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1 Introduction

Both theory and practice of vector optimization are always closely related to
scalarization procedures. However, a subset of an efficient decision set may not be
satisfactorily characterized by a scalar minimization problem. Then, various concepts
of proper efficiency were introduced. Borwein and Zhuang [1,2] introduced the con-
cept of super efficient solutions in normed spaces. Super efficiency refines the notions
of efficiency and almost all the classical properly efficiencies, while the condition
of the existence results for the super efficiency is too strong. So, Fu et al. [3] firstly
introduced the concept of strict efficiency whose existence is much weaker than the
super efficiency in real normed spaces. Furthermore, they extended it to the locally
convex vector spaces and presented a scalar characterization by base-functional in [4].
This efficiency is shown to have nice properties of super efficiency and is equivalent to
Henig proper efficiency in [5], super efficiency and strong efficiency under some suit-
able assumptions in [6]. Hence the strict efficiency is more advantageous than super
efficiency and Henig efficiency. Zhao and Rong [7] proposed the ε-strict efficiency
and presented the corresponding scalarization theorems. Besides, many researchers
[8,9] studied the properties of strict efficiency such as connectedness and stability.

Another hot topic related to vector optimization is the unified concept. In 2011,
based on comprehensive sets, Chicco et al. [10] introduced E-optimal points concept
and investigated some properties of improvement sets in Euclidean space. Gutiérre
et al. [11] extended the definition of improvement sets to a general real locally con-
vex topological linear space and obtained the scalar characterization for E-efficient
solution. Based on improvement sets, Zhao et al. [12] proposed E-Benson proper
efficient solution which unified some proper efficiency and approximate proper effi-
ciency and obtained some linear scalarization characterizations under the nearly
E-subconvexlikeness proposed in [13]. Recently, Zhou et al. [14] introduced the
concept of E-super efficiency and presented the corresponding linear scalarization
theorems and Lagrange multiplier theorems.

Motivated by the works of [4,12,14], the paper is organized as follows. In Sect. 2,
we present some basic concepts and results that are required in the sequel. In Sect. 3,
we propose a kind of unified strict efficiency of vector optimization which named E-
strict efficiency based on improvement sets. This efficiency is shown to be an extension
of the classical strict efficiency and ε-strict efficiency and have many nice properties.
Moreover, we compare the E-strict efficiency with E-super efficiency and E-Benson
efficiency. Sections 4 and 5 are devoted to establish the scalarization theorems of E-
strict efficiency by base-functional and a nonlinear scalarization function proposed by
Göpfert. Moreover, some examples are shown to illustrate the main conclusions.

2 Preliminaries

In this paper, let X be a linear space and Y and Z be real locally convex Hausedorff
topological spaces with topological dual spaces Y ∗ and Z∗, respectively. For a subset
A of Y , we denote the interior, closure, the generated cone and the convex hull of A by
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A Kind of Unified Strict Efficiency via Improvement Sets... 559

intA, clA, coneA and coA. The cone generated by A is defined as coneA = {αa|α �
0, a ∈ A}.

The family of the neighborhoods of zero in Y is denoted by N (0). Let K ⊆ Y and
P ⊆ Z be nontrivial pointed closed convex cones with nonempty interior. If K is a
convex cone, the convex subset B ⊆ K is said to be a base of K if K = coneB and
0 /∈ clB. The positive dual cone and strict positive dual cone of K are defined as

K ∗ = {
y∗ ∈ Y ∗|〈y∗, y〉 � 0, ∀y ∈ K

}
,

K # = {
y∗ ∈ Y ∗|〈y∗, y〉 > 0, ∀y ∈ K \ {0}} ,

and write

Bst = {
y∗ ∈ Y ∗| there exists t > 0, s.t. 〈b, y∗〉 � t, ∀b ∈ B

}
.

Every functional in Bst is said to be a base-functional, and through the paper, the
family of the base for K is denoted by B.

Let the support functional of Q be defined as

σQ(ϕ) = sup
y∈Q

〈y, ϕ〉, ϕ ∈ Y ∗.

In this paper, we consider the following vector optimization problem:

(VP) min F(x)

s.t. x ∈ D =
{
x ∈ I |G(x)

⋂
(−P) �= ∅

}
,

where I ⊆ X , F : I ⇒ Y and G : I ⇒ Z are set-valued maps with nonempty value.

Definition 2.1 [11] Let E be a nonempty subset in Y . E is called an improvement set
with respect to K iff 0 /∈ E and E + K = E .

The family of improvement sets is denoted by TY .

Definition 2.2 [4] Let A be a nonempty subset in Y. We say that y ∈ A is a strictly
efficient point of A, if there exists U ∈ N (0) such that

cl(cone(A − y)) ∩ (U − B) = ∅,

which is denoted by y ∈ OFE(A, B). y ∈ A is called the proper strictly efficient point
of A if

y ∈ ∩{OFE(A, B) : B ∈ B},

which is denoted by y ∈ OFE(A, K ).
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560 H. Guo, Y. Bai

Definition 2.3 [7] Let A be a nonempty subset in Y . We say y ∈ A is an ε-strictly
efficient point of A, if there exists U ∈ N (0) such that

cl(cone(A + ε − y)) ∩ (U − B) = ∅,

which is denoted by y ∈ ε − OFE(A, B). y ∈ A is called the ε-proper strictly efficient
point of A if

y ∈ ∩{ε − OFE(A, B) : B ∈ B},

which is denoted by ε − OFE(A, K ).

Definition 2.4 [12] Let E ∈ TY and A ⊆ Y be a nonempty subset. We say that y ∈ A
is an E-efficient point of A, if

(y − E − K \ {0}) ∩ A = ∅.

We denote the set of E-efficient point by OE (A, K ).

Definition 2.5 [12] Let E ∈ TY and a set A ⊆ Y be given. We say y ∈ A is an
E-Benson proper efficient point of A if

cl(cone(A + E − y)) ∩ (−K ) = {0}.

We denote the set of E-Benson proper efficient point by OE
Be(A, K ).

Definition 2.6 [14] Let A ⊆ Y and E ∈ TY be given.We say that y ∈ A is an E-super
efficient point of A if for any V ∈ N (0), there exists U ∈ N (0), such that

cl(cone(A + E − y)) ∩ (U − K ) ⊆ V .

We denote the set of E-super proper efficient point by OE
Se(A, K ).

3 E-Strict Efficiency and Its Properties

In this section, we propose a kind of unified strict efficiency which named E-strict
efficiency and study the relations with the classical strict efficiency, ε-strict efficiency
and other proper efficiency proposed via improvement sets. Moreover, we deduce
some properties of E-strict efficiency for vector optimization.

Definition 3.1 Let a set A ⊆ Y be given. We say that y ∈ A is an E-strictly efficient
point of A with respect to B (E-strictly efficient point for short), if there exists U ∈
N (0), such that

cl(cone(A + E − y)) ∩ (U − B) = ∅, (3.1)

and we denote this by y ∈ OE
FE(A, B).
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A Kind of Unified Strict Efficiency via Improvement Sets... 561

y ∈ A is called the proper E-strictly efficient point of A if y ∈ ∩{OE
FE(A, B) : B ∈

B} and we denote this by y ∈ OE
FE(A, K ).

Generally speaking, the set of OE
FE(A, B) is changing, while the base B is changing.

If necessary, we can assume the neighborhood U ∈ N (0) to be open, or closed, or
balanced, or convex.

Remark 3.1 Let K be a cone and B be a base of K . Obviously, we have that
OE
FE(A, K ) ⊆ OE

FE(A, B).

Remark 3.2 From Definition 3.1, y ∈ OE
FE(A, B) iff there exists a neighborhood U

of zero such that

cone(A + E − y) ∩ (U − B) = ∅. (3.2)

In fact, we only need to show that, Assuming the Eq. (3.2) is correct, then

cl(cone(A + E − y)) ∩ (U − B) = ∅.

If not, there exists y ∈ cl(cone(A + E − y)) ∩ (U − B). Therefore, there exists
{yn} ⊆ cone(A+ E − y) such that yn → y. BecauseU − B is open and y ∈ (U − B),
yn ∈ U − B for sufficiently large n. Therefore, yn ∈ cone(A+ E − y) ∩ (U − B) for
sufficiently large n, which contradicts to (3.2).

Next, we discuss the relationship between E-strict efficiency and some other proper
efficiency.

Remark 3.3 Let E = ε + K . Then, E is an improvement set with respect to K . Then,
E-strict efficiency reduces to ε-strict efficiency.

In fact, if y ∈ OE
FE(A, B), then we have

cl(cone(A + E − y)) ∩ (U − B) = cl(cone(A + ε + K − y)) ∩ (U − B) = ∅

⇔ cone(A + ε + K − y) ∩ (U − B) = ∅

⇔ cl(cone(A + ε − y)) ∩ (U − B) = ∅.

Then, y is an ε-strictly efficient point of A.

Remark 3.4 Let E = K \{0}. Then, E is an improvement set with respect to K . Then,
E-strict efficiency reduces to the strict efficiency. In fact, if y ∈ OE

FE(A, B), then we
have

cl(cone(A + E − y)) ∩ (U − B) = cl(cone(A + K \ {0} − y)) ∩ (U − B) = ∅

⇔ cone(A + K − y) ∩ (U − B) = ∅

⇔ cl(cone(A − y)) ∩ (U − B) = ∅.

Then, y is a strictly efficient point of A.

In the following, we study the properties of E-strictly efficient solution for vector
optimization.
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562 H. Guo, Y. Bai

Proposition 3.1 Let B be a base of K . Then, OE
FE(A, B) ⊆ OE (A, K ).

Proof Let y ∈ OE
FE(A, B). If y /∈ OE (A, K ), from Definition 2.4, then there exists

y ∈ A, y �= 0, s.t. y ∈ (A + E − y) ∩ (−K ). Since B is the base of K , there exists
λ > 0, b ∈ B such that y = − λb. Therefore, 1

λ
y = − b ∈ −B ⊆ U − B. From

y ∈ (A + E − y), we have 1
λ
y ∈ cone(A + E − y) ∩ (U − B), which contradicts to

(3.2). This implies that OE
FE(A, B) ⊆ OE (A, K ).

Proposition 3.2 If B is a bounded base of cone K , then OE
FE(A, K ) = OE

FE(A, B).

Proof Let y ∈ OE
FE(A, B). There exists a balanced neighborhoodU of zero such that

cone(A + E − y) ∩ (U − B) = ∅. (3.3)

Next, we will show that y ∈ OE
FE(A, B̂) for any B̂ ∈ B. To the contrary, if there exist

B1 ∈ B, y /∈ OE
FE(A, B1), then for any n ∈ N, there exists yn ∈ cone(A + E − y) ∩

( 1nU − B1). Then, there exists λn � 0, an ∈ A, en ∈ E, un ∈ U, b1n ∈ B1 such that
yn = λn(an + en − y) = 1

n un − b1n . Since b
1
n ∈ B1, b1n �= 0 and B is the base of K ,

we get b1n = μnbn where μn > 0, bn ∈ B. Then,

1

μn
yn = λn

μn
(an + en − y) = 1

n

1

μn
un − bn . (3.4)

From Lemma 1 in [4] and B1 is a base for K , so Bst
1 �= ∅. Take f ∈ Bst

1 , then
there exists t > 0 such that f (b1) � t > 0 for any b1 ∈ B1. On the other hand,
from Proposition 2 in [4], f ∈ Bst

1 ⊂ K ∗ and B is bounded, so m2 = sup{ f (b)∣∣b ∈
B} < + ∞. Thus, the equation b1n = μnbn implies that 1

μn
= f (bn)

f (b1n)
� m2

t . So when

n → + ∞, it follows that 1
n ( 1

μn
) → 0. Hence, for sufficiently large n, we have

1
n ( 1

μn
) < 1. By (3.4), we have

1

μn
yn ∈ cone(A + E − y) ∩ (U − B), for sufficiently large n,

which contradicts to (3.3).

Proposition 3.3 Let E ∈ TY be an improvement set with respect to K . For any
B1, B2 ∈ B, then the statements below hold:

(i) OE
FE(A, B1) ∪ OE

FE(A, B2) ⊆ OE
FE(A, B1 + B2);

(ii) OE
FE(A, co(B1 ∪ B2)) ⊆ OE

FE(A, B1) ∩ OE
FE(A, B2).

Proof From Proposition 3.1 in [15], if B1, B2 are the bases of K , then B1 + B2 and
co(B1 ∪ B2) must be the bases for K .

(i) Let y ∈ OE
FE(A, B1), but y /∈ OE

FE(A, B1 + B2). Then from Remark 3.2, for
any neighborhood U ∈ N (0), we have cone(A + E − y) ∩ (U − (B1 + B2)) �= ∅.
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Thus, there exist λ1 � 0, a1 ∈ A, e1 ∈ E, u1 ∈ U, b1 ∈ B1, b2 ∈ B2 such
that λ1(a1 + e1 − y) = u1 − b1 − b2. Since b2 ∈ B2 ⊆ K = coneB1, there exists
λ � 0, b ∈ B1 such that b2 = λb. Therefore, λ1(a1 + e1 − y) = u1 − b1 − λb. Since
B1 is a convex set, hence we have

λ1

1 + λ
(a1 + e1 − y) = 1

1 + λ
u1

−
(

1

1 + λ
b1 + λ

1 + λ
b

)
∈ cone(A + E − y) ∩ (U − B1)

So, we can obtain that cone(A + E − y) ∩ (U − B1) �= ∅, which contradicts to
y ∈ OE

FE(A, B1).
The proof of OE

FE(A, B2) ⊆ OE
FE(A, B1 + B2) is similar.

(ii) Let y ∈ OE
FE(A, co(B1 ∪ B2), thus there exists U1 ∈ N (0) such that

cone(A + E − y) ∩ (U1 − co(B1 ∪ B2)) = ∅.

since B1 ⊆ co(B1 ∪ B2), then U1 − B1 ⊆ U1 − co(B1 ∪ B2). Thus, cone(A + E −
y)∩ (U1 − B1) = ∅. That is y ∈ OE

FE(A, B1). It follows that OE
FE(A, co(B1 ∪ B2)) ⊆

OE
FE(A, B1).
The proof of OE

FE(A, co(B1 ∪ B2)) ⊆ OE
FE(A, B2) is similar. The proof is com-

pleted.

Remark 3.5 Proposition 3.3 is a generalization of Theorem 3.2 in [16], and from
Lemma 3.1 in [16], this proposition is also a generalization of Proposition 3.1 in [15].

Proposition 3.4 Let A ⊆ Y and E ∈ TY , K have a bounded base B. Then,

OE
Se(A, K ) ⊆ OE

FE(A, K ) ⊆ OE
Be(A, K ).

Proof Firstly, we improve OE
Se(A, K ) ⊆ OE

FE(A, K ). Since B is a base of K , 0 /∈ clB.
Therefore, there exists a convex circled neighborhood V ∈ N (0) such that 0 /∈ B+V .
Let V1 = 1

2V , we can easily have

(− B) ∩ (V1 + V1) = ∅.

From the fact that V1 is circled, then

(V1 − B) ∩ V1 = ∅.

Let y ∈ OE
Se(A, K ), V1 ∈ N (0), there exists a convex neighborhood U1 ∈ N (0) such

that

cl(cone(A + E − y)) ∩ (U1 − K ) ⊆ V1.
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564 H. Guo, Y. Bai

Let U := U1 ∩ V1. Clearly, U is a convex neighborhood in N (0). Since U ⊆ U1, we
have

cl(cone(A + E − y)) ∩ (U − K ) ⊆ V1.

Furthermore, U ⊂ V1, then U − B ⊆ V1 − B. So, (U − B) ∩ V1 = ∅. Hence, we
obtain that

cl(cone(A + E − y)) ∩ (U − B) ⊆ (U − B).

Then, it follows that

cl(cone(A + E − y)) ∩ (U − B) ⊆ cl(cone(A + E − y)) ∩ (U − K ) ⊆ V1.

Then,

cl(cone(A + E − y)) ∩ (U − B) = ∅.

Hence, y ∈ OE
FE(A, B), which implies y ∈ OE

FE(A, K ). Therefore, OE
Se(A, K ) ⊆

OE
FE(A, K ).

Next, we prove OE
FE(A, K ) ⊆ OE

Be(A, K ). From y ∈ OE
FE(A, B), we have

cl(cone(A+ E − y))∩cone(U − B) = {0}. Since−K = cone(−B) ⊆ cone(U − B),
we get cl(cone(A + E − y)) ∩ (−K ) = {0}. Therefore OE

FE(A, K ) ⊆ OE
Be(A, K ).

It is clear that E-strict efficiency of (VP) implies E-Benson efficiency of (VP), but
the converse is not necessarily true. The following example illustrates this point.

Example 3.1 Let Y = l1 = {y = (y1, y2, · · · )| ∑∞
i=1 |yi | < +∞}, K = {y ∈ Y |yi �

1, yi � 0, i = 1, 2, · · · }, B = {y ∈ Y |∑∞
i=1 yi = 1, yi � 0, i = 1, 2, · · · } and E =

{y ∈ Y | ∑∞
i=1 yi � 3−1, yi � 0, i = 1, 2, · · · }. The real linear space l1 is separable

from Banach space with respect to the norm ‖ · ‖ given by ‖y‖ := ∑∞
i=1 |yi | for all

y ∈ Y . Let A = {−3ei + 3−(i−1)e1|i = 2, 3, · · · } ∪ {0}, where ei = (0, 0, · · · ,

0, 1, 0 · · · ) ∈ Y . Since there exists ϕ = (1, 3−3, 3−4, · · · ) ∈ K # such that 〈a, ϕ〉 �
σ−E (ϕ), ∀a ∈ A. It follows from Theorem 3.2 in [17] that 0 ∈ OE

Be(A, K ). However,

− ei + 3−(i−1)e1 ∈ (A + E) ∩ (3−(i−2)U − B), i = 2, 3, · · · ,

whereU is a unit ball in Y . Hence, it follows from Definition 3.1 that 0 /∈ OE
FE(A, B).

4 Scalarization by Base-Functional

In this section, we establish a scalarization theorem of E-strictly efficiency by
base-functional under the nearly E-subconvexlikeness.

Let the feasible set D of (VP) be nonempty and ϕ ∈ Y ∗ \ {0}. The scalar minimiza-
tion problem of (VP) is defined as follows:

(VP)ϕ min〈F(x), ϕ〉 s.t. x ∈ D.
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Definition 4.1 Let B be the base of K and E ∈ TY . x ∈ D is called an E-strictly
efficient solution of (VP) with respect to B (E-strictly efficient solution for short), if
there exists a neighborhood U of zero such that

cl(cone(F(D) + E − F(x))) ∩ (U − B) = ∅.

The set of E-strictly efficient solutions of (VP) is denoted by OE
FE(F(D), B).

The point pair (x, y) is called an E-strictly efficient element of (VP) with respect
to B.

x ∈ D is called an E-proper strictly efficient solution of (VP) with respect to K , if
x is the E-strictly efficient solution of (VP) with respect to every base of K , which is
denoted by OE

FE(F(D), K ).
Obviously, OE

FE(F(D), K ) = ∩{OE
FE(F(D), B) : B ∈ B}.

Definition 4.2 [17] x ∈ D is called an optimal solution of (VP)ϕ with respect to E ,
if there exists y ∈ F(x) such that

〈y − y, ϕ〉 � σ−E (ϕ), ∀x ∈ D, ∀y ∈ F(x).

The point pair (x, y) is called an optimal element of (VP)ϕ with respect to E .

Definition 4.3 [17] Let D ⊆ X and E ∈ TY . The set-valued map F : D ⇒ Y is
called nearly E-subconvexlike on D iff cl(cone(F(D) + E)) is a convex set in Y .

The following theorems provide scalar characterizations of E-strictly efficient
points.

Theorem 4.1 Let B be a base of K and E ∈ TY . Suppose that (x, y) is an E-strictly
efficient element of (VP) and F − y is nearly E-subconvexlike on D. Then, there exists
ϕ ∈ Bst such that (x, y) is an optimal element of (VP)ϕ with respect to E.

Proof By Definition 4.1, if y ∈ OE
FE(F(D), B), there exists a convex neighborhood

U ∈ N (0) such that cl(cone(F(D) + E − y)) ∩ (U − B) = ∅. Since F − y is nearly
E-subconvexlike on D, cl(cone(F(D)+ E − y)) is a convex set in Y . Clearly,U − B
is a nonempty open convex set in Y . By the separation theorem for convex sets, there
exists ϕ ∈ Y ∗ \ {0} such that

〈y1, ϕ〉 � 〈y2, ϕ〉, ∀y1 ∈ cl(cone(F(D) + E − y)), ∀y2 ∈ U − B. (4.1)

Since 0 ∈ cl(cone(F(D) + E − y)), it follows that

〈y2, ϕ〉 � 0, ∀y2 ∈ U − B.

From Proposition 2.1 in [6], ϕ ∈ Bst. By Eq. (4.1), ϕ is bounded below on the closed
convex cone cl(cone(F(D) + E − y)) in Y ; it follows from (4.1) that

〈y1, ϕ〉 � 0, ∀y1 ∈ cl(cone(F(D) + E − y)).
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566 H. Guo, Y. Bai

Clearly

〈y1, ϕ〉 � 0, ∀y1 ∈ F(D) + E − y.

Hence, we have

〈y − y, ϕ〉 � σ−E (ϕ), ∀x ∈ D, ∀y ∈ F(x),

which implies that (x, y) is an optimal element of (VP)ϕ with respect to E .

Theorem 4.2 Let B be a bounded base of K and E ∈ TY . If there exists ϕ ∈ Bst

such that (x, y) is an optimal element of (VP)ϕ with respect to E. Then, (x, y) is an
E-strictly efficient element of (VP) with respect to B.

Proof Let ϕ ∈ Bst. Then, there exists t > 0 such that 〈b, ϕ〉 � t > 0, ∀b ∈ B. Let
U = {x ∈ X, 〈x, ϕ〉 < t}. Then,U ∈ N (0) and 〈u, ϕ〉 < 0, ∀u ∈ U − B. Since(x, y)
is the E-optimal element of (VP)ϕ , we have

〈y − y, ϕ〉 � σ−E (ϕ), ∀y ∈ F(D).

Hence

〈y1, ϕ〉 � 0, ∀y1 ∈ cl(cone(F(D) + E − y)).

So

cl(cone(F(D) + E − y)) ∩ (U − B) = ∅.

Then, (x, y) is an E-strictly efficient element of (VP).

Remark 4.1 Theorem 4.1 and Theorem 4.2 are the generalizations of Lemma 6 in [3],
Theorem 1 in [4], Theorem 1 in [8] and Theorem 3.3 in [15].

Theorem 4.3 If B is a bounded base for K , then OE
Se(A, K ) = OE

FE(A, K ) .

Proof By the scalar property of E-super efficiency in [14] and E-strict efficiency
above, it is clear that OE

Se(A, B) = OE
FE(A, B). From Lemma 3.2, we have

OE
Se(A, K ) = OE

FE(A, K ).

Remark 4.2 By Theorem 3.4 in [14], OGE (A, K ) = OFE (A, K ) = OSE (A, K )

when A is a convex set and K has a bounded base. And from Proposition 3.5 in [15],
E-strict efficiency also generalizes Henig proper efficiency, strong efficiency proposed
in [6], and coincides with E-super efficiency in [14] under the suitable assumptions.

123



A Kind of Unified Strict Efficiency via Improvement Sets... 567

5 Scalarization by Nonlinear Function ξq,E( y)

In this section, we obtain a nonlinear scalarization for E-strictly efficient solution
by the nonlinear function proposed by Göpfert et al. [18].

Definition 5.1 Let K is a cone and E ∈ TY with respect to K , q ∈ intK . The function
ξq,E : Y → R ∪ {± ∞} defined by

ξq,E (y) = inf{t ∈ R|y ∈ tq − E}, y ∈ Y,

where inf ∅ = + ∞.

Lemma 5.1 [19] Let E ∈ TY with respect to K and q ∈ intK. Then, ξq,E (y) is a
continuous function and satisfies {y ∈ Y |ξq,E (y) < c} = cq − intE, ∀c ∈ R.

We consider the scalar optimization problem:

(Pq,y)min
x∈D ξq,E (F(x) − y),

where y ∈ Y , q ∈ intK , F is a vector-valued map with nonempty value and denote
ξq,E (F(x) − y) by (ξq,E,y ◦ F)(x).

Let ε � 0, x ∈ D. If (ξq,E,y ◦ F)(x) � (ξq,E,y ◦ F)(x) − ε, ∀x ∈ D, then x is
called an ε-optimal solution of (Pq,y). Denote the set of ε-optimal solutions for (Pq,y)
by AMin(ξq,E,y ◦ F, ε).

Theorem 5.1 Let B be a base of cone K and q ∈ intK , E ∈ TY , β = inf{t ∈
R+|tq ∈ E}. Then,

x ∈ OE
FE (F(D), B) ⇒ x ∈ AMin (ξq,E, f (x) ◦ F, β).

Proof For each x ∈ OE
FE (F(D), B), we have

cl(cone(F(D) + E − F(x))) ∩ (U − B) = ∅. (5.1)

Then, we have

cl(cone(F(D) + E − F(x))) ∩ cone(U − B) = {0}. (5.2)

Otherwise, if there exists y �= 0 and y ∈ cl(cone(F(D)+ E − F(x)))∩cone(U − B),

then there exists u ∈ U, b ∈ B, λ > 0 such that y = λ(u − b) and

y

λ
∈ cl(cone(F(D) + E − F(x))),

which contradicts to (5.1). It is clear that −K = cone(−B) ⊆ cone(U − B). Hence
by (5.2), we have

cl(cone(F(D) + E − F(x))) ∩ (−K ) = {0}.
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Hence

(F(D) − F(x)) ∩ −(E + intK ) = ∅.

By Lemma 2.1 in [17], we have

(F(D) − F(x)) ∩ (−intE) = ∅.

From Lemma 5.1 and let c = 0, we have

(ξq,E,F(x)◦F )(x) = ξq,E (F(x) − F(x)) � 0, ∀x ∈ D. (5.3)

On the other hand,

(
ξq,E,F(x)◦F

)
(x) = ξq,E (F(x) − F(x))

= inf {t ∈ R|tq ∈ E} � inf {t ∈ R+|tq ∈ E} = β.

Hence by (5.3), we have

(ξq,E,F(x)◦F )(x) � (ξq,E,F(x)◦F )(x) − β, ∀x ∈ D.

6 Conclusions

In this paper, we have proposed a kind of new unified strict efficiency which is
a generalization of strict efficiency, ε-strict efficiency, Henig proper efficiency and
strongly proper efficiency under suitable condition.We also deduce some scalarization
characterizations for the unified strict efficiency. It is also meaningful to study the
section property, density property and connectedness of E-strictly efficiency.
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