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Abstract
In this paper, we propose an interior-point algorithm based on a wide neighborhood
for convex quadratic semidefinite optimization problems. Using the Nesterov–Todd
direction as the search direction, we prove the convergence analysis and obtain the
polynomial complexity bound of the proposed algorithm. Although the algorithm
belongs to the class of large-step interior-point algorithms, its complexity coincides
with the best iteration bound for short-step interior-point algorithms. The algorithm is
also implemented to demonstrate that it is efficient.
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1 Introduction

Let Sn be the vector space of all n × n real symmetric matrices endowed with the
inner product M · N = Tr(MN ) and Sn+

(Sn++
)
be the cone of positive semidefinite

(positive definite) matrices in Sn . Consider the primal problem of convex quadratic
optimization (CQO) over Sn+, denoted by CQSDO, in the standard form

(P) min C · X + 1

2
X · Q(X),

Ai · X = bi , i = 1, 2, · · · ,m,

X � 0,

and its Lagrangian dual problem

(D) max bTy − 1

2
X · Q(X),

m∑

i=1

yi Ai − Q(X) + S = C,

S � 0,

where C ∈ Sn and b ∈ R
m are given data, the notation ′′ �′′ denotes the positive

semidefinite (positive definite) matrices, Ai ∈ Sn are linearly independent matrices
and Q : Sn −→ Sn is a self-adjoint positive semidefinite linear operator on Sn , i.e.,
for any M, N ∈ Sn , Q(M) · N = M · Q(N ) and Q(M) · M � 0.

The CQSDO problems are the general state of semidefinite optimization (SDO)
problems. In fact these problems can be reduced to SDO problems if Q(X) = 0.
Additionally, they can also be reformulated as the semidefinite linear complemen-
tarity problems (SDLCPs). After the landmark paper of Karmarkar [1], interior-point
methods (IPMs) have shown their powers and efficiency in solving the linear optimiza-
tion (LO) problems and various classes of other mathematical programming such as
complementarity problems (CPs), second-order cone optimization (SOCO) problems,
SDO problems and CQSDO problems.

In last decade, some primal-dual IPMs for LO have been successfully extended to
other optimization problems, especiallyCQSDOproblems.Nie andYuan [2] presented
a potential reduction algorithm for solving CQSDO problems. They also designed
a predictor-corrector IPM for CQSDO problems with O(

√
nL) complexity bound.

Toh [3] proposed an inexact primal-dual Mehrotra-type predictor-corrector (MPC)
algorithm forCQSDOproblems.Xiao et al. [4] suggested a smoothingNewtonmethod
for a type of inverse semidefinite quadratic optimization problems and proved the
quadratic convergence of their method. Achache and Guerra [5] presented a primal-
dual path-following interior-point algorithm for solving CQSDO problems using the
Nesterov–Todd (NT) search direction and proved the complexity O(

√
nL) for their

algorithm.
Ai and Zhang [6], using the newly defined wide neighborhood of the central path in

[7] proposed an interior-point algorithm for monotone linear complementarity prob-
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AWide Neighborhood Interior-Point Algorithm for Convex… 147

lems (MLCPs) and proved the convergence analysis of their algorithm. After that,
Li and Terlaky [8] extend the Ai–Zhang schem to SDO problems and proposed an
interior-point algorithm with the same complexity as the best theoretical complexity
bound for small-update methods. Analogously, Liu et al. [9] extended the wide neigh-
borhood given by Ai and Zhang [6] to symmetric cone optimization (SCO) problems
and suggested an infeasible interior-point algorithm with the same theoretical com-
plexity bound as the best short-step path-following interior-point algorithms.

Recently, Liu et al. [10] proposed an MPC interior-point algorithm for SCO prob-
lems. Their algorithm is based on a new one-norm wide neighborhood, which is an
evenwider neighborhood than a negative infinity neighborhood. Liu et al. [11] used the
one-normwide neighborhood defined in [10] and presented an infeasible interior-point
algorithm for SCO problems.

Motivated by Liu et al. [10,11], we present a wide neighborhood feasible interior-
point algorithm for CQSDO problems. We prove that its complexity coincides with
the best theoretical iteration bound for CQSDO problems by small-update methods.

The paper is organized as follows: In Sect. 2, we recall the background and the
basic concepts of Euclidean Jordan algebra Sn . Section 3 introduces the basic idea
of IPMs for solving CQSDO problems and describes the feasible wide neighborhood
interior-point algorithm in more details. Section 4 is the important part of paper. In
fact, it contains some lemmas which indicate how we choose the step size α in our
algorithm. The complexity of algorithm is given in Sect. 4.1. In Sect. 5, we test the
proposed algorithm for CQSDO problems with some numerical examples. Finally, the
paper ends with some conclusions in Sect. 6.

2 Preliminaries

In this section, we briefly review and introduce Jordan algebra Sn as well as some
of its basic properties. The Euclidean Jordan algebra Sn is an n-dimensional vector
space over the field of n × n real symmetric matrices with the identity element I ,
symmetrized multiplication

X ◦ S = XS + SX

2
(2.1)

and the inner product 〈X , S〉 = X · S = Tr(X ◦ S) = Tr(XS). The space of positive
semidefinite matrices denoted by Sn+ is called the symmetric cone of squares of Sn ,
while Sn++ denotes the space of positive definitematrices. Let A ∈ R

n×n , the Lyapunov
operator LA : Sn → Sn defines as L A(X) := AX + X AT, while the Lyapunov-like
operator L̃ A : Sn → Sn defines as follows:

L̃ A := 1

2

(
AX + X AT

)
. (2.2)

The operator L̃ A is symmetric with respect to 〈·, ·〉, that is, for any matrix X , S ∈ Sn ,
〈L̃ A(X), S〉 = 〈X , L̃ A(S)〉. Let M = QΛ(M)QT be the eigenvalue decomposition
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148 M. Pirhaji et al.

of M ∈ Sn , where Λ(M) is the diagonal matrix of eigenvalues of the matrix M and
Q is an orthonormal matrix, i.e., QQT = I . We define M+ and M− as the positive
and negative parts of M as

M+ :=
∑

λi�0

λi qi q
T
i , M− :=

∑

λi�0

λi qi q
T
i ,

where λi is the i th eigenvalue of the matrix M , and each column qi of Q is an
eigenvector of M corresponding to the eigenvalue λi . For any M ∈ Sn , the norm
induced by the inner product 〈·, ·〉 is named as the Frobenius norm, which is given by

‖M‖F :=
√√√√

n∑

i=1

σ 2
i (M) =

√√√√
n∑

i=1

λ2i (M),

where σi (M) is the i th singular value of the symmetric matrix M . The other norms
such as Schatten 1-norm and 2-norm are defined as follows:

‖M‖1 :=
n∑

i=1

σi (M) =
n∑

i=1

|λi (M)|, ‖M‖2 := max
i

σi (M) = max
i

|λi (M)|.

For a given n × n real matrix V and a given nonsingular matrix P , a symmetrization
transformation defines as

HP (V ) := 1

2

[
PV P−1 +

(
PV P−1

)T ]
. (2.3)

In particular, if P = I , then for any symmetric matrix M , HI (M) = H(M) = M .
Here, we list some results which are required in our analysis.

Lemma 2.1 (Lemma 2.1 in [12]) Let M, N ∈ Sn. Then,
∥∥(M + N )+

∥∥
1 �

∥∥M+∥∥
1 +∥∥N+∥∥

1.

Lemma 2.2 (Lemma 2.3 in [12]) Let P ∈ R
n×n be a nonsingular matrix. Then, for

any M ∈ Sn

∥∥M+∥∥
1 �

∥∥(HP (M))+
∥∥
1 .

The following two lemmas will be used in the proof of the basic Lemma 2.5. For
proof and more details, we refer the readers to Corollary 3.4.3 and Theorem 3.3.14 in
[13].

Lemma 2.3 Let A, B ∈ R
m×n have respective ordered singular values σ1(A) �

σ2(A) � · · · � σq(A) � 0, σ1(B) � σ2(B) � · · · � σq(B) � 0, q ≡ min{m, n} and
σ1(A + B) � σ2(A + B) � · · · � σq(A + B) � 0 be the ordered singular values of
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A + B. Then,

k∑

i=1

σi (A + B) �
k∑

i=1

σi (A) +
k∑

i=1

σi (B), k = 1, 2, · · · , q.

Lemma 2.4 Let A ∈ R
n×p and B ∈ R

p×m be given, let q ≡ min{m, n, p} and
denote the ordered singular values of A, B and AB by σ1(A) � σ2(A) � · · · �
σmin{n,p}(A) � 0, σ1(B) � σ2(B) � · · · � σmin{m,p}(B) � 0 and σ1(AB) �
σ2(AB) � · · · � σmin{m,n}(AB) � 0. Then,

k∑

i=1

σi (AB) �
k∑

i=1

σi (A)σi (B), k = 1, 2, · · · , q.

The following lemma plays an important role in our analysis.

Lemma 2.5 Let M, N ∈ Sn, then ‖M ◦ N‖1 � ‖M‖F ‖N‖F .

Proof Due to (2.1), Lemmas 2.3 and 2.4, we have

‖M ◦ N‖1 = 1

2

n∑

i=1

σi (MN + NM) � 1

2

[ n∑

i=1

σi (MN ) +
n∑

i=1

σi (NM)
]

�
n∑

i=1

σi (M)σi (N ) �
[ n∑

i=1

σ 2
i (M)

n∑

i=1

σ 2
i (N )

] 1
2 = ‖M‖F ‖N‖F ,

which follows the desired result.

3 Interior-Point Algorithm for CQSDO Problems

In this section, we introduce the Schatten 1-norm wide neighborhood N1(τ, β)

and then we propose a feasible interior-point algorithm for CQSDO problems based
on the wide neighborhood N1(τ, β). For convenience of reference, we consider the
feasibility and strictly feasibility sets of (P) and (D), respectively, as follows:

F := {(X , y, S) : Ai · X = bi ,
m∑

i=1

yi Ai − Q(X) + S = C, X , S � 0},

F0 := {(X , y, S) ∈ F : X , S � 0}.

We assume that the primal and dual problems (P) and (D) satisfy the interior-
point condition (IPC). That is, F0 = ∅. It is well known that under the IPC, finding
an ε-approximate optimal solution of the primal and dual problems (P) and (D) is
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equivalent to solve the perturbed Karush-Kuhn-Tucker optimality conditions.

Ai · X = bi ,
m∑

i=1

yi Ai − Q(X) + S = C, XS = τμI , X , S � 0, (3.1)

where τ > 0 is the target parameter, μ := X ·S
n is the normalized duality gap corre-

sponding to (X , y, S) and the last equality is called the perturbed complementarity
equation. Since the left-hand side of system (3.1) is a map from Sn × R

m × Sn to
R
n×n ×R

m × Sn , this system is not square when X and S are restricted to Sn . Various
remedies have been proposed since the middle of 1990s. A remedy is to use the so-
called similar symmetrization operator HP : Rn×n −→ Sn introduced by Zhang [14]
who suggested to replace the perturbed equation XS = τμI by HP (XS) = τμI
where HP (·) is defined as (2.3). Thus, system (3.1) can be rewritten in equivalent
form as follows:

Ai · X = bi , i = 1, 2, · · · ,m,
m∑

i=1

yi Ai − Q(X) + S = C,

HP (XS) = τμI . (3.2)

The above system has a unique solution for any μ, τ > 0, the scaling matrix P which
satisfies PXSP−1 ∈ Sn and X , S � 0.This solution is denotedby (X(μ), y(μ), S(μ))

and is called theμ-center of the problems (P) and (D). The set of allμ-centers construct
a guide curve in F0 so-called the central path. If μ → 0, then the limit of the central
path exists and since the limit point satisfies the complementarity condition, it yields
an ε-optimal solution of (P) and (D). To solve system (3.2), we use the perturbed
Newton method which leads to the following linear system of equations for search
direction (ΔX ,Δy,ΔS) ∈ Sn × R

m × Sn :

Ai · ΔX = 0, i = 1, 2, · · · ,m,
m∑

i=1

Δyi Ai − Q(ΔX) + ΔS = 0,

HP (XΔS + ΔXS) = τμI − HP (XS). (3.3)

Different choices have been proposed for the nonsingular matrix P . For instance,

Kojima et al. [15] used P := X− 1
2 while Alizadeh et al. [16] and Monteiro [17],

respectively, selected P = I and P = S
1
2 as the scaling matrices. However, in our

analysis, defining

W := X
1
2

(
X

1
2 SX

1
2

)− 1
2
X

1
2 = S− 1

2

(
S

1
2 XS

1
2

) 1
2
S− 1

2 , (3.4)
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we use the scaling matrix P = W
1
2 which was first introduced by Nesterov and

Todd [18]. According to this choice, it is easy to check that PXSP−1 ∈ Sn and
PX P = P−1SP−1 [17].

Defining

ΔX̂ := PΔX P, ΔŜ := P−1ΔSP−1, (3.5)

and

X̂ := PX P, Ŝ := P−1SP−1, Âi := P−1Ai P−1,

Q̂(ΔX̂) := P−1Q(ΔX)P−1 = P−1Q(P−1ΔX̂ P−1)P−1,
(3.6)

system (3.3) can be rewritten in the scaling form as follows:

Âi · ΔX̂ = 0, i = 1, 2, · · · ,m,
m∑

i=1

Δyi Âi − Q̂(ΔX̂) + ΔŜ = 0,

H(X̂ΔŜ + ΔX̂ Ŝ) = τμI − X̂ Ŝ, (3.7)

where, due to (3.6) and the fact PXSP−1 ∈ Sn , we have X̂ Ŝ = Ŝ X̂ and
H(X̂ Ŝ) = H(Ŝ X̂) = X̂ Ŝ. In this paper, in order to obtain the scaled search direction(
ΔX̂ ,Δy,ΔŜ

)
, we decompose the right-hand side of the third equation in (3.7) to

positive and negative parts and solve the following system:

Âi · ΔX̂ = 0, i = 1, 2, · · · ,m,
m∑

i=1

Δyi Âi − Q̂(ΔX̂) + ΔŜ = 0,

H(X̂ΔŜ + ΔX̂ Ŝ) =
(
τμI − X̂ Ŝ

)− + √
n

(
τμI − X̂ Ŝ

)+
. (3.8)

Solving the new scaled system (3.8) and considering α ∈ [0, 1] as a step size taken

along
(
ΔX̂ ,Δy,ΔŜ

)
, the new iterate is given by

(
X̂(α), y(α), Ŝ(α)

)
=

(
X̂ , y, Ŝ

)
+ α

(
ΔX̂ ,Δy,ΔŜ

)
. (3.9)

Most of interior-point algorithms generate a sequence of iterations in a small or the
so-called negative infinity neighborhood of the central path defined as follows:

N (τ, β) :=
{
(X , y, S) ∈ F0 :

∥∥∥τμI − X
1
2 SX

1
2

∥∥∥
F

� βτμ
}
, (3.10)

N−∞(1 − τ) :=
{
(X , y, S) ∈ F0 : λmin(XS) � τμ

}
, (3.11)
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where τ, β ∈ (0, 1) and μ = X ·S
n . Theoretically, IPMs based on the small neighbor-

hood and short-step algorithms have a better iteration complexity bound in comparison
with the algorithms based on the large neighborhood (large-update algorithms), while
computational experience reveals that the large neighborhood algorithms usually per-
form better in practice.

Li and Terlaky [8] defined the wide neighborhood

NF (τ, β) :=
{
(X , y, S) ∈ F0 :

∥∥∥
∥
(
τμI − X

1
2 SX

1
2

)+∥∥∥
∥
F

� βτμ
}
, (3.12)

and proposed an O(
√
nL) interior-point algorithm for SDO problems.

Ai [7] defined the l1-norm neighborhood and proposed some neighborhood-
following algorithms with the best iteration complexity for LO problems. Liu et
al. [10], based on the l1-norm wide neighborhood, presented an infeasible interior-
point algorithm for SCO problems.

Motivated by Ai [7] and Liu et al. [10], we use the popular 1-norm wide neighbor-
hood

N1(τ, β) :=
{
(X , y, S) ∈ F0 :

∥∥∥∥
(
τμI − X

1
2 SX

1
2

)+∥∥∥∥
1

� βτμ
}

(3.13)

of the central path. Due to the fact that the matrices XS, SX , X
1
2 SX

1
2 , S

1
2 XS

1
2 and

X̂
1
2 Ŝ X̂

1
2 have the same eigenvalues (Proposition 3.2 in [12]) and according to the

definitions of the negative infinity and Schatten 1-norm neighborhoods in (3.11) and
(3.13), we have the following lemma:

Lemma 3.1 Let β, τ ∈ (0, 1) and (X , y, S) ∈ N1(τ, β). Then,
(i) N−∞(1 − τ) ⊆ N1(τ, β).
(ii) The neighborhood N1(τ, β) is symmetric with respect to X and S and is a

scaling invariant, that is, (X , y, S) ∈ N1(τ, β) if and only if (X̂ , y, Ŝ) ∈ N1(τ, β).

The algorithm is described in more detail as follows. Assuming an initial solu-
tion (X0, y0, S0) belongs to N1(τ, β) as a starting point, using the search direction
(ΔX̂ ,Δy,ΔŜ) and choosing a step size ᾱ ∈ [0, 1], the algorithm generates a new
iterate as (3.9). The step size ᾱ should be selected in the way that it guarantees the
sufficient reduction of the duality gapμ(α) and ensures that the newly generated point
(X̂(α), y(α), Ŝ(α)) belongs to N1(τ, β).

This procedure will be repeated until μ(α) is small enough. At this stage, we have
found an ε-approximate solution of the CQSDO problem. The generic framework of
the algorithm can be stated as follows.

4 Analysis and the Step Size Calculation

The choice of the step size α in (3.9) is one of the most important parts of our anal-
ysis. Indeed, we require the largest step size ᾱ such that it not only reduces the duality
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gap μ(α) in each iteration but also it ensures that the new iterate
(
X̂(α), y(α), Ŝ(α)

)

belongs toN1(τ, β). In following, we discuss how we choose the step size ᾱ to guar-
antee the convergence of the generated points by the Algorithm 1. According to (3.9)
and the third equation of (3.8), we have

H
(
X̂(α)Ŝ(α)

)
= H(X̂ Ŝ) + αH(X̂ΔŜ + ΔX̂ Ŝ) + α2H(ΔX̂ΔŜ)

= X̂ Ŝ + α
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)

+ α2H
(
ΔX̂ΔŜ

)

= Ψ (α) + α2H
(
ΔX̂ΔŜ

)
, (4.1)

where

Ψ (α) = X̂ Ŝ + α
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)

= (1 − α)X̂ Ŝ + ατμI + α(
√
n − 1)(τμI − X̂ Ŝ)+ (4.2)

is a positive semidefinite matrix. Due to (4.1) and (4.2), we have

μ(α) = μ̂(α) = Tr(X̂(α)Ŝ(α))

n
=

Tr
(
H

(
X̂(α)Ŝ(α)

))

n

= μ + α
[
(τ − 1)μ +

√
n − 1

n
Tr(τμI − X̂ Ŝ)+

]

+α2

n
Tr(ΔX̂ΔŜ). (4.3)

In order to derive themaximum step size ᾱ such thatμ(ᾱ) � μ(α) for allα ∈ [0, ᾱ],
we need to obtain some upper and lower bounds for the single term Tr(ΔX̂ΔŜ) in
(4.3). The following two lemmas help us to obtain these bounds in Lemma 4.3.

Lemma 4.1 Let G = L̃−1
Ŝ

L̃ X̂ , (X̂ , Ŝ) ∈ N1(τ, β), β � 1
2 and τ � 1

4 . Then,

∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)+

∥∥∥∥

2

F
� βτμ, (4.4)

∥∥∥
∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)−

∥∥∥
∥

2

F
� nμ. (4.5)

Proof Due to (3.13), we have λmin(X̂ Ŝ) � (1 − β)τμ. Therefore,

∥
∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)+

∥
∥∥∥

2

F
�

∥
∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2

∥
∥∥∥

2

2

∥∥∥(τμI − X̂ Ŝ)+
∥∥∥
2

F

� 1

λmin(X̂ Ŝ)

∥∥∥(τμI − X̂ Ŝ)+
∥∥∥
2

1
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� (βτμ)2

(1 − β)τμ
� βτμ,

where the third and last inequalities, respectively, follow from (X̂ , Ŝ) ∈ N1(τ, β) and
β � 1

2 . It implies the first inequality in the lemma. To prove inequality (4.5), we have

∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)−

∥∥∥∥

2

F

�
∥∥
∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)

∥∥
∥∥

2

F

= (τμI − X̂ Ŝ) · (L̃ X̂ L̃ Ŝ)
−1(τμI − X̂ Ŝ)

= τμI · (L̃ X̂ L̃ Ŝ)
−1τμI − 2τμI · I + X̂ Ŝ · I

�
∥∥∥(L̃ X̂ L̃ Ŝ)

−1
∥∥∥
2
τμI · τμI − 2τμI · I + X̂ Ŝ · I

� τ 2μ2n

λmin(X̂ Ŝ)
− 2τμn + nμ � nμ,

where the last inequality follows from λmin(X̂ Ŝ) � (1 − β)τμ and β � 1
2 . This

concludes the second inequality in the lemma and ends the proof.

Lemma 4.2 Let G := L̃−1
Ŝ

L̃ X̂ , β � 1
2 and τ � 1

4 . Then

∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)∥∥∥∥

2

F
� (1 + βτ)nμ.

Proof Using Lemma 4.1 and the fact M+ ·M− = 0, the result can be easily concluded
as follows:

∥∥∥
∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)∥∥∥
∥

2

F

=
∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)−

∥∥∥∥

2

F
+ n

∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(τμI − X̂ Ŝ)+

∥∥∥∥

2

F

� nμ + βτnμ = (1 + βτ)nμ.

This concludes the desired result.

The next lemma obtains some bounds for the single term Tr(ΔX̂ΔŜ).

Lemma 4.3 Let G := L̃−1
Ŝ

L̃ X̂ . Then,

0 � Tr(ΔX̂ΔŜ) � 1

4
(1 + βτ)nμ. (4.6)
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AWide Neighborhood Interior-Point Algorithm for Convex… 155

Proof The left-hand side inequality follows directly from the second equation of sys-
tem (3.8) and the positive semidefinite property of the operator Q. To prove the
right-hand side inequality, using the Lyapunov-like operator defined in (2.2), the third
equation of system (3.8) can be rewritten as

L̃ X̂ (ΔŜ) + L̃ Ŝ(ΔX̂) = (τμI − X̂ Ŝ)− + √
n(τμI − X̂ Ŝ)+. (4.7)

Now, multiplying this equality by (L̃ X̂ L̃ Ŝ)
−1
2 and taking squared norm on both

sides, we derive

∥∥∥G
−1
2 ΔX̂ + G

1
2 ΔŜ

∥∥∥
2

F

=
∥∥∥G

−1
2 ΔX̂ − G

1
2 ΔŜ

∥∥∥
2

F
+ 4Tr(ΔX̂ΔŜ)

=
∥∥∥∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)∥∥∥∥

2

F
.

Combined with Lemma 4.2, the proof is completed.

The following lemma deduces that α = 1 is the largest step size that reduces the
value of duality gap μ(α) in each iteration.

Lemma 4.4 Let (X̂ , y, Ŝ) ∈ N1(τ, β), β � 1
2 and τ � 1

4 . Then, μ(α) is strictly
monotonically decreasing for α ∈ [0, 1].
Proof Taking the derivative with respect to α from μ(α) defined in (4.3), we obtain

μ′(α) = (τ − 1)μ +
√
n − 1

n

∥∥
∥(τμI − X̂ Ŝ)+

∥∥
∥
1
+ 2α

n
Tr(ΔX̂ΔŜ)

� (τ − 1)μ +
√
n − 1

n
βτμ + 2α

n
Tr(ΔX̂ΔŜ). (4.8)

If Tr(ΔX̂ΔŜ) = 0, then due to (4.8), we have μ′(α) � (τ + βτ − 1)μ < 0 for
α ∈ [0, 1]. On the other hand, assuming Tr(ΔX̂ΔŜ) > 0, using Lemma 4.3, we have

(
(1 − τ)μ −

√
n−1
n

∥∥
∥(τμI − X̂ Ŝ)+

∥∥
∥
1

)
n

2Tr(ΔX̂ΔŜ)
� 2(1 − τ − βτ)nμ

(1 + βτ)nμ
> 1,

which implies μ′(α) < 0 for α ∈ [0, 1]. This completes the proof.

Due to the above lemma, the largest step size ᾱ that guarantees (X̂(α), y(α), Ŝ(α))

belong to N1(τ, β) will be calculated as follows:

ᾱ := max{α : (X̂(α), y(α), Ŝ(α)) ∈ N1(τ, β), ∀α ∈ [0, 1]}, (4.9)
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or equivalently

ᾱ := max{α : g(α) � 0, ∀α ∈ [0, 1]}, (4.10)

where

g(α) =

⎧
⎪⎪⎨

⎪⎪⎩

α√
n

∥
∥∥∥
(
H(ΔX̂ΔŜ)

)−∥
∥∥∥
1
− βτμ(α), if α < 1√

n
,

α2

∥∥
∥∥
(
H(ΔX̂ΔŜ)

)−∥∥
∥∥
1
− βτμ(α), if α � 1√

n
.

(4.11)

Below, we explain that the definitions (4.9) and (4.10) are equivalent. To this end,
we need to state the following lemma.

Lemma 4.5 Let (X̂ , y, Ŝ) ∈ N1(τ, β). Then, if α � 1√
n
, we have

∥∥(τμ(α)I − Ψ (α))+
∥∥
1 = 0, (4.12)

and if α < 1√
n
, we have

∥∥(τμ(α)I − Ψ (α))+
∥∥
1 � (1 − α

√
n)βτμ(α). (4.13)

Proof Using the facts Ψ (α) � 0 and μ(α) � μ for all α ∈ [0, 1], we have
[
τμ(α)I − Ψ (α)

]+ �
[
τμ(α)I − μ(α)

μ
Ψ (α)

]+ = μ(α)

μ

[
τμI − Ψ (α)

]+

= μ(α)

μ

[
(1 − α)(τμI − X̂ Ŝ)−

+(1 − α
√
n)(τμI − X̂ Ŝ)+

]+

= μ(α)

μ
(1 − α

√
n)+(τμI − X̂ Ŝ)+.

Let 1 − α
√
n > 0. Then, since (X̂ , y, Ŝ) ∈ N1(τ, β), it follows that

∥∥(τμ(α)I − Ψ (α))+
∥∥
1 � μ(α)

μ
(1 − α

√
n)

∥
∥∥(τμI − X̂ Ŝ)+

∥
∥∥
1

� (1 − α
√
n)βτμ(α).

On the other hand, if 1 − α
√
n � 0, then we have

∥∥(τμ(α)I − Ψ (α))+
∥∥
1 = 0.

The result is derived.

Due to Lemma 2.2, clearly

∥∥
∥∥
(
τμ(α)I − X̂(α)Ŝ(α)

)+∥∥
∥∥
1

� βτμ(α), if

∥∥∥∥
(
H

(
τμ(α)I − X̂(α)Ŝ(α)

))+∥∥∥∥
1

=
∥∥∥∥
(
τμ(α)I − H

(
X̂(α)Ŝ(α)

))+∥∥∥∥
1
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� βτμ(α). (4.14)

Using Lemma 2.1 and (4.1), inequality (4.14) holds if

∥∥(τμ(α)I − Ψ (α))+
∥∥
1 + α2

∥∥∥∥
(
H(ΔX̂ΔŜ)

)−∥∥∥∥
1

� βτμ(α). (4.15)

Therefore, Lemma 4.5 and (4.15) confirms the definition of ᾱ in (4.10).
Below, we prove (X̂(α), y(α), Ŝ(α)) ∈ N1(τ, β) for all α ∈ [0, ᾱ].

Lemma 4.6 Let ᾱ be defined as in (4.10). Then, for all α ∈ [0, ᾱ]

(X̂(α), y(α), Ŝ(α)) ∈ N1(τ, β).

Proof In order to prove (X̂(α), y(α), Ŝ(α)) ∈ N1(τ, β), due to the definition of

N1(τ, β) in (3.13), it suffices to show that

∥∥∥
∥
(
τμ(α)I − X̂

1
2 (α)Ŝ(α)X̂

1
2 (α)

)+∥∥∥
∥
1

�

βτμ(α) and X̂(α), Ŝ(α) � 0. To this end, due to Lemma 2.2 and (4.10), we have

∥∥
∥(τμ(α)I − X̂

1
2 (α)Ŝ(α)X̂

1
2 (α))+

∥∥
∥
1

�
∥∥∥∥∥

(
H
X̂

1
2 (α)

(τμ(α)I − X̂
1
2 (α)Ŝ(α)X̂

1
2 (α))

)+∥∥∥∥∥
1

=
∥
∥∥∥∥

(
τμ(α)I − H

X̂
1
2 (α)

(
X̂

1
2 (α)Ŝ(α)X̂

1
2 (α)

))+∥
∥∥∥∥
1

=
∥∥∥(τμ(α)I − X̂(α)Ŝ(α))+

∥∥∥
1

� βτμ(α).

Moreover, to prove that X̂(α) and Ŝ(α) are positive definite matrices, it is easy to

check that due to
∥∥∥(τμ(α)I − X̂(α)Ŝ(α))+

∥∥∥
1

� βτμ(α), we derive X̂(α)Ŝ(α) � 0.

Thus, we conclude that det(X̂(α)) = 0 and det(Ŝ(α)) = 0, for α ∈ [0, ᾱ](Lemma
3.3.1 in [19]). However, by continuity, since X̂ , Ŝ � 0 it follows that X̂(α), Ŝ(α) � 0.
This concludes the result and ends the proof.

To complete our analysis, it suffices to derive a lower bound for the step size ᾱ. To
this end, we need to recall Lemma 4.6 in [17] which plays an important role in our
analysis.

Lemma 4.7 Let U , V ∈ Sn and G � 0. Then,

‖U‖F ‖V ‖F �
√
cond(G)

∥
∥∥G

−1
2 U

∥
∥∥
F

∥
∥∥G

1
2 V

∥
∥∥
F

�
√
cond(G)

2

(∥∥∥G
−1
2 U

∥∥∥
2

F
+

∥∥∥G
1
2 V

∥∥∥
2

F

)
,

where cond(G) := λmax(G)
λmin(G)

.
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Lemma 4.8 Let G := L̃−1
Ŝ

L̃ X̂ , β � 1
2 and τ � 1

4 . Then,

∥∥
∥ΔX̂

∥∥
∥
F

∥∥
∥ΔŜ

∥∥
∥
F

� 9

16

√
cond(G)nµ.

Proof Multiplying (4.7) by (L̃ X̂ L̃ Ŝ)
−1
2 , taking squared norm on both sides and using

Lemmas 4.2, 4.3 and 4.7, one has

∥
∥∥ΔX̂

∥
∥∥
F

∥
∥∥ΔŜ

∥
∥∥
F

�
√
cond(G)

2

(∥∥∥G
−1
2 ΔX̂

∥∥∥
2

F
+

∥∥∥G
1
2 ΔŜ

∥∥∥
2

F

)

=
√
cond(G)

2

(∥∥∥G
−1
2 ΔX̂ + G

1
2 ΔŜ

∥∥∥
2

F
− 2Tr(ΔX̂ΔŜ)

)

�
√
cond(G)

2

∥
∥∥G

−1
2 ΔX̂ + G

1
2 ΔŜ

∥
∥∥
2

F

=
√
cond(G)

2

∥∥∥
∥
(
L̃ X̂ L̃ Ŝ

)− 1
2
(
(τμI − X̂ Ŝ)− + √

n(τμI − X̂ Ŝ)+
)∥∥∥
∥

2

F

�
√
cond(G)

2
(1 + βτ)nμ � 9

16

√
cond(G)nμ,

which follows the result.

Now, we are ready to obtain a lower bound for the step size ᾱ. The following lemma
tasks this goal.

Lemma 4.9 Let ᾱ be defined as (4.10). Then, ᾱ � βτ 2√
cond(G)n

.

Proof From (4.11), we obtain ᾱ � 1√
n
or ᾱ < 1√

n
. If ᾱ � 1√

n
, we immediately obtain

the lower bound on ᾱ. Thus, we need to investigate the other case ᾱ < 1√
n
. According

to Lemmas 2.5 and 4.8, for α := βτ 2√
cond(G)n

, we have

α√
n

∥∥∥∥
(
H(ΔX̂ΔŜ)

)−∥∥∥∥
1
− βτμ(α) � α√

n

∥∥∥H(ΔX̂ΔŜ)

∥∥∥
1
− βτμ(α)

� α√
n

∥∥∥ΔX̂
∥∥∥
F

∥∥∥ΔŜ
∥∥∥
F

− βτμ(α)

� 9

16

α√
n

√
cond(G)nμ − βτ 2μ

=
(

9

16
− 1

)
βτ 2μ � 0,
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Algorithm 1: Feasible primal-dual wide neighborhood algorithm for CQSDO prob-
lems

where the third inequality follows from

μ(α) = μ + α
[
(τ − 1)μ +

√
n − 1

n
Tr(τμI − X̂ Ŝ)+

]
+ α2

n
Tr(ΔX̂ΔŜ)

� μ + α
[
(τ − 1)μ +

√
n − 1

n
Tr(τμI − X̂ Ŝ)+

]

� μ + α(τ − 1)μ � μ + (τ − 1)μ = τμ.

The definition of ᾱ in (4.10) follows the desired result and completes the proof.

4.1 Iteration Bound

In this subsection, we obtain the complexity bound of the Algorithm 1. The follow-
ing lemma ensures that the complexity bound of the algorithm is polynomial.

Lemma 4.10 Let
√
cond(G) � κ < ∞. Then, the Algorithm 1 requires at most

O(κ
√
n log ε−1) iterations. The output is an ε-approximate optimal solution.

Proof By (4.3) and Lemma 4.3, we derive

μ(α) = μ + α
[
(τ − 1)μ +

√
n − 1

n

∥∥
∥(τμI − X̂ Ŝ)+

∥∥
∥
1

]
+ α2

n
Tr(ΔX̂ΔŜ)

� μ + α
[
(τ − 1)μ +

√
n − 1

n
βτμ + α

n
Tr(ΔX̂ΔŜ)

]

� μ + α
[
(τ − 1)μ + βτμ + α

n
Tr(ΔX̂ΔŜ)

]

=
[
1 − α

[
1 − τ − βτ − α

nμ
Tr(ΔX̂ΔŜ)

]]
μ

�
[
1 − [1 − τ − βτ − 1

4
α(1 + βτ)]α

]
μ

�
[
1 − [3

4
− τ − 5

4
βτ ]α

]
μ = (1 − ξα)μ,

where ξ = [ 34 − τ − 5
4βτ ]. Let ᾱ0 = βτ 2√

cond(G)n
, since μ(α) is decreasing function

with respect to α, we have
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μ(ᾱ) � μ(ᾱ0) � (1 − ξ ᾱ0)μ.

Since we need μ(ᾱ) � εμ0, it suffices to have

(1 − ξ ᾱ0)
kμ0 � (1 − βτ 2

κ
√
n
ξ)kμ0 � εμ0,

which results μ(ᾱ) � ε for k �
(
κ
√
n log ε−1

)

ξ0
. This completes the proof.

Due to Lemma 36 in [20] for NT direction, the condition number of G is always 1.
Therefore, we immediately conclude the following corollary.

Corollary 4.1 If in the path-following algorithm P = W
1
2 is chosen where W defined

in (3.4), the iteration complexity of feasible Algorithm 1 is O(
√
n log ε−1).

5 Numerical Results

In this section, we implement the proposed Algorithm 1 for some numerical exper-
iments. It is well known that the choice of a suitable neighborhood plays an important
role in both theoretical analysis and computational performance of interior-point algo-
rithms for optimization problems. Theoretically, we have proved the complexity bound
of the proposedAlgorithm 1, which usesN1(τ, β) as the neighborhood of central path,
coincideswith the best iteration bound for feasible short-step interior-point algorithms.
Computationally,wewill perform the proposedAlgorithm1 for somenumerical exam-
ples. We also compare the computational performance of this algorithm with the case
where we use the wide neighborhoodNF (τ, β) [defined in (3.12)] instead ofN1(τ, β)

as the neighborhood of central path.
The numerical experiments are carried out on a PC with Intel (R) Pentium (R) Dual

CPU at 2.20 GHz and 2 GB of physical memory. The PC runs MATLAB Version
R2007a on Windows XP Enterprise 32-bit operating system.

Example 5.1 We consider the CQSDO problem whose primal-dual pair of (P) and (D)
have the following date: [21]

A1 =

⎡

⎢⎢⎢⎢
⎣

0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

⎤

⎥⎥⎥⎥
⎦

, A2 =

⎡

⎢⎢⎢⎢
⎣

0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

⎤

⎥⎥⎥⎥
⎦

,

A3 =

⎡

⎢⎢
⎢⎢
⎣

2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

⎤

⎥⎥
⎥⎥
⎦

, C =

⎡

⎢⎢
⎢⎢
⎣

2 3 −3 1 1
3 4 3 1 2
−3 3 −2 1 2
1 1 1 −4 −1
1 2 2 −1 −2

⎤

⎥⎥
⎥⎥
⎦

,
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Q =

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥
⎦

, b =
⎡

⎣
−2
2
−2

⎤

⎦ .

Example 5.2 Let the primal-dual SDO problem (a special class of CQSDO problems)
be with the following date: [22]

A1 =

⎡

⎢⎢⎢⎢
⎣

−0.977 8 −0.764 6 −0.147 6 1.324 6 0.836 8
−0.764 6 0.885 3 −0.228 6 −0.288 1 −1.129 6
−0.147 6 −0.228 6 0.562 1 −0.180 4 0.193 3
1.324 6 −0.288 1 −0.180 4 −0.052 4 0.105 3
0.836 8 −1.129 6 0.193 3 0.105 37 1.028 2

⎤

⎥⎥⎥⎥
⎦

,

A2 =

⎡

⎢⎢⎢
⎢
⎣

0.394 6 0.251 0 0.457 0 0.483 0 −0.223 7
0.251 0 0.615 8 −0.752 5 −0.240 3 0.002 1
0.457 0 −0.752 5 1.158 7 −0.102 9 0.028 1
0.483 0 −0.240 3 −0.102 9 −0.176 0 −0.084 4
−0.223 7 0.002 1 0.028 1 −0.084 4 1.404 7

⎤

⎥⎥⎥
⎥
⎦

,

A3 =

⎡

⎢⎢⎢⎢
⎣

−0.620 2 −0.012 8 −0.543 7 0.018 6 −0.239 2
−0.012 8 0.976 5 −0.038 8 −0.038 7 1.362 6
−0.543 7 −0.038 8 −0.450 7 0.797 5 0.220 4
0.018 6 −0.038 7 0.797 5 0.390 1 −1.008 0
−0.239 2 1.362 6 0.220 4 −1.008 0 −2.669 5

⎤

⎥⎥⎥⎥
⎦

,

A4 =

⎡

⎢⎢
⎢⎢
⎣

−0.759 7 −0.002 2 −1.036 9 1.439 5 0.747 3
−0.002 2 0.420 1 −2.463 0 0.750 7 −0.078 3
−1.036 9 −2.463 0 0.089 1 1.558 9 0.282 0
1.439 5 0.750 7 1.558 9 −1.527 6 1.277 7
0.747 3 −0.078 3 0.282 0 1.277 7 0.032 0

⎤

⎥⎥
⎥⎥
⎦

,

A5 =

⎡

⎢⎢⎢⎢
⎣

0.889 2 −1.154 9 −0.112 2 0.825 8 −0.271 4
−1.154 9 −0.960 5 0.861 0 −0.228 9 −0.597 5
−0.112 2 0.861 0 −0.759 9 0.275 8 1.163 9
0.825 8 −0.228 9 0.275 8 −0.368 4 0.049 7
−0.271 4 −0.597 5 1.163 9 0.049 7 0.422 7

⎤

⎥⎥⎥⎥
⎦

,

C =

⎡

⎢⎢
⎢⎢
⎣

3.268 0 1.574 1 0.406 4 −2.563 1 −1.447 7
1.574 1 1.484 9 0.978 6 −3.334 5 2.342 5
0.406 4 0.978 6 2.471 7 −0.478 8 −2.833 5
−2.563 1 −3.334 5 −0.478 8 8.593 2 −4.830 6
−1.447 7 2.342 5 −2.833 5 −4.830 6 9.513 0

⎤

⎥⎥
⎥⎥
⎦

,

b = [4.619 2, 19.903 2,−10.519 2,−7.719 1, 1.382 7]T.

Example 5.3 Consider a number of SDO problems in which their data are generated
randomly. More precisely, the test problems are generated as follows (See [23]).
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As the input parameters, we input m and n as the number and dimension of the
coefficient matrixes Ai , respectively. Using the input parameters m and n, MATLAB
proceeds to generate m matrixes Ri ∈ R

n×n, i = 1, 2, · · ·m. Then, it takes Ai =
1
2 (Ri + RT

i ), bi = Tr(Ai ) and C = ∑m
i=1 Ai + I to obtain an SDO problem with the

initial feasible point
(
X0, y0, S0

) = (I , e, I ).

We solve these examples by using the proposed interior-point Algorithm 1. The
parameters were chosen as β = 0.5, τ = 0.001 and ε = 10−7. We also choose the
initial feasible solutions X0 = I for the primal problem (P) and y = e and S0 = I for
the dual problem (D).

The numerical results for Examples 5.1 and 5.2 are summarized in Table 1, where
“Iter.” denotes the number of iterations and “D.G” denotes the duality gap related to
the primal and dual problems (P) and (D).

The numerical results for Example 5.3 are summarized in Table 2, where “Iter.”
denotes the number of iterations and “CPU/s” denotes the CPU time (in seconds)
required to obtain an ε-approximate optimal solution of the underlying problem.

In Table 3, solving Examples 5.1 and 5.2, we compare the number of required
iterations of Algorithm 1with the case where we use the wide neighborhoodNF (τ, β)

instead of N1(τ, β) in Algorithm 1.

Table 1 The numerical results
of Algorithm 1 for Examples 5.1
and 5.2

Example 5.1 Example 5.2
Iter. D.G Iter. D.G

0 5 0 5

15 0.0102 10 0.0124

30 9.39 × 10−3 20 3.14 × 10−3

50 3.45 × 10−4 30 1.05 × 10−4

60 2.68 × 10−4 40 8.14 × 10−5

70 4.30 × 10−6 50 6.05 × 10−6

80 8.04 × 10−7 59 3.26 × 10−7

Table 2 The numerical results
of Algorithm 1 for Example 5.3

m n Iter. CPU/s

4 2 54 2.090 4

5 4 58 5.694 0

8 4 57 5.787 6

7 14 80 17.203 4

10 8 63 20.966 5

15 5 62 17.612 8

16 8 61 20.514 1

20 10 75 50.076 3

30 20 80 98.873 7
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Table 3 The number of required
iterations

Examples Algorithm 1 Algorithm with NF (τ, β)

Ex.5.1 80 88

Ex.5.2 59 67

The numerical results in Table 3 show that the iterations number of Algorithm 1,
which uses the wide neighborhoodN1(τ, β), is slightly better than the where case we
use the wide neighborhood NF (τ, β) instead of N1(τ, β) in Algorithm 1. Therefore,
Algorithm 1 is efficient theoretically and practically.

6 Concluding and Remarks

In this paper, we proposed a feasible interior-point algorithm based on the wide
neighborhood N1(τ, β) of the central path for CQSDO problems. At each iteration
of the algorithm, the duality gap μ(α) is reduced by the rate 1 − O( 1√

n
) and the

complexity of the algorithm is O(
√
n log ε−1), which coincides with the currently

best -known complexity bound obtained so far for this class of optimization problems.
We have implemented the proposed algorithm for some CQSDO and SDO problems
to demonstrate that it is also practically efficient.
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