If q = ∑k
i=1 qi , then

∑k
i=1 exqi �

exq−k+1.

Lemma 3.5 cλk+1(LTQn) � nk − exk
2 for k � 2n and n � 2.

Proof To show that cλk+1(LTQn) � nk − exk
2 , it suffices to find an edge subset F of

LTQn with |F | = nk − exk
2 such that LTQn − F is disconnected and has at least k + 1

components.

Case 1. k � 2n−1.

Let S = {0, 2, · · · , 2k − 2} (or S = {1, 3, · · · , 2k − 1}) be a node subset of LTQn
and G0 = LTQn[S]. By Definition 2.2 and Lemma 3.2, it is clear that G0 ⊆ Qn−10
(orG0 ⊆ Qn−1,21) and |E(G0)| = exk

2 . Take F = E(G0)∪EV (G0) which is required.

Case 2. 2n−1 < k � 2n .

Let S = {0, 2, · · · , 2n − 2, 1, 3, · · · , 2(k − 2n−1) − 1} (or S = {1, 3, · · · , 2n −
1, 0, 2, · · · , 2(k − 2n−1) − 2}) be a node subset of LTQn and G0 = LTQn[S]. Then,
G0 is the subgraph of LTQn in (2.1), and |E(G0)| = exk

2 . Take F = E(G0) ∪ EV (G0)

which is required.

A k-component edge cut F of LTQn is called cλk-cut if |F | = cλk(LTQn).

Lemma 3.6 cλk+1(LTQn) � nk − exk
2 for k � 2[ n2 ] and n � 7.

Proof To show that cλk+1(LTQn) � nk − exk
2 , it suffices to prove |F | � nk − exk

2 ,
where F is a cλk+1-cut of LTQn . For convenience sake, we assume that n is even. Let
F be a cλk+1-cut of LTQn , then LTQn − F has exactly k + 1 components. We use
C1,C2, · · · ,Ck+1 to denote the above k + 1 components, and suppose Ck+1 be the
largest one.

Case 1. |V (Ck+1)| < 2n−2.
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This implies that there exist r components {C ′
1,C

′
2, · · · ,C

′
r } ⊆ {C1,C2, · · · ,Ck+1}

such that 2n−2 �
∑r

i=1 |V (C
′
i )| < 2n−1. Let G

′ = LTQn[∪r
i=1V (C

′
i )] and

|V (G
′
)| = m = ∑s

i=0 2
ti . Obviously, EV (G ′

)
⊆ F . From Lemma 3.3, we know

that |EV (G ′
)
| � nm − exm and nk − exk

2 = ξ(k) � ξ(2
n
2 ) = n2

n
2 − ex

2
n
2

2 = 3n
4 · 2 n

2 .

Next, we show that nm − exm � 3n
4 · 2 n

2 . Let m
′ = m − 2t0 , then m

′
< 2n−2. By the

observation, it is easy to get the following:

nm − exm = n2t0 + n(2t1 + · · · + 2ts ) − t02
t0 −

(
s∑

i=1

t i2ti +
s∑

i=1

2 · i · 2ti
)

= (n − t0)2
t0 +

(

n
s∑

i=1

2ti −
(

s∑

i=1

ti2
ti +

s∑

i=1

2 · i · 2ti
))

= (n − t0)2
t0 + nm

′ − exm′ − 2m
′

� (n − t0)2
t0

= (n − t0) · 2t0− n
2 · 2 n

2 .

Since t0 = n − 2, we have (n − t0) · 2t0− n
2 � 3n

4 for n � 7. Thus, |F | � |EV (G ′
)
| �

3n
4 · 2 n

2 � nk − exk
2 when |V (Ck+1)| < 2n−2.

Case 2. |V (Ck+1)| � 2n−2.

Denote |V (Ci )| = qi and
∑k

i=1 qi = q. The case q � 2n−2 can be proved by a
similar discussion as Case 1. So we assume q < 2n−2.

Case 2.1. q = k.

This implies that |V (Ci )| = qi = 1 for 1 � i � k. Then, |F | � nk − exk
2 by

Lemmas 2.3 and 3.3.

Case 2.2. q > k.

Let G∗ = LTQn[∪k
i=1V (Ci )] and F

′ = F ∩ E(G∗). Obviously, EV (Ci ) ⊆ F (1 �
i � k). Then, |F | � |∪k

i=1 EV (Ci )| = |EV (C1)|+|EV (C2)|+· · ·+|EV (Ck )|−|F ′ |. Note
that |EV (Ci )| = nqi − 2|E(Ci )|, |F ′ | � exq

2 −|∪k
i=1 E(Ci )| and E(Ci )∩ E(C j ) = ∅

for 1 � i �= j � k. By Lemma 3.4, we can obtain

|F | � | ∪k
i=1 EV (Ci )| = |EV (C1)| + |EV (C2)| + · · · + |EV (Ck )| − |F ′ |

�
k∑

i=1

(nqi − 2|E(Ci )|) −
(exq

2
− | ∪k

i=1 E(Ci )|
)

= nq − 2
k∑

i=1

|E(Ci )| − exq
2

+
k∑

i=1

|E(Ci )|

= nq − exq
2

−
k∑

i=1

|E(Ci )|
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� nq − exq
2

−
k∑

i=1

exqi
2

� nq − exq
2

− exq−k+1

2
.

Next, we show that nq − exq
2 − exq−k+1

2 � nk − exk
2 .

Let S = {v1, v2, · · · , vq} ⊆ V (LTQn). By Definition 2.1 and Lemma 2.3, we may
pick a subgraph G0 = LTQn[S] in LTQn−1, where G0 is the subgraph of LTQn in
(2.1). Then, |E(G0)| = exq

2 . Since q − k + 1 < q, we can pick a subgraph G1 ⊆ G0

such that |V (G1)| = q − k + 1 and |E(G1)| = exq−k+1
2 (here we pick the subgraph

G1 that has the same structural property as G0 in (2.1)).

Claim. There exists a node u ∈ V (G1) such that dG1(u) = s + 1, where q − k =∑s
i=0 2

ti .
If q−k is even, then |V (G1)| = q−k+1 = 2t0+· · ·+2ts +2ts+1 and ts+1 = 0. From

(2.1),we know thatG1 = LTQn[V (LTQ0)∪· · ·∪V (LTQs)∪V (LTQs+1)] andLTQs+1

is isomorphic to K1. Let V (LTQs+1) = {u1}. Clearly, |NG1(u1) ∩ V (LTQ j )| = 1 for
0 � j � s. Thus, dG1(u1) = s + 1.

If q−k is odd, then q−k = 2t0 +· · ·+2ts and ts = 0. This implies that |V (G1)| =
q − k + 1 = 2t0 + · · · + 2ts and ts = 1. Similarly, we have G1 = LTQn[V (LTQ0) ∪
· · · ∪ V (LTQs)] and LTQs is isomorphic to K2 by (2.1). Let V (LTQs) = {u1, u2},
then |NG1(ui ) ∩ V (LTQ j )| = 1 for i = 1, 2 and 0 � j � s. Thus, dG1(ui ) = s + 1
for i = 1, 2.

Label the nodes ofG0 byv1, v2, · · · , vq and thenodes ofG1 byvq , vq−1, · · · , vk+1,

vk such that dG1(vk) = s + 1. Let k < q, X = {v1, v2, · · · , vk}, X
′ =

{v1, v2, · · · , vk−1} and |E(LTQn[X ′ ])| = f0. Clearly, | ∪k
i=1 Evi | = nk −

|E(LTQn[X ])| � nk − exk
2 . Thus, by Fig. 2, we can get

v1 v2 vk−2 vk−1f0 vk

vk+1

vk+2

vq

G0

G1
f1

f3

f6

f4

f2

f5

LTQn

Fig. 2 The edges between the components
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f0 + f1 + f2 + f3 + f4 + f5 = nq − 2|E(G0)| + (|E(G0)| − |E(G1)|)
= nq − exq

2
− exq−k+1

2

(3.1)

and

f0 + f1 + f2 + f3 + f4 + f6 = | ∪k
i=1 Evi | � nk − exk

2
. (3.2)

From (3.1) and (3.2), we know that the inequality nq − exq
2 − exq−k+1

2 � nk − exk
2

is equivalent to f5 � f6. Note that G0 ⊆ LTQn−1 and q − k = ∑s
i=0 2

ti , then
f5 � q − k � s + 1 = dG1(vk) = f6.
When n is odd, the argument is similar. We omit it.

Combining Lemmas 3.5 and 3.6, we obtain the following main result immediately.

Theorem 3.7 cλk+1(LTQn) = nk − exk
2 for k � 2[ n2 ] and n � 7. Moreover, for any

cλk+1-cut F of LTQn, LTQn − F has one large component plus k singletons.

Setting k = 2 = 21 and k = 3 = 21 + 20 in Theorem 3.7, respectively, we obtain
Theorem 3.1 for n � 7.
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