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Abstract We study single-machine scheduling problems with a single maintenance
activity (MA) of length p0 under three types of assumptions: (A) theMA is required in
a fixed time interval [T − p0, T ] with T � p0 and the job processing is of preemptive
and resumable; (B) the MA is required in a relaxed time interval [0, T ] with T � p0
and the job processing is of nonpreemptive; (C) the MA is required in a relaxed time
interval [T0, T ]with 0 � T0 � T − p0 and the job processing is of nonpreemptive.We
show in this paper that, up to the time complexity for solving scheduling problems,
assumptions (A) and (B) are equivalent, and moreover, if T − (T0 + p0) is greater
than or equal to the maximum processing time of all jobs, the assumption (C) is also
equivalent to (A) and (B). As an application, we study the scheduling for minimizing
the weighted number of tardy jobs under the above three assumptions, respectively,
and present corresponding time-complexity results.
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1 Introduction

In the past decades, scheduling with machine availability had been a hot topic in
scheduling research. For our purpose, we only consider the single-machine scheduling
problem in which amaintenance activity (MA) of length p0 on the machine is required
at a given time period. Thismeans that theMAmust be performed at some time interval
of length p0 without interruption.

1.1 Problem Formulation

According to the requirements for the MA and the features of the machine for pro-
cessing jobs, the following three assumptions are studied in the literature, separately.

Assumption (A) TheMA is required in a fixed time interval [T− p0, T ]with T � p0,
and the job processing is of preemptive and resumable. Moreover, we use (A∗) to
denote the assumption that the MA is required in a fixed time interval [T − p0, T ],
and the job processing is of nonpreemptive.

Assumption (B) The MA is required in a relaxed time interval [0, T ] with T � p0,
and the job processing is of nonpreemptive. In this case, [0, T ] is called the execution
window of the MA.

Assumption (C) TheMA is required in a relaxed time interval [T0, T ]with T0+ p0 �
T , and the job processing is of nonpreemptive. In this case, [T0, T ] is called the
execution window of the MA.

Given an assumption (X) with X ∈ {A, B,C}, we consider a set of n jobs
{J1, J2, · · · , Jn} to be processed on the machine. Each job J j has a processing time
p j , a due date d j , and a weight w j . We also regard MA as a dummy job J0 with pro-
cessing time p0. The J1, J2, · · · , Jn are called normal jobs in the sequel. In a feasible
schedule σ , we use S j (σ ) and C j (σ ) to denote the starting time and completion time
of job J j , respectively, j = 0, 1, · · · , n. Note that C0(σ ) = S0(σ ) + p0, and, for
different choices of X , S0(σ ) has the following properties:

⎧
⎨

⎩

S0(σ ) = T − p0, under Assumption (A),
0 � S0(σ ) � T − p0, under Assumption (B),
T0 � S0(σ ) � T − p0, under Assumption (C).

For each j ∈ {1, 2, · · · , n}, we call J j early if C j (σ ) � d j , and call J j tardy if
C j (σ ) > d j , and moreover,Uj (σ ) is used to denote the tardy indicator number of job
J j . The scheduling cost function of the schedule σ is of the form

f (σ ) = f (C1(σ ),C2(σ ), · · · ,Cn(σ )),

which is a function of the completion times of the n jobs J1, J2, · · · , Jn . We assume
in this paper that f is a regular cost function, which means that f (t1, t2, · · · , tn) is
nondecreasing in each ordinate of (t1, t2, · · · , tn) � 0. In particular,

∑
w jU j =
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∑n
j=1 w jU j (σ ) is a regular cost function. In the following, the single-machine

scheduling problemwith amachine availability under Assumption (X) forminimizing
the regular cost function f will be denoted by

1, h1|MA, (X)| f.

1.2 Previous Work

Problems 1, h1|MA, (A)| f and 1, h1|MA, (A∗)| f were first studied in Lee
[1]. Under assumption (A), the author showed that problems 1, h1|MA, (A)|Cmax,
1, h1|MA, (A)|∑Ci and 1, h1|MA, (A)|Lmax can be solved optimally by an arbi-
trary sequence, the Shortest Processing Time (SPT) rule, and the Earliest Due
Date (EDD) rule, respectively, and problem 1, h1|MA, (A)|∑Ui can be solved
optimally by applying modified Moore-Hodgsons algorithm. Under assumption
(A∗), they showed that problems 1, h1|MA, (A∗)|Cmax, 1, h1|MA, (A∗)|Lmax and
1, h1|MA, (A∗)| ∑Ui are binary NP-hard, and provided a heuristic for problem
1, h1|MA, (A∗)|Cmax.

When every job has a positive tail, for problem 1, h1|MA, (A∗), qi |Dmax, Kacem
[2] proposed a tight 3/2-approximation heuristic method. The author also presented a
dynamic programming algorithm and showed that the problem has a fully polynomial-
time approximation scheme (FPTAS) by exploiting the well-known approach of Ibarra
and Kim [3]. Yuan et al. [4] studied a more general version of the above problem
in which there are several forbidden intervals. They provided a pseudo-polynomial-
time algorithm for the version with a fixed number of forbidden intervals, while no
polynomial-time approximation algorithm with a fixed performance ratio exists for
the version with just two forbidden intervals. They also developed a polynomial-time
approximation scheme (PTAS) for the version with a single forbidden interval.

Mosheiov [5] studied problem 1, h1|MA, (B)|∑w jC j . They showed that the
problem is NP-hard and presented a heuristic method for solving this problem. Yang et
al. [6] considered problem1, h1|MA, (C)|Cmax, and presentedNP-hardness proof and
provided a heuristic algorithm with time complexity O(n log n). Yang et al. [7] con-
sidered problem 1, h1|MA, (C)|∑C j . For the resumable version, they proposed an
SPT optimal algorithm, while for the nonresumable version, they analyzed the relative
error bound of SPT algorithm. Furthermore, they proposed a dynamic programming
algorithm and a branch-and-bound algorithm to solve this problem optimally.

There are also extensive achievements for other types ofMA in scheduling research,
and some of them can be found in Chen [8,9], Cui and Lu [10], Lee and Kim [11],
Liu et al. [12], Sbihi and Varnier [13], and Yu et al. [14].

1.3 Our Contribution

We say that two scheduling problemsP ′ andP ′′ are linearly equivalent if an optimal
schedule of each ofP ′ andP ′′ can be transferred into an optimal schedule of the other
one in O(n) time. The main contributions of this paper are as follows.
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We first study the equivalence of problems 1, h1|MA, (X)| f for X ∈ {A, B,C},
and obtain the following results:

– For every regular cost function f , problem 1, h1|MA, (A)| f is equivalent to prob-
lem 1, h1|MA, (B)| f . Moreover, if T − (T0 + p0) � pmax, where pmax is the
maximum processing time of the jobs, then problem 1, h1|MA, (C)| f is also
equivalent to problems 1, h1|MA, (A)| f and 1, h1|MA, (B)| f .
As applications, we further study problem 1, h1|MA, (X)|∑w jU j for X ∈

{A, B,C}. By applying the equivalence results and using the discussion in Yuan and
Lin [15], the problem apart from the case that “X = C and T − (T0 + p0) < pmax”
is linearly equivalent to problem 1||∑w jU j by only modifying the due dates.

Finally, for the version with X = C and without the restriction T − (T0 + p0) �
pmax, we show that problem 1, h1|MA, (C)|∑w jU j is also solvable in pseudo-
polynomial time, and the subproblem 1, h1|MA, (C), p j = p| ∑w jU j is solvable
in polynomial time.

In the literature, problem 1||∑w jU j , together with its subproblems 1||∑Uj and
1|p j = p| ∑w jU j , has been well studied. Then we summarize the time-complexity
results of problem 1, h1|MA, (X)|∑ w jU j for X ∈ {A, B,C} in Table 1, where
X = C ′ means that X = C and T − (T0 + p0) � pmax, and moreover, P = ∑n

j=1 p j ,
W = ∑n

j=1 w j , and T ∗ = T − (T0 + p0) + 1.

1.4 Organization of This Paper

In Sect. 2, we discuss the equivalence of problem 1, h1|MA, (X)| f for X ∈
{A, B,C}. In Sect. 3, we study problem 1, h1|MA, (X)|∑w jU j for X ∈ {A, B,C}
and its subversions.

2 The Equivalence Proof

Consider an instance I of problem 1, h1|MA, (X)| f with X ∈ {A, B,C}. The n
normal jobs in I are given by J1, J2, · · · , Jn with each job J j has a processing time
p j . The MA (regarded as dummy job J0 in the sequel) in I has length p0 and an
execution window [T0, T ]. If X = A, then T0 = T − p0; if X = B, then T0 = 0 and
T � p0; and if X = C , then T0 � 0 and T0 + p0 � T . Moreover, we assume that the

Table 1 The time complexity of problem 1, h1|MA, (X)| ∑ w jU j

Choice of X Choice of (p j , w j ) Reduced problem Time complexity Reference

X ∈ {A, B,C ′} No restriction 1|| ∑ w jU j O(nP), O(nW ) [16,17]
X ∈ {A, B,C ′} w j = 1 1|| ∑Uj O(n log n) [18]
X ∈ {A, B,C ′} p j = p 1|p j = p| ∑ w jU j O(n log n) [19]
X = A∗ No restriction Unavailable O(n(T − p0)P) Theorem 3.3
X = C No restriction Unavailable O(nT ∗(T − p0)P) Theorem 3.3
X = C w j = 1 Unavailable NP-hard Observation 3.1
X = C p j = p Unavailable O(n log n) Theorem 3.2
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cost function f to be minimized is regular. For a schedule σ of J0, J1, · · · , Jn and for
each index i ∈ {1, 2, · · · , n}, we use Jσ [i] to denote the i-th completed job (excluding
the dummy job J0) in σ . Then we have

Cσ [1](σ ) < Cσ [2](σ ) < · · · < Cσ [n](σ ). (2.1)

If P = p1 + p2 + · · · + pn � T0, then, in an optimal schedule for problem
1, h1|MA, (X)| f with X ∈ {A, B,C}, we can always schedule the n jobs in the time
interval [0, P] before the execution window [T0, T ] of MA. Thus, in this case, the
problem 1, h1|MA, (X)| f with X ∈ {A, B,C} is equivalent to the standard single-
machine scheduling problem 1|| f . Hence, we assume that

P = p1 + p2 + · · · + pn > T0. (2.2)

This implies that, in any feasible schedule, the makespan is at least p0 + P .
For problem 1, h1|MA, (A)| f , preemption is allowed in processing of the normal

jobs. In a feasible schedule, a job is called interrupted if it is scheduled in at least two
separated intervals. Since the regularity of f , the following result was observed and
widely used in the literature.

Lemma 2.1 There exists an optimal schedule for problem 1, h1|MA, (A)| f such that
there is no idle time between the processing of the n + 1 jobs J0, J1, · · · , Jn, there is
at most one interrupted job, and moreover, if J j is the interrupted job in the schedule,
then J j is split into just two parts J ′

j and J ′′
j such that J

′
j is scheduled directly before

J0 and J ′′
j is scheduled directly after J0.

In the following, a schedule with the properties described in Lemma 2.1 is called
a proper schedule. Given a feasible schedule σ of problem 1, h1|MA, (A)| f , we can
obtain a proper schedule σ ′ in the following way: Fix the dummy job J0 (MA) in the
interval [T − p0, T ], and then schedule the jobs J1, J2, · · · , Jn preemptively in the
remaining idle space according to the order Jσ [1] ≺ Jσ [2] ≺ · · · ≺ Jσ [n]. It is not hard
to verify that σ ′[i] = σ [i] and Cσ ′[i](σ ′) � Cσ [i](σ ) for all i ∈ {1, 2, · · · , n}. Thus,
we have f (σ ′) � f (σ ). In the case that σ is optimal for problem 1, h1|MA, (A)| f ,
σ ′ is also optimal. Note that σ ′ can be obtained from σ in O(n) time. Then we will
only consider proper schedules when problem 1, h1|MA, (A)| f is in consideration.

Given a proper schedule σ of problem 1, h1|MA, (A)| f , we define a schedule σ ∗
of problem 1, h1|MA, (B)| f or problem 1, h1|MA, (C)| f , call the nonpreemptive
counterpart of σ , in the following way:

– If there is no interrupted job in σ , then set σ ∗ := σ .
– If J j is the interrupted job in σ , then let σ ∗ be the nonpreemptive schedule obtained
from σ by swapping the schedules of J ′

j and J0.

Conversely, given a scheduleπ of problem1, h1|MA, (B)| f or problem1, h1|MA,

(C)| f , we define a schedule π [∗] of problem 1, h1|MA, (A)| f , call the preemptive
counterpart of π , in the following way:
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– Fix the dummy job J0 (MA) in the interval [T − p0, T ], and then schedule the
normal jobs J1, J2, · · · , Jn preemptively in the remaining idle space according to
the order Jπ [1] ≺ Jπ [2] ≺ · · · ≺ Jπ [n].

It is not hard to see that σ ∗ can be obtained from σ in O(n) time, and π [∗] can
be obtained from π in O(n) time. We will use opt(X) to denote the optimal value of
problem 1, h1|MA, (X)| f with X ∈ {A, B,C} on instance I .

Lemma 2.2 We have the following statements:

(i) opt(A) = opt(B), and moreover, if σ is an optimal schedule of problem
1, h1|MA, (A)| f and π is an optimal schedule of problem 1, h1|MA, (B)| f , then
σ ∗ is an optimal schedule of problem 1, h1|MA, (B)| f and π [∗] is an optimal
schedule of problem 1, h1|MA, (A)| f .

(ii) In the case that T − (T0 + p0) � pmax, we further have opt(A) = opt(B) =
opt(C), and moreover, if σ is an optimal schedule of problem 1, h1|MA, (A)| f
and π is an optimal schedule of problem 1, h1|MA, (C)| f , then σ ∗ is an optimal
schedule of problem 1, h1|MA, (C)| f and π [∗] is an optimal schedule of problem
1, h1|MA, (A)| f .

Proof To prove statement (i), we assume that σ is an optimal schedule of problem
1, h1|MA, (A)| f and π is an optimal schedule of problem 1, h1|MA, (B)| f . Then

opt(A) = f (σ ) and opt(B) = f (π). (2.3)

Since σ ∗ is a feasible schedule of problem 1, h1|MA, (B)| f and π [∗] is a feasible
schedule of problem 1, h1|MA, (A)| f , we have

opt(B) � f (σ ∗) and opt(A) � f (π [∗]). (2.4)

From the definitions of σ ∗ and π [∗], we haveC j (σ
∗) = C j (σ ) andC j (π

[∗]) � C j (π)

for all j ∈ {1, 2, · · · , n}. Thus, we have
f (σ ∗) = f (σ ) and f (π [∗]) � f (π). (2.5)

From equations (2.3), (2.4) and (2.5), we conclude that

f (σ ∗) = opt(B) = opt(A) = f (π [∗]). (2.6)

It follows from (2.6) that opt(A) = opt(B) and σ ∗ and π [∗] are optimal for problems
1, h1|MA, (B)| f and 1, h1|MA, (A)| f , respectively, as required.

To prove statement (ii), we assume that σ is an optimal schedule of problem
1, h1|MA, (A)| f and π is an optimal schedule of problem 1, h1|MA, (C)| f . Note
that problem 1, h1|MA, (B)| f is a relaxation of problem 1, h1|MA, (C)| f . Thus,
from statement (i), we have

f (σ ) = opt(A) = opt(B) � opt(C) = f (π). (2.7)

We claim that σ ∗ is a feasible schedule of problem 1, h1|MA, (C)| f .
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Indeed, if there is no interrupted job in σ , then σ ∗ = σ is clearly a feasible schedule
of problem 1, h1|MA, (C)| f . If J j is the interrupted job in σ , then σ ∗ is obtained from
σ by swapping the schedule of J ′

j and J0. Let p′
j be the processing time of J ′

j . From the
assumption that T − (T0 + p0) � pmax, the starting time of the dummy job J0 in σ ∗ is
given by S0(σ ∗) = S0(σ )− p′

j = T − p0− p′
j > T − p0− p j � T − p0− pmax � T0.

Thus, σ ∗ is a feasible schedule of problem 1, h1|MA, (C)| f . The claim follows.
As stated in the proof of statement (i), from the definitions of σ ∗ and π [∗], we have

C j (σ
∗) = C j (σ ) and C j (π

[∗]) � C j (π) for all j ∈ {1, 2, · · · , n}. Together with the
feasibility of σ ∗ and π [∗], we have

opt(C) � f (σ ∗) = f (σ ) and opt(A) � f (π [∗]) � f (π). (2.8)

From (2.7) and (2.8), we conclude that

f (σ ∗) = opt(C) = opt(B) = opt(A) = f (π [∗]). (2.9)

It follows from (2.9) that opt(A) = opt(B) = opt(C) and σ ∗ and π [∗] are optimal for
problems 1, h1|MA, (C)| f and 1, h1|MA, (A)| f , respectively. The result follows.

From Lemma 2.2, we obtain the following main result of this section.

Theorem 2.1 For every regular cost function f , problem 1, h1|MA, (A)| f is equiv-
alent to problem 1, h1|MA, (B)| f . Moreover, if T − (T0 + p0) � pmax, where pmax
is the maximum processing time of the jobs, then problem 1, h1|MA, (C)| f is also
equivalent to problems 1, h1|MA, (A)| f and 1, h1|MA, (B)| f .

3 The Total Weighted Number of Tardy Jobs

Consider problem 1, h1|MA, (X)|∑ w jU j with X ∈ {A, B,C}. For each j ∈
{1, 2, · · · , n}, job J j is indicated by a triple (p j , d j , w j ). For convenience, we write
J j = (p j , d j , w j ) for all jobs J j . Then we call {(p j , d j , w j ) : 1 � j � n} a job
instance.

Now we use X = C ′ to indicate that X = C and T − (T0 + p0) � pmax.
From Theorem 2.1, together with the result in Lemma 2.2, the three problems
1, h1|MA, (X)|∑ w jU j on job instance {(p j , d j , w j ) : 1 � j � n}, X ∈
{A, B,C ′}, are linearly equivalent.

For problem 1, h1|MA, (A)|∑ w jU j on job instance {(p j , d j , w j ) : 1 � j �
n}, the dummy job J0 (MA) occupies a fixed interval [T − p0, T ] and the jobs are
processed preemptively. Thus, from the discussion in Yuan and Lin [15], problem
1, h1|MA, (A)|∑w jU j on job instance {(p j , d j , w j ) : 1 � j � n} is linearly

equivalent to problem 1||∑w jU j on job instance
{(

p j , d ′
j , w j

)
: 1� j �n

}
, where

d ′
j =

⎧
⎨

⎩

d j , if d j � T − p0,
T − p0, if T − p0 < d j � T,

d j − p0, if d j > T .

Thus we have the following result.

123



552 J. Zou et al.

Theorem 3.1 For each X ∈ {A, B,C ′}, problem 1, h1|MA, (X)|∑ w jU j on job
instance {(p j , d j , w j ) : 1 � j � n} is equivalent to problem 1||∑w jU j on job

instance
{(

p j , d ′
j , w j

)
: 1 � j � n

}
.

Note that the classical scheduling problem 1||∑ w jU j was well studied in the
literature. Karp [20] showed that the problem is NP-hard even when the jobs have
a common due date. Lawler and Moore [16] presented an O(nP)-time algorithm,
and Sahni [17] presented an O(nW )-time algorithm. For the subproblem 1||∑Uj ,
Moore [18] presented an O(n log n)-time algorithm. As for the subproblem 1|p j =
p| ∑w jU j , an O(n log n)-time algorithm was presented in Morton and Pentico [19].
From Theorem 3.1, the time complexity of problem 1, h1|MA, (X)|∑ w jU j with
X ∈ {A, B,C ′} and its subversions with w j = 1 or p j = p can be completely
determined, as described in Table 1.

In the following we consider problem 1, h1|MA, (C)|∑w jU j . Lee [1] showed
that problem 1, h1|MA, (C)|Cmax is NP-hard even when T0 = T − p0. Then we have
the following observation.

Observation 3.1 Problem 1, h1|MA, (C)|∑Uj is NP-hard even when T0 = T − p0
and d j = d.

For problem 1, h1|MA, (C), p j = p| ∑w jU j in which the MA has length p0
and execution window [T0, T ], we have the following lemma.

Lemma 3.1 Let k be the maximum integer with kp + p0 � T , i.e., k = � T−p0
p0

�.
Let T ′ = max{kp, T0} + p0. Then there is an optimal schedule σ of problem
1, h1|MA, (C), p j = p| ∑ w jU j such that the MA is scheduled in the interval
[T ′ − p0, T ′] and the normal jobs are scheduled in the time space [0, kp]∪[T ′,+∞).

Proof From the definition of k and T ′, it is not hard to verify that [T ′ − p0, T ′] ⊆
[T0, T ]. Thus it is feasible to schedule the dummy job J0 (MA) in the fixed interval
[T ′ − p0, T ′]. Note that kp � T ′ − p0 and (k + 1)p + p0 > T .

If k � n, then the condition p j = p for all j ∈ {1, 2, · · · , n} enables us to schedule
all the normal jobs before the fixed interval [T ′ − p0, T ′] for processing J0. Thus, the
required optimal schedule exists.

Suppose in the following that k < n. Then the definition of k implies that at
most k normal jobs are scheduled before J0 in every feasible schedule. Let σ be an
optimal schedule of problem 1, h1|MA, (C), p j = p| ∑w jU j in which the normal
jobs scheduled before J0 are as many as possible and are processed consecutively,
and subject to this, J0 is scheduled as early as possible. Since kp � T ′ − p0 and
(k + 1)p + p0 > T , by the shifting argument, we can verify that exact k normal jobs
are scheduled before J0 and the interval [T ′ − p0, T ′] is occupied by J0 in σ . This
further implies that the normal jobs are scheduled in the time space [0, kp]∪[T ′,+∞).
The result follows.

Theorem 3.2 Problem 1, h1|MA, (C), p j = p| ∑w jU j is solvable in O(n log n)

time.
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Proof Let k and T ′ be the same as that in Lemma 3.1. We consider a job instance
I = {(p, d j , w j ) : 1 � j � n} of problem 1, h1|MA, (C), p j = p| ∑w jU j . From
Lemma 3.1, the problem on instance I is equivalent to schedule the n normal jobs
in the time space [0, kp] ∪ [T ′,+∞) for minimizing

∑
w jU j with [kp, T ′] being

a forbidden interval. Since kp, the left point of the forbidden interval [kp, T ′], is
an integer multiple of the common processing time p, allowing preemption will not
change the scheduling problem with the forbidden interval [kp, T ′]. By the discussion
in Yuan and Lin [15], the problem in consideration on instance I is linearly equivalent

to the problem 1|p j = p| ∑w jU j on instance I ′ =
{(

p, d ′
j , w j

)
: 1 � j � n

}
,

where

d ′
j =

⎧
⎨

⎩

d j , if d j � kp,
kp, if kp < d j � T ′,
d j − (T ′ − kp), if d j > T ′.

Since problem 1|p j = p| ∑w jU j is solvable in O(n log n) time as presented inMor-
ton and Pentico [19], we conclude that problem 1, h1|MA, (C), p j = p| ∑w jU j is
solvable in O(n log n) time. The result follows.

Now we consider the general problem 1, h1|MA, (C)|∑w jU j in which the MA
has length p0 and executionwindow [T0, T ]. Since the tardy jobs canbe scheduled after
the dummy job J0 and all early normal jobs in a feasible schedule, we only consider
the schedule of the dummy job and the early normal jobs in feasible schedules. For a
feasible schedule σ , we can rewrite it as σ = (σ ′, J0, σ ′′), where σ ′ is the subschedule
of the early normal jobs scheduled before J0 in σ and σ ′′ is the subschedule of the
early normal jobs scheduled after J0 in σ . Moreover, we use P(σ ′) and P(σ ′′) to
denote the total processing times of the jobs in σ ′ and in σ ′′, respectively. In the case
that the jobs in each of σ ′ and σ ′′ are scheduled in the EDD order, we call σ an
(EDD,EDD)-schedule. By the swapping argument and the shifting argument, we can
show the following lemma for optimal schedules.

Lemma 3.2 For problem 1, h1|MA, (C)|∑w jU j , there is an optimal schedule σ =
(σ ′, J0, σ ′′) such that

(i) σ is an (EDD,EDD)-schedule,
(ii) The jobs in σ ′ are scheduled in the time interval [0, P(σ ′)] without idle time,
(iii) The dummy job J0 is processed in the interval [T ′ − p0, T ′], where T ′ =

max{P(σ ′), T0} + p0 � T , and
(iv) The jobs in σ ′′ are scheduled in the time interval [T ′, T ′ + P(σ ′′)] without idle

time.

In general, we can guess the completion time t of the dummy job J0. Since [T0, T ]
is the execution window of MA which is of length p0, we have t ∈ [T0 + p0, T ].
For each choice of t , we will solve the problem optimally under the restriction that
the dummy job J0 is scheduled in the interval [t − p0, t]. This can be realized from a
dynamic programming algorithm by using a variation of Lemma 3.2.
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Assume that the normal jobs are indexed according to EDD order such that d1 �
d2 � · · · � dn . Given t ∈ [T0 + p0, T ], we first introduce the following notation and
terminology.

• �(t) is the set consisting of the triples (k, u, v) with 0 � k � n, 0 � u �
t − p0 � T − p0, and 0 � v � P . Then |�(t)| = O(n(T − p0)P).

• For each triple (k, u, v) ∈ �(t), we use Pt (k, u, v) to denote the problem for
scheduling jobs J0, J1, · · · , Jk to minimize

∑k
j=1 w jU j (σ ) of the legal schedules

σ , where a schedule σ = (σ ′, J0, σ ′′) of J0, J1, · · · , Jk is legal for problem
Pt (k, u, v) if it is an (EDD,EDD)-schedule such that J0 is scheduled in the time
interval [t − p0, t], the jobs in σ ′ are scheduled in the time interval [0, u] without
idle time, and the jobs in σ ′′ are scheduled in the time interval [t, t + v] without
idle time.

• For each triple (k, u, v) ∈ �(t), we use Ft (k, u, v) to denote the optimal value
of problem Pt (k, u, v). Clearly, Ft (k, u, v) can be assumed by a legal schedule
of Pt (k, u, v). In the case that problem Pt (k, u, v) has no feasible schedule, we
just define Ft (k, u, v) = +∞. Then Ft (0, 0, 0) = 0 and Ft (0, u, v) = +∞ if
(u, v) �= (0, 0).

In general, suppose that (k, u, v) is a triple in �(t) with 1 � k � n. Let
σ = (σ ′, J0, σ ′′) be a legal schedule of problem Pt (k, u, v) assuming Ft (k, u, v).
We distinguish the following three cases.

– Jk is tardy in σ . Then σ is also a legal schedule of problemPt (k−1, u, v) assuming
Ft (k − 1, u, v). In this case, we have Ft (k, u, v) = Ft (k − 1, u, v) + wk .

– Jk is early in σ and is assigned to σ ′. Then Jk is the last job in σ ′. Let σ ′ − Jk be
the schedule obtained from σ ′ by deleting the last job Jk . Then (σ ′ − Jk, J0, σ ′′)
is a legal schedule of problem Pt (k−1, u− pk, v) assuming Ft (k−1, u− pk, v).
In this case, we have dk � u and Ft (k, u, v) = Ft (k − 1, u − pk, v).

– Jk is early in σ and is assigned to σ ′′. Then Jk is the last job in σ ′′. Let σ ′′ − Jk be
the schedule obtained from σ ′′ by deleting the last job Jk . Then (σ ′, J0, σ ′′ − Jk)
is a legal schedule of problem Pt (k−1, u, v − pk) assuming Ft (k−1, u, v − pk).
In this case, we have dk � t + v and Ft (k, u, v) = Ft (k − 1, u, v − pk).

Combining the above discussions, we design the following dynamic programming
(DP) algorithm.

3.1 DP Algorithm

For determining the values Ft (k, u, v) for all (k, u, v) ∈ �(t).
Step 1 (Initialization)

Ft (k, u, v) =
⎧
⎨

⎩

0, if (k, u, v) = (0, 0, 0),
+∞, if k = 0 and (u, v) �= (0, 0),
+∞, if (k, u, v) /∈ �(t).
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Step 2 (Recursion)

Ft (k, u, v) = min

⎧
⎨

⎩

Ft (k − 1, u, v) + wk,

Ft (k − 1, u − pk, v), if dk � u,

Ft (k − 1, u, v − pk), if dk � t + v.

Equivalently,

Ft (k, u, v)

=
⎧
⎨

⎩

Ft (k − 1, u, v) + wk , if dk < u,

min {Ft (k − 1, u − pk , v), Ft (k − 1, u, v) + wk} , if u � dk < t + v,

min {Ft (k − 1, u, v − pk), Ft (k − 1, u − pk , v), Ft (k − 1, u, v) + wk} , if dk � t + v.

In the above DP algorithm, we have totally |�(t)| states, and each iteration runs in
a constant time. Note that |�(t)| = O(n(T − p0)P). Then the DP algorithm runs in
O(n(T − p0)P) time for given t ∈ [T0 + p0, T ]. In the case that t = T , the above
DP algorithm solves problem 1, h1|MA, (A∗)| ∑w jU j .

From Lemma 3.2, the optimal value of problem 1, h1|MA, (C)|∑ w jU j is given
by

min{Ft (n, u, v) : t ∈ [T0 + p0, T ], (n, u, v) ∈ �(t)}.

By setting T ∗ = T − (T0 + p0)+1, which is the number of choices of t , we conclude
the following result.

Theorem 3.3 Problem 1, h1|MA, (A∗)| ∑ w jU j is solvable in O(n(T − p0)P) time,
and Problem 1, h1|MA, (C)|∑w jU j is solvable in O(nT ∗(T − p0)P) time.
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