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Abstract In this paper, we study optimality conditions of approximate solutions for
nonsmooth semi-infinite programming problems. Three new classes of functions,
namely ε-pseudoconvex functions of type I and type II and ε-quasiconvex functions are
introduced, respectively. By utilizing these new concepts, sufficient optimality condi-
tions of approximate solutions for the nonsmooth semi-infinite programming problem
are established. Some examples are also presented. The results obtained in this paper
improve the corresponding results of Son et al. (J Optim Theory Appl 141:389–409,
2009).
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1 Introduction

In this paper, we consider the following semi-infinite programming problem:

(SIP) Minimize f (x)
s.t. ft (x) � 0, t ∈ T,

x ∈ A,

where T is an arbitrary (not necessarily finite) index set, f , ft : X → R, t ∈ T , are
locally Lipschitz functions on a Banach space X , and A is a nonempty closed convex
subset of X . It is well known that semi-infinite programming problems became an
active research topic in mathematical programming due to its extensive applications
in many fields such as reverse Chebyshev approximate, robust optimization, minimax
problems, design centering and disjunctive programming; see ([1–3]). Recently, a great
deal of results have appeared in the literature; see [4–15] and the references therein.

We note that the approximate solutions of optimization problems are very important
fromboth the theoretical andpractical points of viewbecause they exist under verymild
hypotheses and a lot of solutionmethods (for example, iterative algorithms or heuristic
algorithms) obtain this kind of solutions. Thus, it is meaningful to consider various
concepts of approximate solutions to optimization problems. The first concept of
approximate solutions for optimization problems was introduced by Kutateladze [16].
We remark that, in recent years, many authors devoted their efforts to propose some
new notions of approximate solutions in connection with the optimization problems
[17–21].

In 2009, Son et al. [22] obtained some necessary and sufficient conditions of
approximate solutions for nonsmooth semi-infinite programming problems, where
f is ε-semiconvex and ft , t ∈ T is convex. In the definition of ε-semiconvexity, it
requires the regularity of f . It is worth mentioning that the regularity of f and the
convexity of ft play an important role in deriving the sufficient optimality condition of
approximate solutions for the nonsmooth semi-infinite programming problem in [22].
Thus, it is natural and interesting to remove the regularity requirements on the objec-
tive function and weaken the convexity on constraint functions. The main purpose of
this paper is to make an effort in this direction.

The rest of the paper is organized as follows. In Sect. 2 we recall some basic def-
initions and known results of Clark subdifferentials. We also introduce three new
classes of functions, namely ε-pseudoconvex functions of type I and type II and
ε-quasiconvex functions. Some examples illustrate this new functions. Section 3 con-
tains the main results of this paper. By these new functions, sufficient optimality
conditions of approximate solutions for the nonsmooth semi-infinite programming
problem are derived. Examples are given to illustrate our results. It is important to
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note that, in our main results, the regularity on the objective function and the con-
vexity on the constraint function are removed. Our results improve the corresponding
results of Son et al. [22].

2 Preliminaries

Throughout this paper, we assume that X is a Banach space, T is a compact topolog-
ical space. Let X∗ be the dual space of X andwedenote the closed unit ball in X∗ by B∗.

Let us denote by R(T ) the following linear vector space [1]:

R
(T ) := {λ = (λt )t∈T : λt = 0 for all t ∈ T except for finitely many λt �= 0}.

The nonnegative cone of R(T ) is denoted by

R
(T )
+ := {λ = (λt )t∈T ∈ R

(T ) : λt � 0, t ∈ T }.

It is easy to see that R(T )
+ is a convex cone of R(T ). For λ ∈ R

(T )
+ , the supporting set

corresponding to λ is defined by T (λ) := {t ∈ T : λt > 0}, which is a finite subset of
T .

Let Z be a linear vector space. For λ ∈ R
(T ) and {zt }t∈T ⊂ Z , we set

∑

t∈T
λt zt :=

{∑
t∈T (λ) λt zt , if T (λ) �= ∅,

0, if T (λ) = ∅.

Let f : X → R be a real-valued function. The function f is said to be directionally
differentiable at x ∈ X if, for every direction d ∈ X , the usual one-sided directional
derivative

f ′(x; d) := lim
t↓0

f (x + td) − f (x)

t

of f at x in the direction d exists and is finite.
Let f : X → R be a locally Lipschitz function and x ∈ X . The Clarke generalized

directional derivative [23] of f at x in the direction d ∈ X is defined by

f ◦(x; d) := lim sup
y→x
t↓0

f (y + td) − f (y)

t

and the Clarke generalized gradient [23] of f at x is denoted by

∂C f (x) := {ξ ∈ X∗ : f ◦(x; d) � 〈ξ, d〉,∀ d ∈ X}.

It is well known that

f ◦(x; d) = sup
ξ∈∂C f (x)

〈ξ, d〉, ∀ d ∈ X.
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The function f is said to be regular [23] at x ∈ X if, for each d ∈ X , the directional
derivative f ′(x; d) exists and coincides with f ◦(x; d). When f is convex, ∂C f (x)
coincides with the subdifferential ∂ f (x) in the sense of convex analysis.

Let E ⊆ X be a nonempty subset and x ∈ E . Denote by dE the distance function
of E , i.e., dE (x) := inf{‖ x − y ‖: y ∈ E}. A vector v in X is tangent to E at x
provided d◦

E (x; v) = 0. The set of all tangents to E at x is denoted TC (x). The Clarke
normal cone to E at x is defined by

NC (E; x) := {ξ ∈ X∗ : 〈ξ, v〉 � 0, ∀ v ∈ TC (x)}.

Let E ⊆ X be a nonempty closed convex subset. The normal cone to E at x ∈ E
is defined by

N (E; x) := {ξ ∈ X∗ : 〈ξ, y − x〉 � 0, ∀ y ∈ E}.

Obviously, if E is a closed convex set, then NC (E; x) = N (E; x).
The following lemmas will be used in the sequel.

Lemma 2.1 [23, Corollary, p. 52] Let E ⊆ X be a nonempty subset and x ∈ E.
Suppose that f : X → R is Lipschitz near x and attains a minimum over E at x.
Then, 0 ∈ ∂C f (x) + NC (E; x).
Lemma 2.2 [23, Prosition 2.3.3] Let fi : X → R, i = 1, 2, · · · , n, be locally
Lipschitz functions. Then, for any x ∈ X,

∂C ( f1 + f2 + · · · + fn)(x) ⊆ ∂C f1(x) + ∂C f2(x) + · · · + ∂C fn(x).

Let E ⊆ X be a nonempty subset. A locally Lipschitz function f : X → R is said
to be pseudoconvex at x ∈ E if, for all y ∈ E ,

〈ξ, y − x〉 � 0, ∃ ξ ∈ ∂C f (x) ⇒ f (y) � f (x).

The function f is said to be quasiconvex at x ∈ E if, for all y ∈ E ,

f (y) � f (x) ⇒ 〈ξ, y − x〉 � 0, ∀ ξ ∈ ∂C f (x).

Son et al. [22] introduced the following generalized convexity which is a general-
ization of the convexity and the semiconvexity.

Definition 2.1 Let E ⊆ X be a nonempty subset and ε � 0. A locally Lipschitz
function f : X → R is said to be ε-semiconvex at x ∈ E if f is regular at x and

f ′(x; y − x) + √
ε‖y − x‖ � 0 ⇒ f (y) + √

ε‖y − x‖ � f (x), ∀ y ∈ E .

Remark 2.1 It is worth mentioning that the notion of ε-semiconvex function intro-
duced by Son et al. [22] is different from the one introduced by Loridan [20]. We
also note that when ε = 0, the definition of ε-semiconvex function coincides the
semiconvex function defined by Mifflin [24].
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In order to obtain our main results, we introduce the following generalized convex
functions.

Definition 2.2 Let E ⊆ X be a nonempty subset and ε � 0. A locally Lipschitz
function f : X → R is said to be

(i) ε-pseudoconvex of type I at x ∈ E if, for all y ∈ E ,

〈ξ, y − x〉 + √
ε‖y − x‖ � 0, ∃ ξ ∈ ∂C f (x) ⇒ f (y) + √

ε‖y − x‖ � f (x).

(ii) ε-pseudoconvex of type II at x ∈ E if, for all y ∈ E ,

〈ξ, y − x〉 � 0, ∃ ξ ∈ ∂C f (x) ⇒ f (y) + √
ε‖y − x‖ � f (x).

(iii) ε-quasiconvex at x ∈ E if, for all y ∈ E ,

f (y) � f (x) ⇒ 〈ξ, y − x〉 + √
ε‖y − x‖ � 0, ∀ ξ ∈ ∂C f (x).

Remark 2.2 If f is ε-semiconvex at x , then it is also ε-pseudoconvex of type I at x .
But the converse is not true in general.

Example 2.1 Let f : R → R be defined by

f (x) =
{
x3 + x, if x � 0,
3
2 x, if x < 0.

By a simple computation, we have

f ◦(0; d) =
{ 3

2d, if d � 0,
d, if d < 0,

f ′(0; d) =
{
d, if d � 0,
3
2d, if d < 0.

Moreover, ∂C f (0) = [1, 3
2 ]. Let ε � 0. It is easy to see that f is ε-pseudoconvex of

type I at x = 0. However, f is not ε-semiconvex at x = 0 because f is not regular at
x = 0.

Remark 2.3 We would like to point out that the definition of ε-pseudoconvex of type
I is different from the definition of approximate pseudoconvex introduced by Gupta
et al. [25]; see Definition 6 in [25]. In Example 2.1, f is ε-pseudoconvex of type I but
not approximate pseudoconvex at x = 0.

Remark 2.4 If f is ε-pseudoconvex of type I at x , then it is also ε-pseudoconvex of
type II at x . But the converse is not true in general.

Example 2.2 Let f : R → R be defined by

f (x) =
{−x, if x � 0,
2x, if x < 0.
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By simple computation, we have

f ◦(0; d) =
{
2d, if d � 0,
−d, if d < 0,

and ∂C f (0) = [−1, 2]. Let ε � 1. Take ξ ∈ (0, 2]. It is easy to see that f is ε-
pseudoconvex of type II but not ε-pseudoconvex of type I at x = 0.

Remark 2.5 We note that the definition of ε-pseudoconvex of type II is different from
the definition of approximate pseudoconvex of type I introduced by Bhatia et al. [26];
see Definition 8 in [26]. In Example 2.2, f is ε-pseudoconvex of type II but not
approximate pseudoconvex of type I at x = 0.

We now recall some definitions of approximate solutions. Denote the feasible set
of SIP by K , i.e., K := {x ∈ A : ft (x) � 0, ∀ t ∈ T }.
Definition 2.3 [20] Let ε � 0. A point x0 ∈ K is said to be

(i) an ε-minimum for SIP if f (x0) � f (x) + ε for all x ∈ K .
(ii) an ε-quasi-minimum for SIP if f (x0) � f (x) + √

ε‖x − x0‖ for all x ∈ K .
(iii) a regular ε-minimum for SIP if it is an ε-minimum and an ε-quasi-minimum for

SIP.

Remark 2.6 When ε = 0, Definition 2.3 reduces to the usual notion of a minimum.
Thus, the study of approximate minimum the case ε > 0 is of interest.

For SIP, denote by Kε the ε-feasible set, where Kε := {x ∈ A : ft (x) �√
ε for all t ∈ T }. It is easy to see that the set Kε is nonempty and closed.

Definition 2.4 [20] Let ε � 0. A point x0 ∈ X is said to be an almost ε-quasi-
minimum for SIP if x0 satisfies the following conditions: (i) x0 ∈ Kε; (ii) f (x0) �
f (x) + √

ε‖x − x0‖ for all x ∈ K .

3 Optimality Conditions

In this section, we establish some necessary and sufficient optimality conditions of
approximate solutions for nonsmooth semi-infinite programming problems.

To obtain the necessary optimality condition, we consider the following constraint
qualification condition:

(CQ)x0 NC (K ; x0) ⊆
⋃

λ∈B(x0)

(
∑

t∈T
λt∂C ft (x0)

)
+ N (A; x0),

where B(x0) := {λ ∈ R
(T )
+ : λt ft (x0) = 0, ∀ t ∈ T } and x0 ∈ K .

First, we obtain the following necessary optimality condition for SIP.

Theorem 3.1 Let x0 be an ε-quasi-minimum for SIP and let the constraint qualifica-
tion condition (CQ)x0 hold. Then, there exists λ ∈ R

(T )
+ such that
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0 ∈ ∂C f (x0) +
∑

t∈T
λt∂C ft (x0) + N (A; x0) + √

εB∗, ft (x0) = 0, ∀ t ∈ T (λ).

(3.1)

Proof Since x0 is an ε-quasi-minimum for SIP, it is a minimum for the following
optimization problem:

Minimize f (x) + √
ε‖x − x0‖, s.t. x ∈ K .

By Lemmas 2.1 and 2.2,

0 ∈ ∂C ( f + √
ε‖ · −x0‖)(x0) + NC (K ; x0)

⊆ ∂C f (x0) + NC (K ; x0) + √
εB∗.

This fact together with the condition (CQ)x0 yields the conclusion. The proof is
complete.

Remark 3.1 When ft , t ∈ T is a convex function, the constraint qualification con-
dition (CQ)x0 is considered by Dinh et al. [7]. They also gave a sufficient condition
guaranteeing this condition.

We next formulate some sufficient conditions for an almost ε-quasi-minimum for
SIP.

Theorem 3.2 Let (x0, λ) ∈ Kε × R
(T )
+ be such that

0 ∈ ∂C f (x0) +
∑

t∈T
λt∂C ft (x0) + N (A; x0) + √

εB∗,

ft (x0) � 0, ∀ t ∈ T (λ). (3.2)

If f is ε-pseudoconvex of type I at x0 and ft , t ∈ T is quasiconvex at x0, then x0 is an
almost ε-quasi-minimum for SIP.

Proof Let (x0, λ) ∈ Kε×R
(T )
+ be such that (3.2) holds. Then, there exist u ∈ ∂C f (x0),

vt ∈ ∂C ft (x0) for all t ∈ T with w ∈ N (A; x0) and b ∈ B∗ such that ft (x0) � 0 for
all t ∈ T (λ) and

u +
∑

t∈T
λtvt + w + √

εb = 0. (3.3)

Since w ∈ N (A; x0) and b ∈ B∗, one has

〈w, x − x0〉 � 0, b(x − x0) � ‖x − x0‖, ∀ x ∈ A.

This fact together with (3.3) yields

〈
u +

∑

t∈T
λtvt , x − x0

〉
+ √

ε‖x − x0‖ � 0.
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It follows that
〈
u +

∑

t∈T (λ)

λtvt , x − x0

〉
+ √

ε‖x − x0‖ � 0,

or equivalently,

〈u, x − x0〉 + √
ε‖x − x0‖ � −

〈
∑

t∈T (λ)

λtvt , x − x0

〉
. (3.4)

Note that ft (x0) � 0 for all t ∈ T (λ) and ft (x) � 0 for all t ∈ T , x ∈ K . It follows
that ft (x) � ft (x0) for all x ∈ K and t ∈ T (λ) . Since ft is quasiconvex at x0 and
vt ∈ ∂C ft (x0) for any t ∈ T ,

〈vt , x − x0〉 � 0. (3.5)

Combining (3.4) and (3.5) yields

〈u, x − x0〉 + √
ε‖x − x0‖ � 0.

As f is ε-pseudoconvex of type I at x0,

f (x0) � f (x) + √
ε‖x − x0‖.

Therefore, x0 is an almost ε-quasi-minimum for SIP. The proof is complete.

Remark 3.2 Theorem 3.2 generalizes Theorem 4.3 of Son et al. [22], one of the main
results of [22], from the following two aspects: (i) the convexity of ft , t ∈ T is
relaxed to the quasiconvexity at x0; (ii) the ε-semiconvexity of f is relaxed to the
ε-pseudoconvexity of type I at x0. It is worth mentioning that the regularity of f plays
an important role in the proof of Theorem 4.3 in [22]. However, our proof does not
require any regularity conditions.

Since an ε-semiconvex function is ε-pseudoconvex,wehave the following corollary.

Corollary 3.1 Let (x0, λ) ∈ Kε ×R
(T )
+ be such that (3.2) holds. If f is ε-semiconvex

at x0 and ft , t ∈ T is quasiconvex at x0, then x0 is an almost ε-quasi-minimum for
SIP.

Since a convex function is quasiconvex, we have the following corollary.

Corollary 3.2 [22, Theorem 4.3] Let (x0, λ) ∈ Kε × R
(T )
+ be such that (3.2) holds.

If f is ε-semiconvex at x0 and ft , t ∈ T is convex at x0, then x0 is an almost ε-quasi-
minimum for SIP.

The following example illustrates that Theorem 3.2 holds but Corollary 3.2 is not
applicable.
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Example 3.1 Consider the following problem:

(SIP) Minimize f (x)
s.t. ft (x) � 0, t ∈ T = [0, 1],

x ∈ A = [−1, 1],
where

f (x) =
{
0, if x � 0,
x, if x < 0,

and ft (x) := t x , for x ∈ R and t ∈ T . By simple calculations,

f ◦(0; d) =
{
d, if d � 0,
0, if d < 0,

f ′(0; d) =
{
0, if d � 0,
d, if d < 0.

Let ε = 1. It is easy to check that f is ε-pseudoconvex at x0 = 0, and ft , t ∈ T , is
quasiconvex at x0 = 0 and K = [−1, 0]. Moreover, ∂C f (0) = [0, 1], ∂C ft (0) = t
for all t ∈ T , and N (A; 0) = {0}. Let λ satisfy that λ0 = 1 and λt = 0 for all
t ∈ T \{0}. We can check that the optimality condition (3.2) corresponding (0, λ)

holds. In this case we obtain T (λ) = {0}. By Theorem 3.2, x0 = 0 is an almost
ε-quasi-minimum for SIP. However, Theorem 4.3 of Son et al. [22] is not applicable
since f is not ε-semiconvex at x0 = 0. We also point out that there is not a minimum
for this problem.

In the following theorem, we give another sufficient optimality condition of an
almost ε-quasi-minimum for SIP.

Theorem 3.3 Let (x0, λ) ∈ Kε×R
(T )
+ be such that (3.2) holds. If f is ε-pseudoconvex

of type II at x0 and ft is ε-quasiconvex at x0, then x0 is an almost ε-quasi-minimum
for SIP.

Proof Similarly to the proof of Theorem 3.2, there exist u ∈ ∂C f (x0), vt ∈ ∂C ft (x0),
∀ t ∈ T , w ∈ N (A; x0) and b ∈ B∗ such that ft (x0) � 0 for all t ∈ T (λ) and

〈u, x − x0〉 � −√
ε‖x − x0‖ −

〈
∑

t∈T (λ)

λtvt , x − x0

〉
. (3.6)

It is easy to see that ft (x) � ft (x0) for all x ∈ K and t ∈ T (λ). By the ε-quasiconvexity
of ft at x0,

〈vt , x − x0〉 + √
ε‖x − x0‖ � 0.

It follows that
〈

∑

t∈T (λ)

λtvt , x − x0

〉
+ √

ε‖x − x0‖ � 0.

123



298 X.-J. Long et al.

This fact together with (3.6) yields

〈u, x − x0〉 � 0.

Since f is ε-pseudoconvex of type II at x0,

f (x0) � f (x) + √
ε‖x − x0‖.

Therefore, the conclusion holds. The proof is complete.

Remark 3.3 Whenwe replace ft (x0) � 0 by ft (x0) = 0 in (3.2), Theorems3.2 and3.3
also hold. Moreover, when X is a finite dimensional space, the results obtained in this
paper also hold.
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