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Abstract In this paper, a wide-neighborhood predictor-corrector feasible interior-
point algorithm for linear complementarity problems is proposed. The algorithm is
based on using the classical affine scaling direction as a part in a corrector step, not in
a predictor step. The convergence analysis of the algorithm is shown, and it is proved
that the algorithm has the polynomial complexity O

(√
n log ε−1

)
which coincides

with the best known iteration bound for this class of mathematical problems. The
numerical results indicate the efficiency of the algorithm.

Keywords Linear complementarity problems · Predictor-corrector algorithm ·
Polynomial complexity

Mathematics Subject Classification 90C33 · 90C51

1 Introduction

Linear complementarity problem (LCP) consists of finding a vector in a finite-
dimensional real space that satisfies a certain system of inequalities. LCP is a
fundamental problem inmathematical programmingwhich includes somewell-known

The authors were financially supported by Shahrekord University and also partially supported by the
Center of Excellence for Mathematics, Shahrekord University, Shahrekord, Iran.

B Hossein Mansouri
Mansouri@sci.sku.ac.ir

Mohammad Pirhaji
mojtabapirhaji@yahoo.com

Maryam Zangiabadi
Zangiabadi-m@sci.sku.ac.ir

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord University,
Shahrekord, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-017-0178-y&domain=pdf


530 M. Pirhaji et al.

and well-studied mathematical programming problems such as linear optimization
(LO) problems and convexquadratic optimization (CQO)problems.Due towide appli-
cations of LCPs in engineering, economics, management science, bimatrix games and
other fields, LCPs have received lots of attention in recent years.

There are many approaches for solving LCPs. The book by Cottle et al. [1] is a good
reference for pivoting methods to solve LCPs. Interior-point methods (IPMs) are the
most efficient and powerful numerical algorithms for solving theLCPs. Theyhave been
well known as the most effective methods for solving wide classes of mathematical
problems due to both theoretical and practical aspects.

After the seminal work of Karmarkar [2], IPMs for LCPs have been studied exten-
sively. Many strong results in IPMs are obtained by using the prima-dual IPMs that
are reliable both in theory and in practice. Kojima et al. [3] proposed a polynomial
time algorithm for LCPs. The existence and uniqueness of the central path for LCPs
were first proved by Kojima et al. [4]. Peng et al. [5] introduced a class of primal-dual
IPMs based on so-called self-regular functions for LCPs.

Based on a newclass of search directions,Achache [6] proposed a short-step primal-
dual interior-point algorithm for monotone LCPs. Mansouri et al. [7] presented the
first full-Newton step infeasible IPM for LCPs. Wang et al. [8] proposed a new full-
Newton step feasible interior-point algorithm for P∗(κ)-LCPs andderived the currently
best known iteration bound for this class of mathematical problems. Zangiabadi and
Mansouri [9] improved theproposed algorithm in [7] and suggested amodified interior-
point algorithm for LCPs. Mansouri and Pirhaji [10], based on a new technique for
finding the search direction and the strategyof the central path, suggested a full-Newton
feasible IPM for monotone LCPs.

The theoretical study of complexity is one of the key points in IPMs. The search
for variant of interior-point algorithms with better complexity results led to a power-
ful class of IPMs. Predictor-corrector interior-point algorithms are a special class of
iterative algorithms that play a key role in IPMs since they are the most efficient and
applicable iterative approach among primal-dual IPMs.

The first algorithm that has divided the Newton’s directions into the affine and
centering search directions is due to Mehrotra [11]. Mizuno et al. [12] presented a
predictor-corrector interior-point algorithm for LO problems such that the complexity
bound of their algorithm coincides with the best known one in the literature. This
algorithmwas first extended to P∗(κ)-LCPs byMiao [13].Gurtuna et al. [14] presented
a corrector-predictor interior-point algorithm for sufficient LCPs. Their algorithm is
quadratically convergent, and it has the same computational complexity as Miao’s
algorithm for P∗(κ)-LCPs.

The most of above predictor-corrector interior-point algorithms keep the iterates in
the small neighborhoods of the central path. Although the use of small neighborhoods
of the central path leads to the efficient theoretical algorithms, it affects actually their
implementation on real problems and concludes the poor numerical results. On the
other hand, it is well known that the algorithmswith large neighborhoods of the central
path have better performance in practice, but more poor polynomial complexity in
theory.

Potra [15], using a wide neighborhood of the central path, presented two corrector-
predictor interior-point algorithms for LCPs. Introducing a new wide neighborhood
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of the central path, Ai and Zhang [16] proposed a primal-dual path-following interior-
point algorithm with O

(√
nL

)
complexity for LCPs. This algorithm is the first

wide-neighborhood algorithm that gains the same theoretical complexity as the small
neighborhood algorithms for LCPs. Amodified version of Ai–Zhang’s path-following
algorithm [16] has been proposed by Liu et al. [17] to gain a class of Mehrotra-type
predictor-corrector algorithm for LCPs. Their algorithm is based on computing a
corrector direction in addition to Ai–Zhang’s direction in an attempt to improve per-
formance.

In this paper, motivated by [18] and using the Ai–Zhang’s wide neighborhood, we
propose a wide-neighborhood predictor-corrector interior-point algorithm for LCPs.
In order to improve optimality, the algorithm first takes a predictor step by using
the predictor search directions and moves to a larger neighborhood of the central
path. Then, using the corrector directions, in an attempt for more improvement in
the centrality and the optimality, the algorithm brings the iterate toward the central
path, back to the smaller neighborhood of the central path from the predictor point.
Different from other algorithms in the samewide neighborhood and similar to [18], we
use the classical affine scaling direction as a part in a corrector step, not in a predictor
step. This simplifies our analysis, contributes the complexity result and concludes the
complexity O

(√
nL

)
for the algorithm.

The reminder of the paper is organized as follows. In Sect. 2, after introducing
the LCPs, we recall the Ai–Zhang’s wide neighborhood which is required in our
algorithm. In Sect. 3, we describe how the predictor-corrector algorithm works in the
wide neighborhood of central path. Section 4 devotes to prove the convergence analysis
and polynomial complexity of the algorithm. The computational performance of the
algorithm is tested in Sect. 5. Finally, the paper ends with some concluding remarks
in Sect. 6.

The notations used throughout the paper are rather standard. Capital letters denote
matrices, lower case letters denote vectors, script capital letters denote sets, and Greek
letters denote scalars.All vectors are considered to be columnvectors. The components
of a vector u ∈ R

n are denoted by ui , i = 1, · · · , n. The relation u > 0 is equivalent
to ui > 0, for i = 1, · · · , n, while u � 0 means ui � 0, for i = 1, · · · , n.

For u ∈ R
n , we use the notation min(u) = mini ui . If u ∈ R

n , the notation
U := diag (u) denotes the diagonal matrix having the components of u as diagonal
entries. If u, v ∈ R

n, then uv denotes the componentwise (Hadamard) product of the
vectors u and v. Furthermore, e denotes the all-one vector of length n. The positive and
negative parts of a vectoru ∈ R

n are denotedbyu+ := max{u, 0} andu− := min{u, 0}
such that u = u+ + u−. Finally, the 2-norm for vectors are denoted by ‖·‖.

2 The Preliminary

The monotone LCP requires to find a pair of nonnegative vectors (x, s) ∈ R
2n+ such

that

s = Mx + q, xs = 0, (2.1)
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where q ∈ R
n and M is a positive semidefinite matrix, that is, uTMu � 0, for u ∈ R

n .
Denoting the feasible set of problem 2.1 by

F :=
{
(x, s) ∈ R

2n+ : s = Mx + q
}

,

we assume that the interior feasible set

F0 :=
{
(x, s) ∈ R

2n++ : s = Mx + q
}

is nonempty, that is, problem 2.1 satisfies the interior-point condition (IPC).
The basic idea of feasible IPMs is based on replacing the complementarity condition

xs = 0 in 2.1 by the perturbed equation xs = μe, to get the following parameterized
system

Mx − s + q = 0, xs = μe, x, s � 0, (2.2)

where μ > 0. Kojima et al. [4] established that under IPC, system 2.2 has a unique
solution for each μ > 0. The set of all such solutions constructs a homotopy path
which is called the central path of the LCP and it is used as a guideline to the solution
of LCP. Therefore, the central path of LCP is defined as

H :=
{

(x, s) ∈ F0 : xs = μe
}
. (2.3)

Interior-point algorithms generate a sequence of iterates in some neighborhoods of
the central path. Short-step interior-point algorithms use a small neighborhood of the
central path while large-step ones work in the negative infinity neighborhood of the
central path, defined by

N∞− (1 − γ ) :=
{
(x, s) ∈ F0 : xi si � γμ

}
, (2.4)

where γ ∈ (0, 1]. The short-step methods have the best theoretical complexity in
comparison with the large-step methods. The large-step methods, unlike their poor
theoretical complexity, lead to the efficient algorithms in practice.

In 2005, Ai and Zhang [16] introduced a new wide neighborhood of the central
path for LCPs and proved that the new wide neighborhood is larger than the neighbor-
hood N∞− (1 − γ ) (see [16]). Motivated by Ai and Zhang [16], we use the following
neighborhood of the central path:

N (τ, β) :=
{
(x, s) ∈ F0 : ∥∥(τμe − xs)+

∥∥ � βτμ
}
, (2.5)

where μ = xTs
n and β, τ ∈ [0, 1].
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3 The Wide-Neighborhood Predictor-Corrector Algorithm

In this section, we present a predictor-corrector algorithm for LCPs. Since the
algorithm is feasible, it needs an initial feasible point (x0, s0) ∈ N (τ, β). It is well
known we can obtain such a starting point by using the homogeneous embedding
method for monotone LCP [19].

Let (x, s) ∈ N (τ, β) be the current iterate of the algorithm. Furthermore, suppose
that (τμe − xs)+ and (τμe − xs)− denote the positive and negative parts of the vector
τμe− xs, respectively. In order to improve optimality, the algorithm first moves to the
larger neighborhoodN (τ, 2β) from (x, s) ∈ N (τ, β). To this end, it takes a predictor
step using the following search direction system:

[
M −I
S X

] [
�x−
�s−

]
=

[
0

(τμe − xs)−
]

. (3.1)

Computing the predictor search directions �x− and �s− by (3.1), we obtain the
predictor iterate (x(α1), s(α1)) as follows:

(x(α1), s(α1)) := (x, s) + α1(�x−,�s−), (3.2)

where α1 > 0 is the step size taken along the predictor directions. The best value for
the step size α1 can be obtained by solving the following optimization problem:

min x(α1)
Ts(α1)

s.t. (x(α1), s(α1)) ∈ N (τ, 2β),

0 < α1 � 1.
(3.3)

After the predictor step, assuming α̂1 as the optimal solution of problem 3.3 and

x̂ = x(α̂1), ŝ = s(α̂1), μ̂ := x̂T ŝ

n
and

(
x̂, ŝ

) ∈ N (τ, 2β),

the algorithmmoves back toward the slightly smaller neighborhood of the central path
from the predictor point

(
x̂, ŝ

)
to improve the centrality and the optimality. To this

end, the algorithm takes a corrector step using the search direction systems

[
M −I
Ŝ X̂

] [
�x+
�s+

]
=

[
0(

τ μ̂e − x̂ ŝ
)+

]
, (3.4)

and
[
M −I
Ŝ X̂

] [
�xa

�sa

]
=

[
0

−x̂ ŝ

]
. (3.5)

Clearly, the above two systems have the same coefficient matrix and in spite of the fact
that two linear systems have to be solved, the additional cost is very marginal. More-
over, different from other predictor-corrector algorithms, the classical affine search
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direction (�xa,�sa) has been considered as a part of the corrector step not in the pre-
dictor step. This makes the reduction in duality gap even in corrector steps. However,
considering α2 > 0 as the step size taken along the direction (�xa,�sa), we define

(
x̂(α2), ŝ(α2)

) = (x̂, ŝ) + (�x+,�s+) + α2(�xa,�sa), (3.6)

as the corrector point with μ̂(α2) := x̂(α2)T ŝ(α2)
n . Similar to the predictor step, the best

value for the step size α2 can be obtained by the following optimization problem:

min x̂(α2)
T ŝ(α2)

s.t.
(
x̂(α2), ŝ(α2)

) ∈ N (τ, β),

0 < α2 � 1.
(3.7)

Let ᾱ2 be the optimal solution of the above optimization problem. Thus,

(x̄, s̄) := (
x̂(ᾱ2), ŝ(ᾱ2)

) = (x̂, ŝ) + (�x+,�s+) + ᾱ2(�xa,�sa), (3.8)

and μ̄ = x̄T s̄
n . The algorithm uses the new iterate (x̄, s̄) ∈ N (τ, β) as a starting point

in the next iteration and repeats the above procedure until an ε-approximate solution
of the problem 2.1 is found.

Due to the monotonicity, the objective functions x(α1)
Ts(α1) and x̂(α2)

T ŝ(α2) of
the optimization problems 3.3 and 3.7 are convex and monotonically decreasing in α1
and α2 (see [16]). Moreover, solving these optimization problems may be expensive
from the computational point of view. Therefore, a sufficient reduction in duality gap
can be considered against the maximal one. However, without loss of polynomial
complexity, the plane search procedures 3.3 and 3.7 can be replaced by some line
search procedures, such as the bisection method (see [17]).

Below, the generic form of the predictor-corrector interior-point algorithm is
described.

Algorithm 1 Predictor-corrector algorithm for LCPs

Step 0 (Initialize): A required precision ε > 0, β � 1
6 , τ � 1

8 and the initial feasible
solution

(
x0, s0

) ∈ N (τ, β). Set k = 0.
Step 1 (Test convergence): Set (x, s) = (

xk, sk
)
. If xTs � ε, declare convergence and

stop. Otherwise, proceed to the next step.
Step 2 (Predictor step): Compute the search direction (�x−,�s−) by system (3.1)

andfind the best value of the step sizeα1 by solving (3.3) such that the predictor-
point

(
x̂, ŝ

) ∈ N (τ, 2β).
(Corrector step): Compute the search directions (�x+,�s+) and (�xa,�sa)
by systems (3.4) and (3.5) and find the best value of the step size α2 by (3.7)
such that the corrector-point (x̄, s̄) ∈ N (τ, β).

Step 3 (Update iterate): Set (xk+1, sk+1) = (x̄, s̄), k := k + 1 and go to step 1.

123



A Wide-Neighborhood Predictor-Corrector… 535

4 Convergence Analysis

In this section, we prove the proposed Algorithm 1 and obtain an ε-approximate
solution of the LCP in polynomial time complexity. To this end, we first recall some
lemmas in [16] which are necessary in our analysis.

Lemma 4.1 (Proposition 3.1 in [16]) For any u, v ∈ R
n and p � 1, we have

∥
∥(u + v)+

∥
∥
p �

∥
∥u+∥

∥
p + ∥

∥v+∥
∥
p ,

∥
∥(u + v)−

∥
∥
p �

∥
∥u−∥

∥
p + ∥

∥v−∥
∥
p .

Lemma 4.2 (Proposition 3.2 in [16]) Suppose that (x, s) ∈ F0 and z + xs � 0. Let
(�x,�s) be the solution of

[
M −I
S X

] [
�x
�s

]
=

[
0
z

]
. (4.1)

If (x + t0�x)(s+ t0�s) > 0 for some 0 < t0 � 1, then x + t�x > 0 and s+ t�s > 0
for all 0 � t � t0.

Lemma 4.3 (Proposition 3.5 in [16]) Let u, v ∈ R
n such that uTv � 0, and moreover,

assume that u + v = r . Then, we have

∥∥(uv)−
∥∥
1 �

∥∥(uv)+
∥∥
1 � 1

4
‖r‖2 .

By some simple calculations, we can easily obtain the following useful relationship:

∥∥(τμe − xs)−
∥∥
1 = (1 − τ)xTs + eT(τμe − xs)+. (4.2)

Moreover, using the second equation of system (3.1), we easily derive

(τμe − xs)− + xs = (τμe − xs)− − (τμe − xs) + τμe

= τμe − (τμe − xs)+ � 0. (4.3)

Using (3.2), the fact eT
(
�x−�s−)

� 0 and (4.3), we have for α1 ∈ (0, 1]

μ(α1) = x(α1)
Ts(α1)

n
= eT

(
xs + α1(x�s− + s�x−) + α2

1�x−�s−)

n

= eT
(
xs + α1(τμe − xs)− + α2

1�x−�s−)

n

� xTs + α1eT(τμe − xs)−

n
> 0.
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Lemma 4.4 Let
(
�x−,�s−)

be the solution of system (3.1). Then,

∥
∥∥
(
�x−�s−)−∥

∥∥ � 1

4
nμ. (4.4)

Proof Using the fact eT
(
�x−�s−)

� 0 andLemma4.3 and defining D := (
XS−1

) 1
2 ,

we derive
∥∥∥
(
�x−�s−)−∥∥∥ �

∥∥∥
(
�x−�s−)−∥∥∥

1
�

∥∥∥
(
�x−�s−)+∥∥∥

1

�
∥∥∥
∥
((

D−1�x−) (
D�s−))+∥∥∥

∥
1

� 1

4

∥∥∥D−1�x− + D�s−
∥∥∥
2

= 1

4

∥
∥∥(XS)−

1
2
(
S�x− + X�s−)∥∥∥

2 = 1

4

∥
∥∥(XS)−

1
2 (τμe − xs)−

∥
∥∥
2

= 1

4

∥∥∥(XS)−
1
2 (xs − τμe)+

∥∥∥
2

� 1

4

∥
∥∥(XS)

1
2

∥
∥∥
2 = 1

4
xTs = 1

4
nμ.

The proof is completed.

The following lemma presents some upper and lower bounds for the parameter
μ(α1) in the predictor step.

Lemma 4.5 Let μ(α1) := x(α1)Ts(α1)
n and τ � 1

8 . Then,

(1 − α1)μ � μ(α1) �
(
1 − 5

8
α1

)
μ.

Proof Using (3.2), the second equation of (3.1), (4.2), the fact aTb �
∥∥(ab)+

∥∥
1 for

any a, b ∈ R
n and Lemma 4.4, we have

μ(α1) = x(α1)
Ts(α1)

n
= 1

n

(
xTs + α1e

T(τμe − xs)− + α2
1e

T(�x−�s−)
)

= μ + α1

n
eT(τμe − xs)− + α2

1

n
eT(�x−�s−)

� μ − α1

n
(1 − τ)xTs + α2

1

n

∥∥(�x−�s−)+
∥∥
1

� μ − α1(1 − τ)μ + 1

4
α2
1μ

= (1 − [1 − τ − 1

4
α1]α1)μ �

(
1 − 5

8
α1

)
μ,

where the last inequality is due to assumption τ � 1
8 . On the other hand, due to the

fact eT(�x−�s−) � 0, we consequently derive

μ(α1) = 1

n

(
xTs + α1e

T(τμe − xs)− + α2
1e

T(�x−�s−)
)
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� 1

n

(
xTs + α1e

T(τμe − xs)−
)

� 1

n

(
xTs + α1e

T(−xs)
)

= (1 − α1)μ.

This completes the proof.

The following lemma gives a lower bound for the step size α1 satisfying (3.3).

Lemma 4.6 Let (x, s) ∈ N (τ, β) and β < 1
2 . If α1 = βτ

8n , then after a predictor step
(x(α1), s(α1)) ∈ N (τ, 2β).

Proof To prove the result, using the definition of wide neighborhood N (τ, β), we
should demonstrate

∥∥(τμ(α1)e − x(α1)s(α1))
+∥∥ � 2βτμ(α1) and (x(α1), s(α1)) ∈

F0. To this end, using (3.2), we obtain

τμ(α1)e − x(α1)s(α1) = τμ(α1)e − xs − α1(τμe − xs)− − α2
1�x−�s−.

Therefore, by Lemma 4.1, we conclude

∥∥(τμ(α1)e − x(α1)s(α1))
+∥∥ �

∥∥(τμ(α1)e − xs)+
∥∥ + α1

∥∥(τμe − xs)−
∥∥

+ α2
1

∥
∥∥
(
�x−�s−)−∥

∥∥ . (4.5)

Using the assumption (x, s) ∈ N (τ, β) and the fact μ(α1) � μ, we easily obtain an
upper bound for the term

∥∥(τμ(α1)e − xs)+
∥∥ as follows:

∥∥(τμ(α1)e − xs)+
∥∥ �

∥∥∥
∥
μ(α1)

μ
(τμe − xs)+

∥∥∥
∥ � βτμ(α1). (4.6)

On the other hand, using (4.2), the fact μ(α1) � 1
2μ for β < 1

2 and α1 = βτ
8n , one has

α1
∥∥(τμe − xs)−

∥∥ � α1
∥∥(τμe − xs)−

∥∥
1 = α1

[
(1 − τ)xTs + eT(τμe − xs)+

]

� α1[(1 − τ)nμ + √
nβτμ] � 2α1nμ

� 2α1n(2μ(α1)) � 1

2
βτμ(α1), (4.7)

where the last inequality is due to α1 = βτ
8n . Finally, using Lemma 4.4, we obtain

α2
1

∥∥∥
(
�x−�s−)−∥∥∥ � 1

4
α2
1nμ � 1

4

(
βτ

8n

)2

n(2μ(α1)) � 1

2
βτμ(α1). (4.8)

Substituting (4.6), (4.7) and (4.8) into (4.5), we consequently derive

∥∥(τμ(α1)e − xs)+
∥∥ � 2βτμ(α1). (4.9)

To complete the proof, we need to prove (x(α1), s(α1)) ∈ F0. The feasibility of
(x(α1), s(α1)) is clearly concluded by system (3.1). On the other hand, due to inequal-
ity (4.9), we have x(α1)s(α1) � (1 − 2β)τμ(α1), which means x(α1)s(α1) > 0 for
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β < 1
2 . Therefore, due to Lemma 4.2, it can be obtained that x(α1) > 0 and s(α1) > 0.

This concludes the result and ends the proof.

In following, we proceed to prove some fundamental results in corrector step and
find a lower bound for the step size α2 satisfying 3.7. Consider the predictor point(
x̂, ŝ

)
, and define

�x := �x+ + α2�xa and �s := �s+ + α2�sa . (4.10)

Then,

�xT�s � 0 and x̂�s + ŝ�x = (
τ μ̂e − x̂ ŝ

)+ − α2 x̂ ŝ. (4.11)

Lemma 4.7 Let (�x,�s) be defined as (4.10). Then, for β � 1
6

∥∥(�x�s)−
∥∥ � 1

4
βτμ̂ + 1

4
nα2

2μ̂. (4.12)

Proof Defining D̂ :=
(
X̂ Ŝ−1

) 1
2
and using (4.11) and Lemma 4.3, we have

∥∥(�x�s)−
∥∥ �

∥∥(�x�s)−
∥∥
1 �

∥∥(�x�s)+
∥∥
1

�
∥∥∥
∥
((

D̂−1�x
) (

D̂�s
))+∥∥∥

∥
1

� 1

4

∥∥
∥D̂−1�x + D̂�s

∥∥
∥
2

= 1

4

∥∥∥∥
(
X̂ Ŝ

)− 1
2
(
Ŝ�x + X̂�s

)∥∥∥∥

2

= 1

4

∥∥∥
∥
(
X̂ Ŝ

)− 1
2
((

τ μ̂e − x̂ ŝ
)+ − α2 x̂ ŝ

)∥∥∥
∥

2

� 1

4

(∥
∥∥∥
(
X̂ Ŝ

)− 1
2 (

τ μ̂e − x̂ ŝ
)+

∥
∥∥∥

2

+ α2
2

∥
∥∥∥
(
x̂ ŝ

) 1
2

∥
∥∥∥

2
)

� 1

4

( (
2βτμ̂

)2

(1 − 2β)τ μ̂
+ α2

2nμ̂

)

= β

(1 − 2β)
βτμ̂ + n

4
α2
2nμ̂

= 1

4
βτμ̂ + 1

4
nα2

2μ̂,

where the last inequality is due to assumption (x̂, ŝ) ∈ N (τ, 2β) and last equality
follows from β � 1

6 . The result is derived.
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Lemma 4.8 Let μ̂(α2) := x̂(α2)T ŝ(α2)
n and β � 1

6 . If α2 = 3βτ√
n
, then

(1 − α2)μ̂ � μ̂(α2) �
(
1 − βτ

4
√
n

)
μ̂.

Proof Using (3.6), (4.10), (4.11) and Lemma 4.7, we have

μ̂(α2) = 1

n
x̂(α2)

T ŝ(α2) = 1

n
(x̂ + �x)T(ŝ + �s)

= 1

n

(
x̂T ŝ + (x̂T�s + ŝT�x) + �xT�s

)

= 1

n

(
x̂T ŝ + eT

[(
τ μ̂e − x̂ ŝ

)+ − α2 x̂ ŝ
]

+ �xT�s
)

� 1

n

(
x̂T ŝ + √

n
∥∥
∥
(
τ μ̂e − x̂ ŝ

)+∥∥
∥ − α2 x̂

T ŝ + ∥
∥(�x�s)+

∥
∥
1

)

� 1

n

(
(1 − α2)nμ̂ + 2

√
nβτμ̂ + 1

4
βτμ̂ + 1

4
nα2

2μ̂

)

= (1 − α2)μ̂ + 2√
n

βτμ̂ + 1

4n
βτμ̂ + 1

4
α2
2μ̂

� (1 − βτ√
n

)μ̂ + 1

4n
βτμ̂ + 3

64n
βτμ̂

� (1 − 19

64
√
n

βτ)μ̂ � (1 − βτ

4
√
n

)μ̂,

where the third inequality is due to α2 = 3βτ√
n
. On the other hand, using the nonnega-

tivity of the terms eT
(
τ μ̂e − x̂ ŝ

)+ and �xT�s, we easily derive μ(α2) � (1−α2)μ̂.
This concludes the result and ends the proof.

Lemma 4.9 Let (x̂(α2), ŝ(α2)) be the generated corrector point by the algorithm. If
β < 1

6 and α2 = 3βτ√
n
, then after a corrector step (x̂(α2), ŝ(α2)) ∈ N (τ, β).

Proof Using the definition of the wide neighborhood N (τ, β), in the same way
as Lemma 4.6, we need to prove

∥∥(τ μ̂(α2)e − x̂(α2)ŝ(α2))
+∥∥ � βτμ̂(α2) and

(x̂(α2), ŝ(α2)) ∈ F0. By (3.6), (4.10), (4.11) and the fact μ̂(α2) � μ̂, we conse-
quently derive

τ μ̂(α2)e − x̂(α2)ŝ(α2) = τ μ̂(α2)e − (x̂ + �x)(ŝ + �s)

= τ μ̂(α2)e − x̂ ŝ − (x̂�s + ŝ�x) − �x�s

= τ μ̂(α2)e − (1 − α2)x̂ ŝ − (
τ μ̂e − x̂ ŝ

)+ − �x�s

= (1 − α2)(τ μ̂(α2)e − x̂ ŝ) + α2τ μ̂(α2)e

− (
τ μ̂e − x̂ ŝ

)+ − �x�s

� (1 − α2)
μ̂(α2)

μ̂
(τ μ̂e − x̂ ŝ) + α2τ μ̂(α2)e
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− μ̂(α2)

μ̂

(
τ μ̂e − x̂ ŝ

)+ − �x�s

� α2τ μ̂(α2)e − �x�s.

Thus, using Lemma 4.7, we have

∥∥
∥
(
τ μ̂(α2)e − x̂(α2)ŝ(α2)

)+∥∥
∥ �

√
nα2τ μ̂(α2) + ∥∥(�x�s)−

∥∥

�
√
nα2τ μ̂(α2) + 1

4
βτμ̂ + 1

4
nα2

2μ̂

�
(
3τ + 1

2
+ 3

32

)
βτμ̂(α2) � βτμ̂(α2), (4.13)

where the third inequality is due to assumptions β � 1
6 , τ � 1

8 , α2 = 3βτ√
n
and the fact

that μ̂(α2) � 1
2 μ̂.

Furthermore,weneed toprove (x̂(α2), ŝ(α2)) ∈ F0. The feasibility of (x̂(α2), ŝ(α2))

is clearly concluded by systems (3.4) and (3.5). Due to inequality (4.13), we have
x̂(α2)ŝ(α2) � (1 − β)τ μ̂(α2) which means x̂(α2)ŝ(α2) > 0 for β < 1

6 . Therefore,
due to Lemma 4.2, we get x̂(α2) > 0 and ŝ(α2) > 0. The result is derived.

4.1 Complexity Analysis

Weare ready to state themain result of the paper.Weprove the proposedAlgorithm1
has good global convergence and it will be terminated in at most O

(√
nL

)
iterations.

Lemma 4.10 Let β � 1
6 and τ � 1

8 . The predictor-corrector Algorithm 1 has
O

(√
nL

)
complexity.

Proof By Lemmas 4.6 and 4.9, in each iteration, we have (x̂, ŝ) ∈ N (τ, 2β) after a
predictor step and (x̄, s̄) ∈ N (τ, β) after a corrector step. Moreover,

μ̄ � μ̂(α2) �
(
1 − βτ

4
√
n

)
μ̂ �

(
1 − βτ

4
√
n

)
μ(α1) �

(
1 − βτ

4
√
n

)
μ.

This implies that after k iterations the relations μ̄k � εμ0 hold if
(
1 − βτ

4
√
n

)k
� ε.

Taking logarithms and using − log(1− t) � t for t ∈ (0, 1), we get k � 4
√
n

βτ
log ε−1.

This implies that after at most O
(√

n log ε−1
)
iterations, we have μ̄k � εμ0. We

finish the proof.

5 Simulation Experiments

In this section, we test the presented Algorithm 1 by some numerical examples
of monotone LCPs [20,21]. Numerical results were obtained by using MATLAB
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R2007a (Version: 7.4.0.287) on Windows XP Enterprise 32-bit operating system.
The algorithm starts with the initial starting points x0 = s0 = e. Also, considering
q = e − Me and ε = 10−5 as the accuracy parameter, the algorithm terminates after
the relative duality gap xTs

1+ x0Ts0
is less than ε.

Example 5.1 Consider themonotone LCPswith the positive semidefinitematricesM1
and M2 as follows:

M1 :=

⎡

⎢⎢
⎢⎢⎢
⎣

1 2 2 · · · 2
0 1 2 · · · 2
0 0 1 · · · 2
...

...
...

...

0 0 0 · · · 1

⎤

⎥⎥
⎥⎥⎥
⎦

, M2 :=

⎡

⎢⎢
⎢⎢⎢
⎣

1 2 2 · · · 2
2 5 6 · · · 6
2 6 9 · · · 10
...

...
...

...

2 6 10 · · · 4(n − 1) + 1

⎤

⎥⎥
⎥⎥⎥
⎦

.

Example 5.2 We shall test the algorithm on some randomly generated instances.
The numerical results related to these examples are summarized in Tables 1 and

2, where “Iter.” denotes the required iteration numbers, “R.D.G” denotes the value of
relative duality gap as the stopping criteria and “CPU(s)” denotes the CPU time (in
seconds) required to obtain an ε-approximate solution of the underlying problem.

The obtained numerical results show that the algorithm practically is simple and
efficient.

Table 1 Numerical results for Example 5.1

The LCP with the matrix M1 The LCP with the matrix M2

n R.D.G CPU/s Iter. n R.D.G CPU/s Iter.

5 8.62 × 10−6 0.125 19 5 8.14 × 10−6 0.156 13
10 5.78 × 10−6 0.281 20 10 6.86 × 10−6 0.281 14
15 6.27 × 10−6 0.562 19 15 9.89 × 10−6 0.468 14
20 8.86 × 10−6 1.015 20 20 9.89 × 10−6 0.937 18
25 6.32 × 10−6 2.062 21 25 9.97 × 10−6 1.843 18
30 6.60 × 10−6 3.156 22 30 9.86 × 10−6 3.218 19
35 6.68 × 10−6 5.828 22 35 8.52 × 10−6 4.562 20
40 6.71 × 10−6 7.031 21 40 8.54 × 10−6 6.984 20
45 9.86 × 10−6 8.500 22 45 9.20 × 10−6 8.484 21
50 6.78 × 10−6 12.421 23 50 6.16 × 10−6 11.187 22
60 6.74 × 10−6 18.218 23 60 9.30 × 10−6 19.718 22
70 7.12 × 10−6 26.187 24 70 8.46 × 10−6 26.562 24
80 6.47 × 10−6 38.625 26 80 8.07 × 10−6 40.203 26
90 9.93 × 10−6 53.937 26 90 8.24 × 10−6 56.062 27
100 6.96 × 10−6 76.359 29 100 8.67 × 10−6 76.640 28
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Table 2 Numerical results for
Example 5.2 n R.D.G CPU/s Iter.

20 4.17 × 10−6 0.765 14
40 5.92 × 10−6 6.937 19
60 7.10 × 10−6 14.859 22
80 8.46 × 10−6 34.015 23
100 7.27 × 10−6 65.593 24
120 8.39 × 10−6 112.312 26
140 6.43 × 10−6 185.890 27
160 8.74 × 10−6 287.828 29
180 7.35 × 10−6 426.562 31
200 8.11 × 10−6 644.906 35

6 Concluding Remarks

Amongvarious classes of primal-dual IPMs, predictor-corrector interior-point algo-
rithms are the most efficient and applicable iterative approaches. They divide the
Newton directions into the affine and centering search directions. In this paper, we
proposed a predictor-corrector interior-point algorithm for LCPs which usees the clas-
sical affine scaling direction as a part in a corrector step, not in a predictor step. This
led to the reduction in duality gap in both predictor and corrector steps and moreover
concluded the complexity O

(√
n log ε−1

)
for the algorithm. The numerical results

showed the efficiency of the proposed algorithm.
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