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Abstract
Motivated by the problem to approximate all feasible schedules by one schedule in a
given scheduling environment, we introduce in this paper the concepts of strong simul-
taneous approximation ratio and weak simultaneous approximation ratio. Then we
study the twovariants under various scheduling environments, such as non-preemptive,
preemptive or fractional scheduling on identical, related or unrelated machines.

Keywords Scheduling · Simultaneous approximation ratio · Global fairness

Mathematics Subject Classification 90B35 · 90C27

1 Introduction

In the scheduling research, people always hope to find a schedule that achieves
the balance of the loads of the machines well. To the end, some objective functions,
such as minimizing makespan and maximizing machine cover, are designed to find
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a reasonable schedule. Representative publications can be found in Csirik et al. [1],
Deuermeyer et al. [2], Graham [3], Graham [4] andMcNaughton [5], amongmany oth-
ers. But these objectives do not reveal the global fairness for the loads of all machines.
Motivated by the problem to approximate all feasible schedules by one schedule in a
given scheduling environment and thus realizing the global fairness, we introduce two
new parameters: strong simultaneous approximation ratio (SAR) and weak simulta-
neous approximation ratio (WAR) for scheduling problems.

Our research is also enlightened from the research on global approximation of
vector sets. Related work can be found in Bhargava et al. [6], Goel et al. [7], Goel et al.
[8], Kleinberg et al. [9] and Kumar and Kleinberg [10]. Kleinberg et al. [9] proposed
the notion of the coordinate-wise approximation for the fair vectors of allocations.
Based on this notion, Kumar and Kleinberg [10] introduced the definitions of the
global approximation ratio and the global approximation ratio under prefix sums.

For a given instance I of a minimization problem, we use V (I) to denote the set of
vectors induced by all feasible solutions of I. For a vector X = (X1, X2, · · · , Xm) ∈
V (I), we use

←−
X to denote the vector in which the coordinates (components) of X

are sorted in non-increasing order, that is,
←−
X = (X ′

1, X
′
2, · · · , X ′

m) is a resorting of
(X1, X2, · · · , Xm) so that X ′

1 � X ′
2 � · · · � X ′

m . For two vectors X ,Y ∈ V (I),
we write X �c Y if Xi � Yi for all i . The global approximation ratio of a vector
X ∈ V (I), denoted by c(X), is defined to be the infimum of α such that

←−
X �c α

←−
Y

for all Y ∈ V (I). Then the best global approximation ratio of instance I is defined
to be c∗(I) = infX∈V (I) c(X). For a vector X ∈ V (I), we use σ(X) to denote the
vector in which the i th coordinate is equal to the sum of the first i coordinates of X .
We write X �s Y if σ(

←−
X ) �c σ(

←−
Y ). The global approximation ratio under prefix

sums of a vector X ∈ V (I), denoted by s(X), is defined to be the infimum of α such
that X �s αY for all Y ∈ V (I). Then the best global approximation ratio under prefix
sums of instance I is defined to be s∗(I) = inf X∈V (I) s(X).

In terms of scheduling, the above concepts about the global approximation of
vector sets can be naturally formulated as the simultaneous approximation of schedul-
ing problems. Let I be an instance of a scheduling problem P on m machines
M1, M2, · · · , Mm , and let S be the set of all feasible schedules of I. For a fea-
sible schedule S ∈ S, the load LS

i of machine Mi is defined to be the time by
which the machine finishes all the processing of the jobs and the parts of the jobs
assigned to it. L(S) = (LS

1 , L
S
2 , · · · , LS

m) is called the load vector of machines under
S. Then V (I) is defined to be the set of all load vectors of instance I. We write
c(S) = c(L(S)) and s(S) = s(L(S)) for each S ∈ S. Then c∗(I) = inf S∈S c(S) and
s∗(I) = inf S∈S s(S). The strong simultaneous approximation ratio of problem P is
defined to be SAR(P) = supI c∗(I), and the weak simultaneous approximation ratio
of problem P is defined to be WAR(P) = supI s∗(I).

A scheduling problem is usually characterized by the machine type and the
job processing mode. In this paper, the machine types under consideration are
identical machines, related machines and unrelated machines, and the job process-
ing modes under consideration are non-preemptive, preemptive and fractional. Let
J = {J1, J2, · · · , Jn} and M = {M1, M2, · · · , Mm} be the set of jobs and the set
of machines, respectively. The processing time of job J j on machine Mi is given
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by pi j , which is assumed to be a nonnegative integer. If pi j = pkj for i �= k, the
machine type is identical machines. In this case, p j is used to denote the processing
time of job J j on all machines. If pi j = p j

si
for all i , the machine type is related

machines. In this case, p j is called the standard processing time of job J j and si > 0
is called the processing speed of machine Mi . If there is no restriction for pi j , the
machine type is unrelated machines. If each job must be non-preemptively processed
on somemachine, the processingmode is non-preemptive. If each job can be processed
preemptively and can be processed on at most one machine at any time, the processing
mode is preemptive. If each job can be partitioned into different parts which can be
processed on different machines concurrently, the processing mode is fractional. We
assume that eachmachine can process atmost one job at any time under any processing
mode.

Since we cannot avoid the worst schedule in which all jobs are processed on a com-
monmachine, it can be easily verified that, under each processingmode, SAR(P) = m
for identical machines, SAR(P) = (s1 + s2 + · · · + sm)/s1 for related machines with
speeds s1 � s2 � · · · � sm and SAR(P) = +∞ for unrelated machines.

We then concentrate our research on the weak simultaneous approximation ratio
WAR(P) of the scheduling problems defined as above. For convenience, we use P ,
Q and R to represent identical machines, related machines and unrelated machines,
respectively, and use NP, PP and FP to represent non-preemptive, preemptive and frac-
tional processing, respectively. Then the notation Pm(NP) represents the scheduling
problem onm identical machines under non-preemptive processing mode. Other nota-
tions for scheduling problems can be similarly understood. The main results are given
in Table 1, where ρ is the value of WAR.

This paper is organizes as follows. In Sect. 2, we study the weak simultaneous
approximation ratio for scheduling on identical machines. In Sect. 3, we study the
weak simultaneous approximation ratio for scheduling on relatedmachines. In Sect. 4,
we study the weak simultaneous approximation ratio for scheduling on unrelated
machines.

2 Identical Machines

For problem P2(NP), we have s(S) = 1 for every schedule S which minimizes the
makespan. So WAR(P2(NP)) = 1. For problem Pm(NP) with m � 3, the following
instance shows that WAR(Pm(NP)) > 1.

Table 1 Weak simultaneous approximation ratio of various scheduling problems

Model Pm Qm Rm

NP ρ = 1 for m = 2
1 < ρ �

√
5 − 1 for m = 3

1 < ρ � 3
2 for m � 4

√
m+1
2 � ρ � √

m
√
m+1
2 � ρ � √

m

PP ρ = 1
√
m+1
2 � ρ � √

m
√
m+1
2 � ρ � √

m

FP ρ = 1 ρ =
√
m+1
2

√
m+1
2 � ρ � √

m
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In the instance, there are m jobs with processing time m − 1, (m − 1)(m − 2) jobs
with processing time m and a big job with processing time (m − 1)2 + rm , where

rm =
√

(m3 − m2 − m − 2)2 + 4m(m − 1)(m − 2) − (m3 − m2 − m − 2)

2
.

It can be verified that 0 < rm < m−2. Let S be the schedule in which them jobs with
processing timem−1 are scheduled on one machine, the big job with processing time
(m − 1)2 + rm is scheduled on one machine, and the remaining (m − 1)(m − 2) jobs
with processing timem are scheduled on the remainingm−2 machines averagely. Let
T be the schedule in which the big job is scheduled on one machine together with a job
of processing timem − 1, and each of the remaining machines has a job of processing
time m − 1 and m − 2 jobs of processing time m. Then the makespan of schedule S

is m(m − 1), and the (m − 1)th prefix sum of
←−−
L(T ) is m(m − 1)2 − (m − 2 − rm).

Now we consider an arbitrary schedule R. If the big job is scheduled on one machine

solely in R, then the (m − 1)th prefix sum of
←−−
L(R) is at least m(m − 1)2. Thus, by

considering the (m − 1)th prefix sums of
←−−
L(T ) and

←−−
L(R), we have

s(R) � m(m − 1)2

m(m − 1)2 − (m − 2 − rm)
= 1 + rm

m(m − 1)
.

If the big job is scheduled on one machine together with at least one other job, then
the makespan of schedule R is at least (m −1)+ (m −1)2 + rm . Thus, by considering
the makespans of S and R, we have s(R) � 1 + rm

m(m−1) . It follows that

WAR(Pm(NP)) � 1 + rm
m(m − 1)

> 1 f orm � 3.

To establish the upper of WAR(Pm(NP)), we first present a simple but useful
lemma.

Lemma 2.1 Let X and Y be two vectors of n dimensions, and let X ′ and Y ′ be two
vectors of two dimensions. If X �s Y and X ′ �s Y ′, then (X , X ′) �s (Y ,Y ′).

Proof Suppose that X ′ = (x1, x2) and Y ′ = (y1, y2). Without loss of generality, we
may further assume that x1 � x2 and y1 � y2. Then x1 � y1 and x1 + x2 � y1 + y2.
Let Zx = (X , X ′) and Zy = (Y ,Y ′). For Z ∈ {Zx , Zy}, we use (

←−
Z )k to denote the

kth coordinate of
←−
Z and use |←−Z |k to denote the sum of the first k coordinates of

←−
Z

for 1 � k � n+2. Similar notations are also used for X and Y . Given an index k with
1 � k � n+ 2, we use δ(k, X ′) to denote the number of elements in {x1, x2} included
in the first k coordinates of

←−
Zx and δ(k,Y ′) the number of elements in {y1, y2} included

in the first k coordinates of
←−
Zy . Then 0 � δ(k, X ′), δ(k,Y ′) � 2.

If δ(k, X ′) = δ(k,Y ′), then we clearly have |←−Zx |k � |←−Zy |k .
If δ(k, X ′) = 0, then |←−Zx |k = |←−X |k � |←−Y |k � |←−Zy |k .

123



Simultaneous Approximation Ratios for Parallel Machine… 489

If δ(k,Y ′) = 0 and δ(k, X ′) � 1, we suppose that x1 is the i th coordinate of←−
Zx . Then, for each j with i � j � k, (

←−
Zx ) j � x1 � y1 � (

←−
Zy) j . Consequently,

|←−Zx |k = |←−X |i−1 + ∑
i� j�k(

←−
Zx ) j � |←−Y |i−1 + ∑

i� j�k(
←−
Zy) j = |←−Zy |k .

If δ(k, X ′) = 2 and δ(k,Y ′) = 1, then (
←−
Y )k−1 � y2. Thus, |←−Zx |k = |←−X |k−2 +

x1 + x2 � |←−Y |k−2 + y1 + y2 � |←−Y |k−1 + y1 = |←−Zy |k .
If δ(k, X ′) = 1 and δ(k,Y ′) = 2, then (

←−
Y )k−1 � y2. Thus, |←−Zx |k = |←−X |k−1+x1 �

|←−Y |k−1 + y1 � |←−Y |k−2 + y1 + y2 = |←−Zy |k .
The above discussion covers all possibilities. Then the lemma follows.

Theorem 2.1 WAR(Pm(NP)) � 3
2 for m � 4 and WAR(P3(NP)) �

√
5 − 1 ≈

1.236.

Proof Consider an instance of n jobs on m � 4 identical machines with J =
{J1, J2, · · · , Jn} and M = {M1, M2, · · · , Mm}. We assume that p1 � p2 � · · · �
pn . Let S be a schedule produced by LPT algorithm (which is the LS algorithm with
the jobs being given in the LPT order) such that LS

1 � LS
2 � · · · � LS

m . Then

L(S) = ←−−
L(S) = (LS

1 , L
S
2 , · · · , LS

m). If n � m, it is easy to verify that s(S) = 1.
Hence, we assume in the following that n � m + 1. Then some machine has at least
two jobs in S.

Let i0 be the smallest index such that either Mi0+1 has at least three jobs in S,
or Mi0+1 has exactly two jobs in S and the size of the shorter job on Mi0+1 is at
most half of the size of the longer job on Mi0+1. If there is no such index, we set
i0 = m. Then i0 � 0, and in the case i0 � 1, each of M1, M2, · · · , Mi0 has at
most two jobs in S. Let Jk be the shortest job scheduled on M1, M2, · · · , Mi0 and set
Jk = {J1, J2, · · · , Jk}. Then Jk contains the jobs scheduled on M1, M2, · · · , Mi0 .
We use Mk′ to denote the machine occupied by Jk in S. Let T be the schedule derived
from S by deleting Jk+1, Jk+2, · · · , Jn . Then T is an LPT schedule for Jk with
LT
i = LS

i , i = 1, 2, · · · , i0. We claim that s(T ) = 1.
In the case i0 = 0, the claim holds trivially. Hence, we assume in the following that

i0 � 1.
If each of M1, M2, · · · , Mi0 has only one job in S, then i0 = k � m and it is easy

to see that s(T ) = 1.
Suppose in the following that at least one of M1, M2, · · · , Mi0 has exactly two jobs

in S. Then m + 1 � k � 2m and the machine Mk′ has exactly two jobs, say Jt and
Jk , in S. Note that there are at most two jobs on each machine in T . (Otherwise, some
machine Mi with i � i0 + 1 has r � 3 jobs, say Jh1 , Jh2 , · · · , Jhr , in T . By LPT
algorithm, pt �

∑r−1
j=1 ph j � 2pk , contradicting the choice of i0.) From the LPT

algorithm, we have t = 2m + 1 − k. By the choice of i0, we have pk > 1
2 p2m+1−k .

Let R be an arbitrary schedule for Jk . If each machine has at most two jobs
in R, we set R1 = R. If some machine Mx has at least three jobs in R, by the
pigeonhole principle, a certain machine My has either no job or exactly one job in
{J2m+1−k, J2m+2−k, · · · , Jk}. Let R′ be the schedule obtained from R by moving
the shortest job, say Jx ′ , on Mx to My . Then LR′

x � 2pk > p2m+1−k � LR
y and

LR′
y = LR

y + px ′ � LR
y . Note that L

R
x � LR′

x , LR′
y � LR

y and LR
x + LR

y = LR′
x + LR′

y .
Then we have L(R′) �s L(R) by Lemma 2.1. This procedure is repeated until we
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490 L. Wan, J.-J. Yuan

obtain a schedule R1 so that each machine has at most two jobs in R1. Then we have
L(R1) �s L(R).

If J1, J2, · · · , Jm are processed on distinct machines, respectively, in R1, we set
R2 = R1. If some machine Mx has two jobs Jx ′ , Jx ′′ ∈ {J1, J2, · · · , Jm} in R1, by
the pigeonhole principle, a certain machine My is occupied by at most two jobs in
{Jm, Jm+1, · · · , Jk}. Suppose that px ′ � px ′′ and Jy′ is the shorter job on My . Let R′

1
be the schedule obtained from R1 by shifting Jx ′′ to My and shifting Jy′ to Mx . Then

LR1
x � L

R′
1

x , L
R′
1

y � LR1
y and LR1

x + LR1
y = L

R′
1

x + L
R′
1

y . Consequently, by Lemma 2.1,
L(R′

1) �s L(R1). This procedure is repeated until we obtain a schedule R2 so that
J1, J2, · · · , Jm are processed on distinct machines, respectively, in R2. Then we have
L(R2) �s L(R1).

Without loss of generality, we assume that J j is processed onMj in R2, 1 � j � m.
Let t = k − m. Then the t jobs Jm+1, Jm+2, · · · , Jk are processed on t distinct
machines in R2. For convenience, we add another m − t dummy jobs with sizes 0 in
R2 so that each machine has exactly two jobs. We define a sequence of t schedules
R(1)
2 , R(2)

2 , · · · , R(t)
2 for Jk by the following way.

Initially we set R(0)
2 = R2. For each i from 1 to t , the schedule R(i)

2 is obtained

from R(i−1)
2 by exchanging the shorter job on Mm−i+1 with job Jm+i .

We only need to show that L(R(i)
2 ) �s L(R(i−1)

2 ) for each i with 1 �
i � t . Note that the jobs Jm+1, Jm+2, · · · , Jm+i−1 are processed on machines
Mm, Mm−1, · · · , Mm−i+2, respectively, in R(i−1)

2 . If Jm+i is processed on Mm−i+1 in

R(i−1)
2 , we have R(i)

2 = R(i−1)
2 , and so, L(R(i)

2 ) �s L(R(i−1)
2 ). Thus, we may assume

that Jm+i is processed on a machine Mx with x � m − i in R(i−1)
2 . Let J j be the

shorter job on Mm−i+1 in R(i−1)
2 . Then p j � pm+i and px � pm−i+1. It is easy to see

that (L
R(i)
2

x , L
R(i)
2

m−i+1) = (px + p j , pm−i+1 + pm+i ) �s (px + pm+i , pm−i+1 + p j ) =
(L

R(i−1)
2

x , L
R(i−1)
2

m−i+1). Consequently, by Lemma 2.1, L(R(i)
2 ) �s L(R(i−1)

2 ).

The abovediscussionmeans that L(R(t)
2 ) �s L(R2) �s L(R1) �s L(R). Since R(t)

2

is essentially an LPT schedule, we have
←−−
L(T ) =

←−−−−
L(R(t)

2 ), and so, L(T ) �s L(R(t)
2 ).

It follows that L(T ) �s L(R). The claim follows.
Now let S̄ be an arbitrary schedule for J , and let T̄ be the schedule for Jk derived

from S̄ by deleting jobs Jk+1, Jk+2, · · · , Jn . Then L(T̄ ) �s L(S̄). Assume without
loss of generality that L S̄

1 � L S̄
2 � · · · � L S̄

m and LT̄
π(1) � LT̄

π(2) � · · · � LT̄
π(m),

where π is a permutation of {1, 2, · · · ,m}. For each i with 1 � i � i0, the above
claim implies that

∑i
j=1 L

S
j = ∑i

j=1 L
T
j �

∑i
j=1 L

T̄
π( j) �

∑i
j=1 L

S̄
j .

Write P = ∑n
j=1 p j , Q = ∑i0

i=1 L
S
i and Q̄ = ∑i0

i=1 L
S̄
i . Then Q � Q̄. Note that,

in the case i0 = 0, we have Q = Q̄ = 0. Let Jd be the last job scheduled on machine
Mi0+1 in S. By the choice of i0, pd � 1

2 (L
S
i0+1 − pd). From the LPT algorithm, we

have LS
i0+1 − pd � LS

j , j = i0 + 1, i0 + 2, · · · ,m. Hence,

LS
i0+1 � 3

2
(LS

i0+1 − pd) � 3

2
·
∑m

j=i0+1 L
S
j

m − i0
= 3

2
· 1

m − i0
(P − Q).
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Thus, for each i with i0 + 1 � i � m, we have

i∑

j=1

LS
j � Q + (i − i0)L

S
i0+1 � Q + 3

2
· i − i0
m − i0

(P − Q), (2.1)

and

i∑

j=1

L S̄
j � Q̄ + (i − i0)

∑i0+1
j=m L S̄

j

m − i0
= Q̄+ i − i0

m − i0
(P − Q̄) � Q+ i − i0

m − i0
(P − Q). (2.2)

From (2.1) and (2.2),we conclude that
∑i

j=1 L
S
j � 3

2

∑i
j=1 L

S̄
j . Consequently, s(S) �

3
2 . It follows that WAR(Pm(NP)) � 3

2 for m � 4.
Now let us consider problem P3(NP). Let I be an instance. Denote by S the

schedule which minimizes the makespan and by T the schedule which maximizes the
machine cover. Without loss of generality, we may assume that

LS
1 � LS

2 � LS
3 , L

T
1 � LT

2 � LT
3 and LS

1 + LS
2 + LS

3 = LT
1 + LT

2 + LT
3 = 1.

Then

s(S) = LS
1 + LS

2

LT
1 + LT

2

and s(T ) = LT
1

LS
1

.

Consequently,

s∗(I) � min{ L
S
1 + LS

2

LT
1 + LT

2

,
LT
1

LS
1

}.

Note that

LT
1 = 1 − LT

2 − LT
3 � 1 − 2LT

3 and LS
1 � LS

1 + LS
2

2
= 1 − LS

3

2
.

Then

s∗(I) � min{ 1 − LS
3

1 − LT
3

,
1 − 2LT

3
1−LS

3
2

}.

Set

x = 1 − 2LT
3 and t = 1 − LS

3 .
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492 L. Wan, J.-J. Yuan

Then 2
3 � t � 1 and

s∗(I) � min{ 2t

1 + x
,
2x

t
}.

If x �
√
1+4t2−1

2 , then

s∗(I) � 2t

1 + x
� 2t

1 +
√
1+4t2−1

2

=
√
1 + 4t2 − 1

t
.

If x �
√
1+4t2−1

2 , then

s∗(I) � 2x

t
�

√
1 + 4t2 − 1

t
.

Note that
√
1+4t2−1

t �
√
5−1 for all t with 2

3 � t � 1. It follows that s∗(I) �
√
5−1.

The result follows.

For problem Pm(PP), [5] presented an optimal algorithm to generate a schedule
which minimizes the makespan. A slight modification of the algorithm can generate
a schedule S with s(S) = 1.
Algorithm 1 (with input M and J )

Step 1 Find the longest job Jh in J . If ph �
∑

J j∈J p j

|M| , then apply McNaughton’s
algorithm to assign all jobs in J to the machines in M evenly, and stop. Otherwise,
assign Jh to an arbitrary machine Mi ∈ M.
Step 2 Reset M = M\{Mi } and J = J \{Jh}. If |J | �= 0, then go back to 1.
Otherwise, stop.

Lemma 2.2 Assume p1 � p2 � · · · � pn and let S be a preemptive schedule with
LS
1 � LS

2 � · · · � LS
m. Then

∑k
i=1 pi �

∑k
i=1 L

S
i , k = 1, 2, · · · ,m.

Proof Let Jk = {J1, J2, · · · , Jk}. Then at most k jobs in Jk can be processed simul-
taneously in the time interval [0, LS

k ] and at most k − i jobs of Jk can be processed
simultaneously in the time interval [LS

k+1−i , L
S
k−i ], i = 1, 2, · · · , k − 1. Therefore,

k∑

i=1

pi � kLS
k +

k−1∑

i=1

(k − i)(LS
k−i − LS

k+1−i ) =
k∑

i=1

LS
i .

The lemma follows.

Theorem 2.2 WAR(Pm(PP)) = 1.
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Proof Assume that p1 � p2 � · · · � pn . Let i0 be the largest job index such that

pi0 >

∑n
j=i0

p j

m−i0+1 . If there is no such index, we set i0 = 0. Let S be the preemptive

schedule generated by Algorithm 1 with LS
1 � LS

2 � · · · � LS
m . Then we have

LS
i = pi , i = 1, 2, · · · , i0, (2.3)

and

LS
i =

∑n
j=i0+1 p j

m − i0
, i = i0 + 1, i0 + 2, · · · ,m. (2.4)

Let T be a preemptive schedule with LT
1 � LT

2 � · · · � LT
m . If 1 � k � i0, by

Lemma 2.2 and (2.3), we have
∑k

i=1 L
S
i = ∑k

i=1 pi �
∑k

i=1 L
T
i . If i0 + 1 � k � m,

by noting that
∑i0

i=1 L
S
i �

∑i0
i=1 L

T
i , we have

∑k

i=1
LS
i =

∑i0

i=1
LS
i + k − i0

m − i0

(∑n

i=1
pi −

∑i0

i=1
LS
i

)

=
(
1 − k − i0

m − i0

) ∑i0

i=1
LS
i + k − i0

m − i0

∑n

i=1
pi

�
(
1 − k − i0

m − i0

) ∑i0

i=1
LT
i + k − i0

m − i0

∑n

i=1
pi

=
∑i0

i=1
LT
i + k − i0

m − i0

(∑n

i=1
pi −

∑i0

i=1
LT
i

)

�
∑k

i=1
LT
i .

Hence, WAR(Pm(PP)) = 1. The result follows.

For problem Pm(FP), the schedule S averagely processing each job on all machines
clearly has s(S) = 1. Then we have

Theorem 2.3 WAR(Pm(FP)) = 1.

3 RelatedMachines

Assume that s1 � s2 � · · · � sm . We first present the exact expression of
WAR(Qm(FP)) on the machine speeds s1, s2, · · · , sm . Then we show that it is a
lower bound for WAR(Qm(PP)) and WAR(Qm(NP)).

The fractional processing mode means that all jobs can be merged into a single job
with processing time equal to the sum of processing times of all jobs. Thus, we may
assume that I is an instance of Qm(FP) with just one job JI . Suppose without loss of
generality that pI = 1. A schedule S of I is called regular if LS

1 � LS
2 � · · · � LS

m .

Then
←−−
L(S) = L(S) if S is regular. The following lemma can be observed from the

basic mathematical knowledge.
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Lemma 3.1 Suppose that x1 � x2 � · · · � xn � 0 and y1 � y2 � · · · � yn � 0.
Then

∑n
i=1 xi yπ(i) �

∑n
i=1 xi yi for any permutation π of {1, 2, · · · , n}.

Lemma 3.2 For any schedule T of I, there exists a regular schedule S such that

L(S) �c
←−−
L(T ).

Proof Let T be a schedule of I and π a permutation of {1, 2, · · · ,m} such that
LT

π(1) � LT
π(2) � · · · � LT

π(m). By Lemma 3.1,
∑m

i=1 si L
T
π(i) �

∑m
i=1 sπ(i)LT

π(i) � 1.

Let i0 be the smallest machine index such that
∑i0

i=1 si L
T
π(i) � 1. Let S be the schedule

in which a part of processing time si LT
π(i) is assigned to Mi , i = 1, 2, · · · , i0 − 1, and

the rest part of processing time 1 − ∑i0−1
i=1 si LT

π(i) is assigned to Mi0 . Then we have

LS
i = LT

π(i), for i = 1, 2, · · · , i0 − 1,

LS
i0 = 1 − ∑i0−1

i=1 si LT
π(i)

si0
�

∑i0
i=1 si L

T
π(i) − ∑i0−1

i=1 si LT
π(i)

si0
= LT

π(i0),

and LS
i = 0 � LT

π(i) for i = i0 +1, i0 +2, · · · ,m. It can be observed that S is regular

and L(S) �c
←−−
L(T ). The lemma follows.

Let f (i) be the infimum of the sum of the first i coordinates of
←−−
L(T ) in all feasible

schedule T of I, i = 1, 2, · · · ,m. By Lemma 3.2, we have f (i) = inf{∑i
k=1 L

S
k :

S is regular}, i = 1, 2, · · · ,m. Then, for each schedule T of I with LT
π(1) � LT

π(2) �
· · · � LT

π(m) for some permutation π of {1, 2, · · · ,m}, we have

s(T ) = max
1�i�m

{∑i
k=1 L

τ
π(k)

f (i)

}

. (3.1)

The following lemma gives the exact expression for each f (i).

Lemma 3.3 f (i) =
⎧
⎨

⎩

i∑m
k=1 sk

, if i �
∑m

k=1 sk
s1

,

1
s1

, if i >

∑m
k=1 sk
s1

.

Proof Fix index i and let S be a regular schedule. Then we have

LS
1 � LS

2 � · · · � LS
m (3.2)

and

m∑

i=1

si L
S
i � 1. (3.3)

Sowe only need to find a regular schedule Smeeting (3.2) and (3.3) such that
∑i

k=1 L
S
k

reaches the minimum.

If i �
∑m

k=1 sk
s1

, by (3.2) and (3.3), we have
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∑i

t=1

(∑m
k=1sk
i

)
LS
t

=
∑i

t=1
st L

S
t +

∑i

t=1

(∑m
k=1sk
i

− st

)
LS
t

�
∑i

t=1
st L

S
t +

∑i

t=1

(∑m
k=1sk
i

− st

)
LS
i+1

=
∑i

t=1
st L

S
t +

(∑m

t=i+1
st

)
LS
i+1

�
∑i

t=1
st L

S
t +

∑m

t=i+1
st L

S
t

=
∑m

t=1
st L

S
t

� 1.

The equality holds if and only if LS
1 = LS

2 = · · · = LS
m = 1∑m

k=1 sk
. Then the regular

schedule S can be defined by the way that a part of processing time sk∑m
i=1 si

is assigned

to Mk , k = 1, 2, · · · ,m. Thus, f (i) = i∑m
k=1 sk

.

If i >

∑m
k=1 sk
s1

, we can similarly deduce

∑i

k=1
s1L

S
k =

∑i

k=1
sk L

S
k +

∑i

k=1
(s1 − sk)L

S
k

�
∑i

k=1
sk L

S
k +

∑i

k=1
(s1 − sk)L

S
i

=
∑i

k=1
sk L

S
k +

(
is1 −

∑i

k=1
sk

)
LS
i

�
∑i

k=1
sk L

S
k +

(∑m

k=1
sk −

∑i

k=1
sk

)
LS
i

�
∑i

k=1
sk L

S
k +

∑m

k=i+1
sk L

S
k

=
∑m

k=1
sk L

S
k

� 1.

The equality holds if and only if LS
1 = 1

s1
, LS

2 = · · · = LS
m = 0. Then the regular

schedule S can be defined by the way that JI is scheduled totally on M1 in S. Thus,
f (i) = 1

s1
. The lemma follows.

By Lemma 3.2, s∗(I) = inf{s(S) : S is regular}. For each regular schedule S, by
(3.1) and Lemma 3.3, we have

∑i
k=1 L

S
k � s(L(S)) f (i) for i = 1, 2, · · · ,m.

Let sm+1 = 0 and
∑m

i=1 si
s1

= t + �, where t with 1 � t � m is a positive integer
and 0 � � < 1. By Lemma 3.3, we have

i · s(L(S))
∑m

k=1 sk
�

i∑

k=1

LS
k , i = 1, 2, · · · , t (3.4)
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and

s(L(S))

s1
�

i∑

k=1

LS
k , i = t + 1, t + 2, · · · ,m. (3.5)

From (3.4) and (3.5), we have

t∑

i=1

(si − si+1) · i · s(L(S))
∑m

i=1 si
+

m∑

i=t+1

(si − si+1)
s(L(S))

s1
�

t∑

i=1

(si − si+1)

i∑

t=1

LS
t

+
m∑

i=t+1

(si − si+1)

i∑

t=1

LS
t =

m∑

i=1

si L
S
i = 1.

Hence, s(S) �
∑m

i=1 si
∑t

i=1 si+
( ∑m

i=1 si
s1

−t

)
st+1

=
∑m

i=1 si∑t
i=1 si+�st+1

. Note that the equality holds

if and only if LS
1 = LS

2 = · · · = LS
t = 1∑t

i=1 si+�st+1
, LS

t+1 = �∑t
i=1 si+�st+1

and

LS
t+2 = LS

t+3 = · · · = LS
m = 0. Then the corresponding regular schedule S can

be defined by the way that a part of processing time si∑t
k=1 sk+�st+1

is assigned to Mi ,

i = 1, 2, · · · , t , and the rest part of processing time �st+1∑t
i=1 si+�st+1

is assigned to Mt+1.

Hence, s∗(I) =
∑m

i=1 si∑t
i=1 si+�st+1

. Consequently,WAR(Qm(FP)) =
∑m

i=1 si∑t
i=1 si+�st+1

if the

machine speeds are fixed.
If machine speeds are parts of the input, by the fact that s1 � s2 � · · · � sm , we

have

∑t
i=2 si + �st+1

t − 1 + �
�

∑m
i=2 si

m − 1
. (3.6)

Let θ =
∑m

i=2 si
m−1 and ϑ = s1

θ
> 1. Then

t + � =
∑m

i=1 si
s1

= s1 + (m − 1)θ

s1
= ϑ + m − 1

ϑ
. (3.7)

Obviously, m
ϑ−1 + (ϑ − 1) � 2

√
m

ϑ−1 (ϑ − 1) = 2
√
m. By (3.6) and (3.7), we have

∑m
i=1 si∑t

i=1 si + �st+1

= s1 + (m − 1)
∑m

i=2 si
m−1

s1 + (t − 1 + �)

∑t
i=2 si+�st+1
t−1+�
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�
s1 + (m − 1)

∑m
i=2 si
m−1

s1 + (t − 1 + �)

∑m
i=2 si
m−1

= 1 + m − 1

( m
ϑ−1 + (ϑ − 1)) + 2

� 1 + m − 1

2
√
m + 2

=
√
m + 1

2
.

So we have s∗(I) �
√
m+1
2 , and therefore, WAR(Qm(FP)) �

√
m+1
2 .

To show that WAR(Qm(FP)) =
√
m+1
2 , we consider the following instance I with

pI = 1, s1 = s = √
m + 1 > 1 and s2 = s3 = · · · = sm = 1. Let S be a regular

schedule and write x = sLS
1 . Then

∑m
t=2 L

S
t = 1 − x . By Lemma 3.3 and (3.1), we

have

s(S)

� max

{
LS
1

f (1)
,

∑m
i=1 L

S
i

f (m)

}

= max

{
x(s + m − 1)

s
, x + s(1 − x)

}

� s2 + sm − s

s2 + m − 1

=
√
m + 1

2
,

where the inequality follows from the fact that x(s+m−1)
s is an increasing function in

x , while x + s(1− x) is a decreasing function in x and they meet with s2+sm−s
s2+m−1

when

x = s2

s2+m−1
. Then s∗(I) �

√
m+1
2 . Consequently, WAR(Qm(FP)) =

√
m+1
2 .

The above discussion leads to the following conclusion.

Theorem 3.1 If the machine speeds s1, s2, · · · , sm are fixed, then WAR(Qm(FP)) =∑m
i=1 si∑t

i=1 si+�st+1
, where

∑m
i=1 si
s1

= t + �, t with 1 � t � m is a positive integer and

0 � � < 1. Alternatively, if the machine speeds s1, s2, · · · , sm are parts of the input,

then WAR(Qm(FP)) =
√
m+1
2 .

Lemma 3.4 If the machine speeds s1, s2, · · · , sm are fixed, then WAR(Qm(NP)) �
WAR(Qm(FP)) and WAR(Qm(PP)) � WAR(Qm(FP)).

Proof We only consider the non-preemptive processing mode. For the preemptive
processing mode, the result can be similarly proved. Given a schedule S, we denote
by π S the permutation of {1, 2, · · · ,m} such that LS

π S(1)
� LS

π S(2)
� · · · � LS

π S(m)
.

Suppose without loss of generality that sm = 1. Write η = WAR(Qm(NP)). Let I
be an instance of Qm(FP) with only one job JI of processing time 1. For each i , set
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f (i) to be the infimum of
∑i

k=1 L
S
π S(k)

of schedule S over all fractional schedules of
I. We only need to show that s∗(I) � η.

Assume to the contrary that s∗(I) > η. Let ε > 0 be a sufficiently small number
such that η( f (i)+iε) < s∗(I) f (i), i = 1, 2, · · · ,m. LetH be an instance of Qm(NP)

such that the total processing time of jobs is equal to 1 and the processing time of each
job is at most ε. For each i , let g(i) be the infimum of

∑i
k=1 L

S
π S(k)

of schedule S over
all feasible schedules of H. We assert that

g(i) � f (i) + iε, i = 1, 2, · · · ,m. (3.8)

To the end, let Si be the regular schedule of I such that
∑i

k=1 L
Si
k = f (i), i =

1, 2, · · · ,m. Fix index i , we construct a non-preemptive schedule S of H such that∑i
k=1 L

S
π S(k)

� f (i)+iε. This leads to g(i) �
∑i

k=1 L
S
π S(k)

� f (i)+iε and therefore
proves the assertion. The construction of S is stated as follows. First, we assign jobs
to Mi one by one until LS

1 � LSi
1 . Then we assign the rest jobs to M2 one by one

until LS
2 � LSi

2 . This procedure is repeated until all jobs are assigned. According to

the construction of S, we have LS
k � LSi

k + ε
sk

� LSi
k + ε, k = 1, 2, · · · ,m. Note that

LSi
1 � LSi

2 � · · · � LSi
m . Then

∑i
k=1 L

S
π S(k)

�
∑i

k=1(L
Si
π S(k)

+ε) �
∑i

k=1 L
Si
k +iε =

f (i) + iε.
Let R be the schedule of H such that s(R) = s∗(H). It can be observed that there

exists a schedule T of I such that L(T ) �c L(R). Hence, for each i with 1 � i � m,
we have

i∑

k=1

LT
πT (k) �

i∑

k=1

LR
πT (k) �

i∑

k=1

LR
π R(k) � s(R)g(i)

� s∗(H)( f (i) + iε) � η( f (i) + iε) < s∗(I) f (i).

This contradicts the definition of s∗(I). So s∗(I) � η. The result follows.

By Theorem 3.1 and Lemma 3.4, the following theorem holds.

Theorem 3.2 If the machine speeds s1, s2, · · · , sm are fixed, then

WAR(P) �
∑m

i=1 si∑t
i=1 si + �st+1

forP ∈ {Qm(NP), Qm(PP)},

where
∑m

i=1 si
s1

= t + �, t is a positive integer with 1 � t � m and 0 � � < 1. If

the machine speeds s1, s2, · · · , sm are parts of the input, then WAR(P) �
√
m+1
2 for

P ∈ {Qm(NP), Qm(PP)}.
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4 UnrelatedMachines

Since Qm is a special version of Rm, from the results in the previous section,

the weak simultaneous approximation ratio is at least
√
m+1
2 for each of Rm(NP),

Rm(PP) and Rm(FP). The following lemma establishes an upper bound of the weak
simultaneous approximation ratio for the three problems.

Lemma 4.1 WAR(P) � √
m for P ∈ {Rm(NP), Rm(PP), Rm(FP)}.

Proof Let I be an instance of Rm(NP), Rm(PP) or Rm(FP). Let S be a schedule which
minimizes the makespan with LS

1 � LS
2 � · · · � LS

m . Let p[ j] = min1�i�m{pi j }.
If LS

1 �
∑n

j=1 p[ j]√
m

, let T be a feasible schedule with LT
π(1) � LT

π(2) � · · · � LT
π(m)

for some permutation π of {1, 2, · · · ,m}. For each i , we have
i∑

k=1

LS
k � i LS

1 �
√
m · i

m

n∑

j=1

p[ j] �
√
m

i∑

k=1

LT
π(k).

This means that s∗(I) � √
m.

If LS
1 >

∑n
j=1 p[ j]√

m
, let R be the schedule, in which each job J j is assigned to the

machine Mi with pi j = p[ j]. Let O be an arbitrarily feasible schedule, and let π1 and
π2 be two permutations of {1, 2, · · · ,m} such that LR

π1(1)
� LR

π1(2)
� · · · � LR

π1(m)

and LO
π2(1)

� LO
π2(2)

� · · · � LO
π2(m). For each i , we have

i∑

k=1

LR
π1(k) �

m∑

k=1

LR
π1(k) =

n∑

j=1

p[ j] <
√
mLS

1 �
√
mLO

π2(1) �
√
m

i∑

k=1

LO
π2(k)

.

This also means that s∗(I) � √
m. The lemma follows.

Combining with the results of the previous section, we have the following theorem.

Theorem 4.1 For each problem P ∈ {Qm(NP), Qm(PP), Qm(FP), Rm(NP),

Rm(PP), Rm(FP)}, we have
√
m+1
2 � WAR(P) � √

m.

5 Conclusion

We introduced and studied the strong and weak simultaneous approximation ratios,
denoted by SAR(P) and WAR(P), of various parallel machine scheduling problems
P . Since determining SAR(P) is trivial for most standard problems, we mainly pre-
sented research on the values WAR(P). Our contributions are summarized in Table 1.

For further research, it is worth studying to determine the exact value of WAR(P)

or improve the bounds of WAR(P) for

P ∈ {Pm(NP), Qm(NP), Rm(NP), Qm(PP), Rm(PP), Rm(FP)}.
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