J. Oper. Res. Soc. China (2018) 6:391-416 @ CrossMark
https://doi.org/10.1007/s40305-017-0165-3

Multi-objective Optimization of the Distributed
Permutation Flow Shop Scheduling Problem with
Transportation and Eligibility Constraints

Shuang Cai'? . Ke Yang!? . Ke Liul-234

Received: 4 September 2016 / Revised: 22 February 2017 / Accepted: 19 April 2017 /

Published online: 28 May 2017

© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag Berlin Heidelberg 2017

Abstract In this paper, we consider the distributed permutation flow shop scheduling
problem (DPFSSP) with transportation and eligibility constrains. Three objectives are
taken into account, i.e., makespan, maximum lateness and total costs (transportation
costs and setup costs). To the best of our knowledge, there is no published work on
multi-objective optimization of the DPFSSP with transportation and eligibility con-
straints. First, we present the mathematics model and constructive heuristics for single
objective; then, we propose an improved The Nondominated Sorting Genetic Algo-
rithm II (NSGA-II) for the multi-objective DPFSSP to find Pareto optimal solutions,
in which a novel solution representation, a new population re-/initialization, effec-
tive crossover and mutation operators, as well as local search methods are developed.
Based on extensive computational and statistical experiments, the proposed algorithm

This research was partially supported by the National Natural Science Foundation of China (Nos.
71390334 and 11271356).

B Shuang Cai
caishuang @amss.ac.cn

Ke Yang
keyang@amss.ac.cn

Ke Liu

kliu@amss.ac.cn

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3 Key Laboratory of Management, Decision and Information Systems, Chinese Academy of
Sciences, Beijing 100190, China

4

National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences,
Beijing 100190, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-017-0165-3&domain=pdf

392 S. Cai et al.

performs better than the well-known NSGA-II and the Strength Pareto Evolutionary
Algorithm 2 (SPEA2).

Keywords Multi-objective optimization - Distributed scheduling - Permutation flow
shop scheduling - Transportation - NSGA-II

Mathematics Subject Classification 68M14 - 68M20 - 97M40

1 Introduction

Scheduling is a decision-making process that plays important roles in both man-
ufacturing and service industries [1]. The flow shop scheduling problem (FSSP) is
one of the most common manufacture layouts in practice where all productions have
the same processing sequence. The permutation FSSP (PFSSP) is a special case of
the FSSP, which satisfies every job to be processed on all machines is in the same
order. This results in a set of n! different candidate solutions, where » is the number
of jobs to be processed. The PESSP is proved to be strongly NP-hard when there are
more than three machines [2]. A few heuristics have been proposed with aim to obtain
high-quality solutions, such as shortest processing time (SPT), largest processing time
(LPT), Johnsons’ rule [3], the index heuristics of Palmer [4], Campbell-Dudek-Simth
(CDS) method of Campbell, Dudek and Smith [5] and so on. Among these algorithms,
the Nawaz-Enscore-Ham (NEH) heuristics developed by Nawaz et al. [6] is believed
to be the most effective one.

In the PFSSP, there is only one production place or factory, which means that all jobs
must be assigned to the same factory. However, to meet the demand of making factories
closer to customers, the managers usually locate their factories in different geographic
locations. Scheduling in distributed systems is more difficult than the classical non-
distributed scheduling, as we need to make two decisions: which factory to produce
each job and in which order each job to be produced in its assigned factory. Compared
with considerable literatures on single factory scheduling, few literatures addressed
distributed scheduling. The distributed job shop scheduling problem is probably the
first field to be studied in distributed scheduling by Jia et al. [7], and genetic algorithm
was employed to solve the problem. Later, researchers proposed several GA-based
algorithms to solve the distributed job shop scheduling problem [8-12]. In recent
years, different types of the distributed flow shop scheduling problem with assembly
lines have been studied by many researchers, such as Deng et al. [13] and Wang et
al. [14]. Naderi and Ruiz [15] first studied the DPFSSP with objective makespan. In
their study, six different mixed integer linear programming models for the DPFSSP
and 12 heuristic algorithms were presented. The results demonstrated that the NEH
method [6] with the second job to factory assignment rule (NEH2) has the best per-
formance among the 12 heuristic algorithms. Liu and Gao [16] presented a complex
electromagnetism meta-heuristic (EM) for the DPFSSP, and they extended Variable
Neighborhood Descent (VND) local search which is proposed by [15] to a more pow-
erful variable neighborhoods such as insertion within the critical factory, swap in the
critical factory and general insertion and swap. Gao and Chen [17] proposed a GA

@ Springer

Multi-objective Optimization of the Distributed... 393

with local search, in which NEH2 and VND (a) were employed for initialization. Gao
et al. presented an improved NEH2 heuristics in [18] and a knowledge-based GA in
[19] that performs better than GA\LS. Recently, Gao et al. [20] proposed a tabu search
method which outperforms the hybrid GA (HGA) of Gao and Chen [17]. Lin et al. [21]
presented an iterated greedy (IG) algorithm. Wang et al. [22] proposed an estimation
of distribution algorithm (EDA) which outperforms VND (a). Xu et al. [23] proposed
a hybrid immune algorithm (HIA) for solving the DPFSSP, and the effectiveness of
the HIA was demonstrated by comparing with some heuristics and the variable neigh-
borhood descent methods. Naderi and Ruiz [24] present a scatter search (SS) method
for the DPFSSP to optimize makespan. Compared with 10 existing algorithms, the
results showed that the proposed SS has better performance than existing algorithms
by a significant margin. Recently, a hybrid discrete cuckoo search algorithm was pro-
posed by Wang et al. [25] for the DPFSSP and a fuzzy logic-based hybrid estimation
of distribution algorithm was proposed by Wang et al. [26] for the DPFSSP under
machine breakdown.

Practical scheduling is usually faces multi-objective decisions. The multi-objective
optimization problems are originally conceived with finding Pareto optimal solutions,
i.e., efficient solutions [27]. Such solutions are non-dominated, i.e., no other solutions
are superior to them when all objectives are taken into account. A significant number
of researches studied the flow shop scheduling problem with more than two objec-
tives, e.g., [28-31]. The objectives include makespan, maximum lateness, maximum
tardiness, total flow time, total costs and so on. Yagmahan et al. [32] presented an
ant colony algorithm to solve the multi-objective flow shop scheduling problem with
three objectives makespan, total flow time and total machine idle time. To minimize
the sum of weighted flow time and weighted tardiness of jobs for the m-machine flow
shop scheduling problem, Gelders and Sambandam [33] developed four simple heuris-
tics to obtain approximate Pareto solutions. Ponnambalam et al. [34] proposed a GA
based on the traveling salesman algorithm for the m-machine flow shop scheduling
problem with three scheduling objectives, i.e., the weighted combination of makespan,
mean flow time and machine idle time. This hybrid GA employed randomly generated
weights to sum the objectives as a scalar fitness function. Although rich papers have
been published for solving multi-objective of flow shop scheduling [35], however, sel-
dom literatures are dedicated for solving the multi-objective DPFSSP. Till now, only
Deng et al. [36] solved the bi-objective DPFSSP with respect to the minimization of
makespan and total tardiness by competitive memetic algorithm (CMA). Compared
with the random algorithm and the well-known NSGA-II, the CMA performed better.

As complexity of the multi-objective scheduling problem, researchers developed
heuristic and meta-heuristic algorithms to solve this kind of problem. Among the meta-
heuristics, the SPEA2 (Zitzler et al. [37]) and NSGA-II (Deb et al. [38]) are considered
to be the most well known algorithm for providing better results. Bandyopadhyay
et al. [39] presented a modified NSGA-II to solve the parallel machine scheduling
problem with three objectives (total cost due tardiness, the deterioration cost and
makespan) and compared the results with the SPEA2 and NSGA-II. Bolanos et al.
[40] used the NSGA-II for solving the multiple traveling salesman problems. For
task scheduling in grid computing, Sahu et al. [41] applied the NSGA-II to optimize
the problem with two objectives: maximizing availability and minimizing makespan.

@ Springer

394 S. Cai et al.

In order to solve practical scheduling with release times in steel plants, Long et al.
[42] proposed a new algorithm based on the NSGA-II. Autuori et al. [43] considered
the flexible job shop problem with two objectives: makespan and to producing jobs
just in time. The authors compared the space exploration between the NSGA-II and
SPEA2.

In most manufacturing and distribution systems, the unfinished jobs (raw materials)
are transferred from supplies to manufacturing factories by transporters and the fin-
ished jobs are delivered to clients or warehouses by vehicles [44]. As transportation is
one of the most important parts of logistics, it has great effects on the performance of
competitiveness of modern enterprises [45]. Considerable research efforts have been
put on minimizing transportation costs since 1960 ([46,47]). Specifically, in flow shop
scheduling, researches usually considered the transportation time from one machine
to the next machine, such as [48-51].

The constraints of factory eligibility in the DPFSSP could be considered as the
extension of conventional machine eligibility constraints in FSSP. Factory eligibility
puts limitation on the assignment of jobs to factory, which means that a job cannot be
assigned to a factory if this job cannot be processed on at least one machine of this
factory. Machine eligibility has been concentrated on parallel machines or hybrid flow
shop scheduling such as [52,53], while it has seldom been considered in the DFPSP.

Based on the above literature analysis, it could be concluded that there is no pub-
lished work on multi-objective optimization of the DPFSSP with transportation and
eligibility constraints. The objective of this investigation is explicitly set out to fulfill
this role. In this paper, three stages are considered. In stage 1, each job needs to be trans-
ported from suppliers to one of its available factories. In stage 2, each job is produced
in its assigned factory. After production, each job will be transported to the clients 1, 2
-+ Sin stage 3. Each factory transports the productions to fixed clients or warehouses
(only related to factories) in the third or last stage. The production times of job j on
machine i are related to its assigned factory. For each job, it must be assigned to one of
its available factories. At any factory, each assigned job goes through processing over
m machines in the flow shop mode. We focus on permutation flow shop such that all
the jobs are processed in the same order on the m machines. We can denote the problem
by the notation of a/B/y in [1]: DPFSSP/Transportation, M, d/Ciax, Lmax, TC,
where the factory eligibility M; and due date d; of job j are known; Ciax, Limax, TC
are three scheduling objectives, i.e., makespan, maximum lateness and total costs,
respectively. The overall process is depicted in Fig. 1. However, even though the prob-
lem we considered has three stages, it can be transformed into two stages by combining
the first stage and the last stage into one stage, as jobs assigned the same factory have
the same transportation time to the final client or warehouse. Then the problem can
be cast as: in stage 1, each job needs to be transported from suppliers to one of its
available factories (the transportation time (cost) of each job is the sum of transporta-
tion times (costs) from suppliers to factories and from factories to the final client or
warehouse); in stage 2, jobs are processed sequentially in the distributed factories.
Once the assignment is determined for each factory, it can be seen as PFSSP with
releasing time.

The remaining paper is arranged as follows. In Sect. 2, we give the mixed integer
mathematic programming model of the DPFSSP with transportation and eligibility

@ Springer

Multi-objective Optimization of the Distributed... 395

Supplies Manufactures -] Clients

|—’ Transportation % £8 ﬁ%% Transportation
S N TN

L
o

Fig. 1 Framework of procedure from the suppliers to the final clients

constraints. In Sect. 3, several simple constructive heuristic algorithms for minimizing
makespan and maximum lateness and a greedy algorithm for minimizing total costs are
described. In Sect. 4, animproved NSGA-IIis introduced; and in Sect. 5, computational
results and comparisons with the NSGA-II and SPEA2 are provided. Finally, we
conclude the paper and present the future research in Sect. 6.

2 Mathematic Model

This section contains three parts: the assumptions, the notations and formulation
of the problem.

2.1 Assumptions

Here are all the assumptions for the problem:

Each job can be processed in at least one factory;

Each job can only be assigned to one of its available factories;

Each factory can be seen as a permutation flow shop;

Each machine of any factory can process only one job at a time; each job can only

be processed by one machine of a factory at a time;

5. There may be different transportation times (costs) when transporting a job to
different factories;

6. The setup cost of each factory is a fixed value when we assign at least one job to
it; otherwise, its setup cost is 0;

7. There is a due date for each job.

el s

@ Springer

396 S. Cai et al.

2.2 Notations

Variables are as follows:

Xk, j, o 1if job J; is processed in factory f, immediately after job Ji, O otherwise.

Y f: L if job J; is processed in factory f, O otherwise.
1(x): 1 if x is positive and O otherwise.
Cji: Continuous variable for the complete time of job J; on machine i.

Chax: Continuous variable for the complete time of all the jobs.
Lmax: Continuous variable for the maximum lateness of all the jobs.

Parameters and indices are as follows:

F: Number of factories.

n: Number of jobs.

m: Number of machines in each factory.

j k: Index of job J;, Ji.

f: Index of factory, f =1,2--- F

p}i P Processing time of job j on machine i in factory f.

M;j ¢ 1 if job j can be processed in factory f; O otherwise.

Dj: The due date of job ;.

S: A sufficiently large positive number.

T s Transportation time of job j when transporting it to factory f.
¢ f: Transportation cost of job j when transporting it to factory f.
ci-: The fixed setup cost of factory f.

2.3 Formulation of the Proposed Problem

We introduce a dummy job 0 which precedes the first job in the sequence. Three
objectives can be formulated as:

min Cax» 2.1
Lax, 2.2)
TC = Zchijf—l—Zl Zyjf cf, (2.3)

f=1j=1

where makespan (Cpy,x) represents the maximum complete time of all jobs, maximum
lateness (Lmax) means the maximum of lateness of all jobs, total costs (TC) include
the transportation costs of all jobs and setup costs of all factories which process at
least one job.

Subject to the constraints:

n F
Y Y Xijp=1 VI<j<n, (2.4)

k=0,k#j f=1

@ Springer

Multi-objective Optimization of the Distributed... 397

F
Z Y=

<j<n, (2.5)
f=1
n
(Xijf +Xjnys) <2Yjp YI<j<n1<f<F (26
k=1k#j
n F
Y Xejr <1, YO<k<n, 2.7
j=1.j#k f=1
F
D (Xejr+Xjug) <1 VI<k<n—1,j>k (2.8)
f=1
Yir<Mjy, Vi<j<nl1l<f<F, (2.9)
Cii>Ciimi+ Pl —S(1-Y),
Vi<j<n2<i<m 1< f<F, (2.10)
C,,, > +Pf —S(1=Xe ;1)

j,k n];ék1<i<m,1<f<F, (2.11)
Cmax>cj m,» V1< j<n, (2.12)
Lde>CJm_D/v Vlg]\ n, (2.13)
Cjr=2T /f"‘Pf -S(1-vs), ¥ sn,

F<F, (214
F

1<
Xjkor Yig €101}, V1< kém/#hléfé , (2.15)

where constraint (2.4) controls every job has exactly at one position and only at one
factory; constraint (2.5) ensures every job must be exactly assigned to one factory;
constraint (2.6) represents every job can be at most one successor of a job and one
predecessor of another job; constraint (2.7) assures every job has no more than one
successor; constraint (2.8) avoids cross-precedence of any two jobs, which means that
a job cannot be both a predecessor and a successor of another job; constraint (2.9)
avoids assigning a job to an unavailable factory; constraint (2.10) represents every
job is processed at most on one machine at a time while constraint (2.11) guarantees
a machine can only process one job at a time; constraints (2.12-2.13) define the
makespan and maximum lateness; constraint (2.14) makes sure every job cannot be
processed until it arrives the assigned factory.

3 Heuristics for the DPFSSP with Single Objective
3.1 Heuristics for Makespan or Maximum Lateness

In this subsection, we propose two rules for assigning jobs to factories and eight
heuristics for generating a permutation of jobs. The heuristics for generating a permu-

tation are SPT, LPT, Johnson [3], Palmer [4], earliest releasing time (ERT), earliest
due date (EDD), NEH [6] and a new heuristic NEH adaptive (NEHA) proposed in this

@ Springer

398 S. Cai et al.

paper based on least flexible job (LFJ) and NEH (by Taillard method [54]), respec-
tively.

Here the new algorithm NEHA is proposed to solve the PFSSP with releasing time
based on Taillard method. The procedure is described as follows.

Step 1 Sequence the n jobs (n is the total number of jobs) by LFJ method. If two
jobs have the same number of available factories, the job with a smaller total
processing time in these factories will have a forward position;

Step 2 Take the first two jobs and schedule them in order to minimize the partial
makespan (or maximum lateness);

Step 3 For k = 3 to n do:

Step 4 Insert job k at the place, among the k possible ones, which approximately
minimize the partial makespan (or maximum lateness).

The time complexity of step 1 is O(logn) and that of step 2 is O (m). For every
3 < k < nin step 4, it needs O (km) operations to calculate one partial makespan.
Here we give an approximate algorithm to calculate the k¥ makespan (or maximum
lateness) in O (km) time:

Determining CM ;, the makespan after insertion of job k at the jth position and the
maximum lateness time LM, ry is the releasing time of job s, ¢;; is the processing
time of the jth job on machine i.

1. Compute the earliest completion time e;; of the jth job on the ith machine; the
starting time of the first job on the first machine is its releasing time;

el =ry+11,

el =eyi-1+1,,

€j1 :max(rj,ej_1’1)+tj,1,

€j,i = max (ej,iflvejfl,i) +tj.i,
j=2,k—=1,i=2,---,m.

2. Compute the tail g; ;, i.e., the real duration between the starting time of the jth
job on the ith machine and the end of the operations before inserting job k;

qji = €k—1,m —€j,i +1ji,
j=k—1,---,1,i=m,--,1.

3. Compute the earliest completion time f;; on the ith machine of job k inserted at
the jth position;

fia=re, fri= fri-1+1te1,

fin =max (ej_1,1, %) + t.1,

fii =max (fji-1.ej-1i) + i,
i=2-,m, j=2,- k.

@ Springer

Multi-objective Optimization of the Distributed... 399

4. The value of the partial makespan CM ; and maximum lateness LM ; when adding
job k at the jth position is

CM; = max (fji+qji),

1<i<m

LM; = max (fj’m — Dy, 5512); (ej/’m - Dy +CM; — ekfl,m) ,

i=1,-,m, j=1,--- k.

All these computations (2.1-2.4) can be calculated in time O (km). Considering
step (4) of the NEHA algorithm which has O (km) time complexity, we conclude the
NEHA algorithm runs in time O (n’m).

The processing (releasing) time of each job is calculated by the average of all pro-
cessing (transportation) times in its available factories. Then the 8 heuristic algorithms
can be used as before.

According to Naderi and Ruiz [15], two rules for assignment are proposed (1) assign
a given job j to its available factory with the lowest current makespan, not including
job j; and (2) assign job j to its available factory which completes it at the earliest
time, i.e., the available factory resulting in the lowest makespan after assigning job
J. We should make two decisions: (1) assign each job to one of its available factories
(2) the permutation of each factory. Then we can obtain 16 heuristic algorithms for
the combination of job assignment and job priority. Latter we will give the results of
these 16 heuristic algorithms with 400 examples (150 small-sized instances and 250
large-sized instances) in Table 1 with objectives makespan and maximum lateness.
The relative percentage deviation (RPD) is regarded as the results of algorithm:

Vg,h - Vg,min

RPD,), = ’ , 3.1

Vg,min

where V, ;, is the objective value makespan or maximum lateness of the gth instance
using algorithm 7, Vj iy is the minimum objective value of the gth instance among
all algorithms. It can be seen from Table 1 that the second rule of assignment is better
compared with the first one and the new heuristic algorithm has better performance
with objective makespan than the other algorithms except NEH1 and NEH2. When
the objective is maximum lateness time, the permutation of EDD is better and the
performance of EDD?2 is almost the same as NEH2. This is partly because any two
jobs may have different due date in our instances, as the due-date time of each job is
different in our instances and the rule of EDD makes sure that the job with smaller
due date can be completed earlier. It can be seen that EDD is an effective rule for
scheduling jobs with different due dates for objective maximum lateness.

@ Springer

400 S. Cai et al.

Table 1 Average RPD of the heuristic algorithm

Makespan Algorithm
SPT1 LPT1 Johnsonl Palmerl ERT1 EDDI1 NEHI1 NEHA1

Small 0.13 0.17 0.10 0.15 0.18 0.15 0.06 0.05
Large 0.19 0.21 0.19 0.18 0.19 0.20 0.03 0.13

SPT2 LPT2 Johnson2 Palmer2 ERT2 EDD2 NEH2 NEHA2

Small 0.11 0.13 0.07 0.13 0.13 0.12 0.02 0.05
Large 0.15 0.18 0.17 0.16 0.17 0.17 0.00 0.11

MaxLateness Algorithm
SPT1 LPT1 Johnsonl Palmer] ERT1 EDDI1 NEH1 NEHAL1

Small 1.03 0.85 0.90 1.02 0.85 0.20 0.31 0.43
Large 2.61 2.69 2.40 2.51 222 0.24 0.24 0.37

SPT2 LPT2 Johnson2 Palmer2 ERT2 EDD2 NEH2 NEHA2

Small 0.92 0.74 0.93 0.85 0.64 0.10 0.04 0.16
Large 2.12 2.20 2.04 2.11 1.83 0.03 0.02 0.25

400 instances

3.2 A Greedy Algorithm for Objective Total Costs

In Sect. 3.2, we proposed a greedy algorithm for objective total costs. As the costs
are not relevant to the schedule of each factory, the greedy algorithm only deals with
the assignment of jobs.

The greedy algorithm can be easily described as follows:

1. For each job j from 1 to n,
2. Assign job j to factory f which has the smallest transportation cost ¢;, r.

The complexity of this greed algorithm is O (n F'). Even though the number of all
available assignments is |M1| |M>| - - - |[M,| (M is the set of available factories of job
7). there has an exact algorithm which has the complexity of O (nF2%) based on the
greedy algorithm.

The exact algorithm is based on greedy algorithm:

For each subset of {1,2,---, F},
If every job has at least one available factory, use the above greed algorithm.

There are 27 subsets of {1, 2, - -- , F} and the complexity of step 2 for each subset
is O(nF), so the complexity of this algorithm is O (nF2F). Because the minimum
total costs must be one of the conditions, this algorithm can be easily proved to be an
exact algorithm.

4 An Improved NSGA-II Algorithm

In this section, an improved NSGA-II (Non-dominated Sorting Genetic Algorithm)
is proposed to solve multi-objective optimization of the DPFSSP with transportation

@ Springer

Multi-objective Optimization of the Distributed... 401

and eligibility constraints. NSGA-II could be characterized by population based on GA
and non-domination sorting which assigns rank and crowding distance to each indi-
vidual (chromosome) in the population. Besides, NSGA-II is the most widely applied
multi-objective evolutionary algorithm (MOEA) as observed in the existing literature,
especially in scheduling. Both crossover and mutation operators based on the type
of problem have been embedded in the proposed modified NSGA-II. After crossover
and mutation, local search is used to find the better neighborhoods of individuals.
Figure 3 shows the procedure for the improved NSGA-II. The algorithm continues to
execute till the maximum experiment time. The main components of the algorithm are
summarized below.

4.1 The Representation of Individuals

For each individual (an available schedule), we have to make two decisions for
every job: which factory it is assigned to and which position in its assigned factory.
The first decision is called job assignment, and second decision is called job priority.
We encode each individual in 2 x n matrix if the total number of jobs is n. Here we
give a theorem to explain the rationality of this encoding.

Theorem 4.1 Each individual can be encoded in a (2 x n) matrix A, which represents
Jjob priority (a permutation from I to n) in the first row and job assignment in the second
row, respectively, when the number of jobs is n; each 2 x n matrix A, which consists of
a permutation from 1 to n in the first row and integers between 1 and F in the second
row, respectively, when there are n jobs and F factories, is an available schedule when
Ay ;€ MAl,j‘

Proof For any available schedule, each job must be assigned to a position of its
available factory. If factory f (1 < f < F) has the production sequence (the
number of jobs assigned to factory f is N¢) fi, f2,--, fn;. then the job prior-
ity can be written as 1y,---, Iy, -+, Fy,; job assignment recodes the factories
where jobs are processed and if the mapping between the jobs and the factories is
¢:{1,2,---n} — {1,2,---, F}. Here we have ¢(f;) = f. Justlet A be

Iy 1 -« 1y, -+ Fj -+ Fy,
11 -.+1 --+-F --- F :

If a matrix A is given, we get the job priority in the first row and job assignment
in the second rule. Every job will be processed in the fixed factory according to the
job assignment and jobs assigned to the same factory are processed sequentially by
job priority, i.e., a job with higher priority will be processed before a job with lower
priority. If every job is assigned to its available factory, the matrix A represents an
available schedule.

The standard encoding scheme satisfies the second row of A is non-reduced. The
individuals in our proposed algorithm are encoded as a standard coding almost all the
time.

@ Springer

402

S. Cai et al.

4.2 Initialization

In order to obtain a population with better performance for the three objectives, the
initial population are initialized by three parts with the three scheduling objectives,
respectively. After obtaining Pgj,e individuals as an initial population, we copy them
to the archives.

Part 1

Part 2

Part 3

The assignment of each job to factory is generated by using the greedy algo-
rithm with objective TC if each job can be processed in one of the selected r
(generated randomly) factories; else, continue adding factory until we get a set
of factories which satisfies that each job can be processed in one of the selected
factories. The sequence of each factory is generated by applying NEHA for
objective makespan and EDD for objective maximum lateness.

First an individual is obtained by using EDD2 with objective maximum
lateness. The job priority of each of the remaining individuals is randomly
generated. Then, the remaining individuals are obtained by applying NEHA2
with objective maximum lateness.

Each individual is obtained by using the NEHA?2 heuristic algorithm with
objective makespan, and its job priority is randomly generated. Then we can
get different solutions when using different job priorities.

4.3 Crossover

As there are factory eligibility constraints in the considered problem, a two-point
crossover operator is applied in the algorithm based on the structure of individuals.

P, P,

21413 5 7 1 6 5131(|12 1| 4 1 6 | 7
1 1112121211213 1 111 21213 3
Al A2
2 1112 1 21312 2 1]]1 2 1 313
l crossover l
21413 517 1 6 21411357 1 6
1 2111 1 21213 2121 1 213 3

tandardizati
Cl stanaardization Cz
21 413 517 1 6 21411357 1 6
1 2111 1 21213 2121 1 213 3

Fig. 2 Procedure of crossover operator

@ Springer

Multi-objective Optimization of the Distributed... 403

By the following method, two generated children will be available schedules after
crossover. The crossover operator is as follows (the procedure of crossover is shown
in Fig. 2):

Step 1 Generate two points randomly: first get one integer point r| randomly in [1, n],
and then get next integer point rp randomly in [1,n — 1]. If r» > 7y, let
rm=ry+1.

Step 2 For two parents P; and P», the assignments of jobs are Aj(Ay) for Pi(P»).

Step 3 Crossover A and A, between the rth position and the r>th position.

4.4 Mutation

According to the characteristics of the DPFSSP with eligibility constraints, two
mutation operators are designed to modify the factory with largest completion time or
the job with maximum lateness time in the schedule. For a given schedule, one job j
is chosen by one of two methods with the same probability 1/2:

Method 1 The job with maximum lateness time (denoted by j);
Method 2 A job which is selected randomly from the jobs which are assigned to the
factory with the latest completion time.

Then the total processing time of job j in its available factories is calculated. Sup-
pose that the available factory of job j is f1, f2, -+, fa;. For fi, the total processing

time of job j in factory fiistj; =Y p{' - Without lose of generality, the original

assignment of job j is fi, we get the probability of assignment to factory f; of job j

A/

=
Dkl Vltjik

The mutation is very similar with the method of roulette wheel selection, and the

implementation is the same.

Pi i=2,3,~--,aj.

4.5 Non-dominated Sorting and Crowding Distance

In this paper, we use the method of NSGA-II to get a permutation of a group of
individuals (a population). The individuals (chromosomes) in the population will be
assigned a rank based on non-domination sorting: All non-dominated individuals are
classified into one category (its rank is denoted by 1). Deleting the individuals with
rank 1, the non-dominated individuals among the remaining jobs belong to a new
category with rank 2 and so on. The fast sort algorithm is used in our paper.

Once the non-dominated sort is completed, the crowding distance is assigned. The
crowding distance is calculated and the larger distance is chosen to keep a diverse
front by making sure that each member stays a crowding distance apart. This keeps
the population diverse and helps the algorithm to explore the fitness landscape. Since
the individuals are selected based on rank and crowding distance, all individuals in
the population should be assigned a crowding distance value. The crowing distance is
calculated as below.

For each front F; (the individuals set withrank i), let 7; be the number of individuals.
Initialize the distance to be zero for all the individuals, i.e., dj, (F;(j)) = 0, where j

@ Springer

404 S. Cai et al.

is corresponding to the jth individual in front F; and £ is corresponding to the Ath
scheduling objective.

Step 1 For each objective function 4, sort the individuals in front F; based on objec-
tive h, i.e., I, = sort(d,(F;)), here I, represents a permutation (1 to n;) of
individuals in front F;.

Step 2 Assign infinite distance to boundary values for each individual in Fj, i.e.,
dp(F;(In(1))) = oo and dj, (F; (In(n;))) = oo.

Step3 Fork =2ton; — 1.

h(F; (I,(k + 1)) — f (F; (U (k — 1
i (F (k) = T dnk+ D)) = f° (Fiha &k = 1))

h
flgax - fmin

Here fxﬁax(flﬁin) is the maximum (minimum) Ath objective value of all indi-
viduals, f” () is the hth objective value of individuals ;.
Step 4 As we have three objectives, i.e., h = 1,2, 3,

¢=ﬁmmMWMW+@mf

Here d; is the crowding distance for individual (chromosome) ;.

The basic idea behind the crowing distance is to obtain the Euclidian distance
based on three objectives in the three-dimensional hyper space. The individuals in the
boundary are always selected since they have infinite distance assignment.

When there are two individuals which have the same objectives, it may be the case
that they are the same individual and one of them should be eliminated. But the above
algorithm keeps both of them when they have boundary objective values. Here we
give an eliminating algorithm after getting the rank and crowding distance of each
individual.

Suppose the maximum rank is 7, n; is the number of individuals in rank i and # is
the number of jobs.

Step 1: For i=1:r,
Step2: If n,>1

Step 3: For j =1:(n;-1),

Step 4: For k=2:n,, j<k

Step 5: If the objectives of job j and job k are the same,
Step 6: assign rank r+1to individual ; , break;

Step 7: end if.

Step 8: end for

Step 9: end for
Step 10: end if
Step 11: end for.

@ Springer

Multi-objective Optimization of the Distributed... 405

Non-dominated sorting is performed after local search operators are completed in
the proposed algorithm and Pg,e individuals are selected into the next generation.
The population individuals will be compared with the archive individuals by using
non-dominated sorting and the best N individuals are selected into the archives.

4.6 Local Search

It is widely accepted that local search operators are efficient in improving the
quality of solutions when using meta-heuristic algorithm. In this paper, two kinds of
local search operators are designed based on the scheduling objectives makespan and
maximum lateness.

1. Operators for the makespan criterion

Since the makespan of a solution can be reduced by modifying the schedule in the
factory (denote as f.) with the latest completion time, four operators are proposed as
follows:

Job-swap randomly select two jobs in factory f. and swap the positions of two
jobs.

Job-insert randomly select two jobs in factory f. and move the latter job immedi-
ately before the former one.

Job-inverse randomly select two jobs in the factory f, and inverse the jobs between
the selected two jobs.

Factory-insert randomly select a job in factory f. and insert it to a randomly
selected position in one of its available factories.

2. Operators for the maximum lateness criterion

Since the maximum lateness of a solution can be reduced by modifying the job
(denote as J; in factory f;) with the maximum lateness time, four operators are pro-
posed as follows:

Job-swap randomly select a job which has the front position compared with J; in
factory f; and swap the positions of these two jobs.

Job-insert randomly select a job which has the front position compared with J; in
factory f. and insert J; to the front one.

Job-inverse randomly select a job which has the front position compared with J;
in the factory f; and inverse the jobs between the selected two jobs.
Factory-insert delete job J. in factory f, and insert it to a randomly selected
position in each available factory of the other F — 1 factories.

4.7 Selection

For every generation, after crossover and mutation, individuals of the population
are selected from both parents and children, and then local search is carried out. After
local search, we have to update the next population. The principle of our selection
is based on the rank and crowding distance of each individual. After the update of

@ Springer

406 S. Cai et al.

generation, we put the original archives and the new population together. Then, the
archives are updated by choosing the lower rank and the larger crowding distance.

4.8 Re-/initialization

If the objectives of the archives are not improved several times, two kinds of re-
/initialization have been used:

Case 1 If the total times reach n|, we update half of the population by half of the
randomly selected archives.

Case 2 If the total times reach ny (np > np), we update half of the population by new
individuals which are generated by the following method: The job priority is
obtained by random and all jobs are randomly assigned to available factories
for getting P /2 individuals.

4.9 Procedure of the Improved NSGA-II

With the above design, the procedure of this algorithm for solving the considered
multi-objective problem is illustrated in Fig. 3.

Step 1 Initialize the population by the method of Sect. 4.2 and then copy the individuals
to archives. Calculate the objectives of population (archives).

Initialize the population and copy
them to the archives

v

Calculate the objectives of
population

<

¢‘

Apply the crossover and mutation
operators to population

)

Select p individuals according to
non -dominated sorting

)

| Apply the local search operator |

)

| Update population

¢ T | Re-/initialization
| Update archives |

Stopping condition
is satisfied ?

YES

| END

Fig. 3 Framework of the proposed algorithm procedure

@ Springer

Multi-objective Optimization of the Distributed... 407

Step 2 Apply crossover and mutation operators to each population without selection.

Step 3 Select P individuals from the parents and children according to non-dominated
sorting in Sect. 4.5.

Step 4 Apply one kind of local search operators to P individuals.

Step 5 Update the population from the generated individuals from Step 4 and the
original P individuals.

Step 6 Update the archives from the original archives and new population.

Step 7 If stopping condition is satisfied, end with the results of new archives; else do
the re-initialization operator.

Step 8 Update the sequence of population into a substitution of the original sequence
randomly and go to Step 2.

It can be seen that when the population go to the steps of crossover and mutation,
we do not select parts of individuals to crossover and mutation as they are usually non-
dominated solutions. All individuals will be parents, and they all have children. Of
course, before the individuals of population go to the step of crossover, the sequence
of individuals in population will be updated into a substitution of the original sequence
randomly.

4.10 Computational Complexity Analysis

In our proposed algorithm, the initial solutions are generated based on the three pro-
posed heuristic algorithms. According to Sect. 4.2, there are three parts of individuals
and the time complexity of them are O (Pgjze F' + Pﬁzem), (0] (Pszizem) and O (Pszizem),
respectively, so the total time complexity for initialization is O (Pgjze F' + Pszizem).

At each generation of the population excluding initialization, the computational
complexity can be analyzed as follows.

First, we need the crossover and mutation operators for each parent when updating,
so the time complexity is O (Psjze log Pgize). The time complexity for non-dominated
sorting and crowding distance is O(Pszize) and O (Pgize log Psize). When doing local
search operators, all the eight methods have at most O (Psize 10g Psize + Psize F) time
complexity. The selection and Re/-initialization both have O (Pgize) time complexity.
The time complexity for updating the archives is O (Pszize).

From the above analysis, we can conclude that the computational complexity is not
large. The time complexity of the proposed algorithm is almost the same as both the

original NSGA-II and SPEA2 (time complexity O(Pszize)).

5 Experiment of the Proposed NSGA-II Method

In order to test the performance of the new algorithm, lots of instances are carried
out based on two sets of benchmarks (Naderi and Ruize [15]). The first set includes
150 small-sized instances, and the other one includes 250 larger-sized instances. We
will test the improved NSGA-II with two algorithms, NSGA-II and SPEA2, which are
the most efficient multi-objective algorithms. The experiments have been conducted

@ Springer

408 S. Cai et al.

in a PC with 2.8 GHz processor and 1 GB memory. MATLAB 2014a has been used
to program the proposed algorithm, the original NSGA-II and SPEA2.

5.1 The Evaluation of Results of the Experiments

The proposed algorithm is a meta-heuristic algorithm, and we expect to find the
approximate optimal solution (Pareto frontier). Therefore, we give four measures to
evaluate the performance of results, and there are ten runs for each instance and
each algorithm. The first measure is the minimum and average values of three objec-
tives among the final results of an algorithm ([39]). The second measure was the
average number of non-dominated solutions obtained after ten runs of each instance
([55]). Next one is a quality indicator that creates a Pareto frontier composed of the
non-dominated solutions from all three algorithms and calculates the percentage of
solutions in each algorithm ([56]). The last measure is expressed by the equation
below, which is called spacing, that reflects the uniformity of the spread of solutions
in ten runs (the total number of results of ten runs is Q=10 x 40=400).

(5.1

(5.2)

(5.3)

Here f;{‘ represents the ith objective of the kth result (three objectives).

5.2 Parameters Setting

The proposed algorithm contains several key parameters:

Pgize (population size), Pgize (archive size), P. (crossover probability), Py (muta-
tion probability), E; (experimentation time of algorithm).

In order to get high-quality solutions of the considered problem, we need to give
an appropriate value to each parameter. As it is difficult to find the best results of each
instance, we set the experiment time (seconds) E; = 120 according to [55]. Here we
implement an experiment by using a moderate-sized instance (n=14, m=5, F=4).

For each parameter combination, we run 10 times of our proposed algorithm
and use the volume of three objective deviations (deviation i is calculated by
(f i Ii]in) / (fmax — fmin), Where f i represents the average ith objective value)
as the evaluation value (EV). Here we set Pgj,e = Pize.

@ Springer

Multi-objective Optimization of the Distributed... 409

Table 2 Parameter setting

Experiment number Pize Pc P EV

1 40 0.9 0.1 0.049
2 40 0.8 0.2 0.046
3 40 0.7 0.3 0.047
4 40 0.6 0.4 0.046
5 40 0.5 0.5 0.044
6 40 0.4 0.6 0.045
7 40 0.3 0.7 0.046
8 40 0.2 0.8 0.051
9 40 0.1 0.9 0.052
10 20 0.5 0.5 0.043
11 40 0.5 0.5 0.0436
12 60 0.5 0.5 0.046

As {PCs Pm} (PUt Pc and Pm together as Pc —+ Pm =]) and Psize are indep_endent
parameters, according to the data of Table 2, we choose the value of P, = Piize =
40, P, = 0.5, P, = 0.5, E; = 120.

5.3 Comparison with NSGA-II and SPEA 2 in Small-Sized Instances

The set of small-sized instances which are randomly generated are as follows:

n=4,6,8,12,14,16,m =2,3,4,5, F = 2,3,4and M is a0-1 matrix generated
randomly which make sure that the sum of each line is at least one. We randomly
selected 30 combinations of n X m x F and for each combination, 5 different M are
generated, so the total number of small-sized instances is 150. The transportation times
and costs are generated by the following expressions T; ; = U([1, 50m]) + 10 m and
ci,f = U([1, 10]). The setup cost of each factory is c§ = U([1, 10F]) 4+ 10. Due
date of each job is calculated by the expression D; = U([1, 50nm) + 100 m. Here
U ([a, b]) is the uniform distribution of integers between a and b. The processing times
are uniformly distributed over the range (1, 99) as usual in the scheduling literature.
The results of the experiments are presented in Tables 3 and 4.

Table 3 shows the minimum and average values of objectives among the three
algorithms. The minimum and average results of each algorithm are calculated by the
following equations:

ARD ik = |Vjmik/ mini<i<3 Vimix — 1/, 5.4
ARDj gik = |Vjaik/mini<i<3 Vaix — 1] (5.5)

Here V; ik (V},a.i,x) represents the minimum (average) objective k of algorithm i of
instance j, ARD; ;i x (ARD; 4 ; x) represents the deviation compared with the best
results of three algorithms. Table 3 shows that the proposed algorithm obtained the
best results with respect to the minimum and average objective values.

Table 4 shows the number of Pareto optimal solutions of the three algorithms,
the percentage of Pareto optimal solutions when putting solutions together and the

@ Springer

410 S. Cai et al.

Table 3 Minimum and average values of objectives for small-sized instances (problem 1-150)

Objective 1 Objective 2 Objective 3

Minimum Average Minimum Average Minimum Average

Improved NSGA-II

Pro 1-50 0.0006 0.0003 0 0.0003 0.0923 0.0112

Pro 51-100 0.0052 0.0049 0.0114 0.0029 0.0472 0.0101

Pro 101-150 0 0.0132 0 0.0179 0.0234 0.0071
Original NSGA-II

Pro 1-50 03711 0.1966 0.1321 0.4207 0.6244 0.2910

Pro 51-100 0.2368 0.1416 0.2325 0.9329 0.5007 0.2598

Pro 101-150 0.2538 0.1954 0.0452 0.2939 0.2745 0.1972
SPEA2

Pro 1-50 0.1384 0.2356 0.0275 0.4194 0.0464 0.0862

Pro 51-100 0.1027 0.1876 0.0323 0.8696 0.0328 0.1083

Pro 101-150 0.0947 0.3175 0.0152 0.4273 0.0200 0.1549

Table 4 Results of 2—4 measures for small-sized instances (problem 1-150)

Avg.ND solutions Pareto frontier Spacing

Improved NSGA-II

Pro 1-50 60.2800 0.8928 32.0920

Pro 51-100 57.6000 0.8175 29.665 0

Pro 101-150 23.8000 0.7398 4.6432
Original NSGA-II

Pro 1-50 51.0200 0.0009 24.664 5

Pro 51-100 50.9000 0.0299 25.0465

Pro 101-150 15.1200 0.0596 5.0479
SPEA2

Pro 1-50 64.3800 0.1064 39.3355

Pro 51-100 59.4400 0.1526 37.2296

Pro 101-150 19.2400 0.2006 11.8551

last measure value (spacing), respectively. It shows that the proposed algorithm has
the best results comparing the second and third measures with other two algorithms.
For the last measure spacing, smaller values usually represent better solutions. Our
algorithm outperforms SPEA?2 for all problems in average. The original NSGA-II has
a smaller spacing than the proposed algorithm with problem 1-100 on average, which
may partly because the results are distributed more concentrated.

It can be concluded that the improved NSGA-II performs better than the original
NSGA-II and SPEA?2 in the small-sized instances although the fourth measurement
is not perfect based on all obtained results (SPEA2 performs better than the origi-
nal NSGA-II, which may because that the NSGA-II cannot eliminate the repeated
boundary solutions).

5.4 Comparison with NSGA-II and SPEA2 in Large-Sized Instances

The set of large-sized instances which are randomly generated as follows:

@ Springer

Multi-objective Optimization of the Distributed. ..

411

n = 20,50, 100, 200, 500, m = 5,10,20, F = 2,3,4,5,6,7 and M is a 0-1
matrix generated randomly which make sure that the sum of each line is at least one.
We randomly selected 50 combinations of n x m x F and for each combination, 5
different M are generated, so the total number of large-sized instances is 250. The
remaining data of each instance have the same generating method as the small-sized
instances. The results of experiments are presented in Tables 5 and 6.

Table 5 Minimum and average values of objectives for large-sized instances (problem 151-400)

Objective 1 Objective 2 Objective 3
Minimum Average Minimum Average Minimum Average
Improved NSGA-II
Pro 151-200 0 0 0 0 0.0047 0.0019
Pro 201-250 0 0 0 0 0.0606 0.0049
Pro 251-300 0 0 0.0300 0.0006 0.0731 0.0036
Pro 301-350 0.0135 0.0111 0.0056 0.0155 0.0628 0.0139
Pro 351-400 0 0.0177 0 0.0124 0.0131 0.0070
Original NSGA-II
Pro 151-200 0.2954 0.2292 0.9377 4.6701 0.2139 0.1204
Pro 201-250 03132 0.2242 0.5208 14.0704 0.4447 0.1905
Pro 251-300 0.2289 0.1969 0.2241 13.2520 0.3245 0.1435
Pro 301-350 0.2332 0.1871 0.0780 0.3326 0.3221 0.2185
Pro 351-400 0.4482 0.1999 0.0650 0.4327 0.2273 0.2168
SPEA2
Pro 151-200 0.1974 0.2195 0.3369 3.5094 0.0195 0.0488
Pro 201-250 0.1799 0.2233 0.1955 23.7542 0.0281 0.0586
Pro 251-300 0.1434 0.2011 0.0595 9.2033 0.0193 0.0388
Pro 301-350 0.0864 0.2870 0.0151 0.4294 0.0185 0.1540
Pro 351-400 0.2132 0.2688 0.0213 0.4992 0.0243 0.1758
Table 6 Results of 2—4 measures for large-sized instances (problem 151-400)
Avg. ND solutions Pareto frontier Spacing
Improved NSGA-II
Pro 151-200 66.0800 0.7162 41.8728
Pro 201-250 68.4200 0.7119 44.3907
Pro 251-300 66.3800 0.7229 549186
Pro 301-350 25.2800 0.7074 13.5292
Pro 351-400 30.7000 0.7606 6.504 8
Original NSGA-II
Pro 151-200 51.0200 0.0921 26.2635
Pro 201-250 51.7600 0.0647 34.7067
Pro 251-300 60.3000 0.1109 38.0558
Pro 301-350 22.9400 0.0723 12.9998
Pro 351-400 19.7600 0.0581 5.8014
SPEA2
Pro 151-200 58.3400 0.1917 48.283 1
Pro 201-250 60.3000 0.2235 58.9183
Pro 251-300 73.9000 0.1662 68.690 1
Pro 301-350 26.9600 0.2203 23.4833
Pro 351-400 23.1400 0.1813 11.8724

@ Springer

412 S. Cai et al.

Table 5 includes the minimum and average values of objectives among three algo-
rithms, and it is the same with Table 3. It shows that the proposed algorithm obtains
the best results with respect to the minimum and average objective values, which has
the same analysis with the small-sized instances, and the proposed algorithm has the
best results compared with the original NSGA-II and SPEA2.

Table 6 shows the number of Pareto optimal solutions of the three algorithms, the
percentage of Pareto optimal solutions when putting solutions together and the last
measure value (spacing), respectively, which is the same with Table 4.

It can be primarily ascertained that the improved NSGA-II performs better than the
original NSGA-II and SPEA?2 for both small-sized instances and large-sized instances
(SPEA 2 also has a better performance than the original NSGA-II).

5.5 Statistical Analysis

To show the statistical significance of the experiment results among the three algo-
rithms, we conduct two nonparametric pairwise comparisons (Sign test and Wilcoxon
test, Zhang et al. [57]) on the results achieved by 4 measures of 400 instances (Table 7).

5.5.1 Sign Test

As the first measure is the minimum and average values of three objectives, every
algorithm has 400 x 3 x 2 = 2 400 data after putting these values together. Every other
measure has 400 results for each algorithm. The average performance of the proposed
algorithm is compared separately with the other two algorithms. Wins (Loses) count
the times when the proposed algorithm performs superior (inferior) to its counterpart
algorithm. The detected difference indicates that the improved NSGA-II outperforms
the original NSGA-II and SPEA 2 with a significance level of 0.05 when using the first,
the third and the last measures. The detected differences of Sign test cannot support

Table 7 Results of sign test

Improved NSGA-II Original NSGA-II SPEA2
First measure
Wins (+) 2 005 1663
Loses (—) 80 198
Detected differences 0 1.9252 x10~252

Second measure

Wins (+) 266 187

Loses (—) 119 158

Detected differences 1.000 4 x10~13 -
Third measure

Wins (+) 400 400

Loses (—) 0 0

Detected differences
Fourth measure

1.498 9 x10~88

1.498 9 x10~88

Wins (+) 136 346
Loses (—) 262 54
Detected differences 3.7119 x10710 5.8403 x10748

@ Springer

Multi-objective Optimization of the Distributed. ..

413

Table 8 Results of Wilcoxon test

Improved NSGA-IT Original NSGA-II SPEA 2
First measure

Rt 27313 x10° 23497 x10°

R~ 52261 1.988 9 x10°

p value 0 13150 x 10231
Second measure

Rt 57141 x10* 4.0287 x10%

R~ 20 969 3.044 9 x 10%

p value 1.016 6 x10~14 0.073 6
Third measure

Rt 8.006 8 x10* 7.2050 x10*

R~ 132 7 680

p value 6.3925 x10~%7 63913 x10~43
Fourth measure

Rt 20373 72 869

R~ 59 827 7331

p value 1.4039 x10~17 15555 x10~%

the proposed algorithm which has better performance compared with SPEA2 when
using the second measure.

5.5.2 Wilcoxon Test

Compared with Sign test, a more powerful pairwise test tool, Wilcoxon test (Derrac
et al. [58]) is utilized which could take into consideration the degree of difference
among searching performances. Specifically, the difference between two algorithms
will be ranked according to its absolute value among all test instances. The sum of
ranks that the proposed algorithm is superior (inferior) to the other algorithms is
indicated by RT(R™) in Table 8. As observed from Table 8, the p values show that
the improved NSGA-II performs better than the original NSGA-II and SPEA?2 are at
significance level of 0.05 in the first and third measure, and better than SPEA?2 and the
original NSGA-II at significance 0.1 in the second measure. For the fourth measure,
the original NSGA-II outperforms the improved NSGA-II and the improved NSGA-II
outperforms SPEA2 both at significance 0.05.

6 Conclusions and Future Research

In this paper, we proposed a more general DPFESSP (the processing time of jobs
in different factory can be different and not all factories can process each job) with
transportation conditions. Three objectives are considered (makespan, maximum late-
ness, total costs). The mixed integer linear programming model has been formulated
based on the sequence of jobs in each factory. For each objective, we proposed a
new heuristic algorithm. With objective makespan or maximum lateness, the heuris-
tics is proposed based on Taillard method. The greedy algorithm is used to solve the
problem with objective total cost. An effective MOEA known as NSGA-II has been
modified in order to improve the results of the considered problem in this paper. The

@ Springer

414 S. Cai et al.

proposed algorithm employs heuristics for each objective as an initialization. A total of
400 instances, consisting of 150 small-sized instances and 250 large-sized instances,
are designed to compare the results with the original NSGA-II and SPEA 2. Running
results and statistical analysis show that the proposed algorithm has better performance
than both the original NSGA-II and SPEA 2. To the best of our knowledge, there is no
published work on multi-objective optimization of the DPFSSP with transportation
and eligibility constraints.

As for the future work, there is some room for improvement in both the model and
the algorithm. Firstly, the considered problem in this paper assumes the transportation
time or cost of job i to any factory which is fixed which is a strong assumption that
can be generalized to limited transportation tools or quantity discounts. Secondly,
more elaborated meta-heuristics can be designed to obtain better solutions and more
complex local search methods can be used to search better neighborhoods.

Acknowledgements The authors wish to thank the anonymous referees for their constructive comments.
The authors would like to thank Professor Bo Liu for his discussions and constant encouragement.

References

[1] Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Springer, Berlin (2015)

[2] Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math.
Oper. Res. 1(2), 117-129 (1976)

[3] Johnson, S.M.: Optimal two-and three-stage production schedules with setup times included. Nav.
Res. Logist. (NRL) 1(1), 61-68 (1954)

[4] Palmer, D.S.: Sequencing jobs through a multi-stage process in the minimum total time—a quick
method of obtaining a near optimum. J. Oper. Res. Soc. 16(1), 101-107 (1965)

[5] Campbell, H.G., Dudek, R.A., Smith, M.L.: A heuristic algorithm for the n job, m machine sequencing
problem. Manag. Sci. 16(10), B-630 (1970)

[6] Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequenc-
ing problem. Omega 11(1), 91-95 (1983)

[7] Jia, HZ., Fuh, J.Y., Nee, A.Y., Zhang, Y.F.: Web-based multi-functional scheduling system for a
distributed manufacturing environment. Concurr. Eng. 10(1), 27-39 (2002)

[8] Jia, HZ., Fuh, J.Y., Nee, A.Y., Zhang, Y.F.: Integration of genetic algorithm and Gantt chart for job
shop scheduling in distributed manufacturing systems. Comput. Ind. Eng. 53(2), 313-320 (2007)

[9] Jia, HZ., Nee, A.Y., Fuh, J.Y., Zhang, Y.F.: A modified genetic algorithm for distributed scheduling
problems. J. Intell. Manuf. 14(3—4), 351-362 (2003)

[10] Chan, ET., Chung, S.H., Chan, L.Y., Finke, G., Tiwari, M.K.: Solving distributed FMS scheduling
problems subject to maintenance: genetic algorithms approach. Robot. Comput. Integr. Manuf. 22(5),
493-504 (2006)

[11] Chan, ET., Chung, S.H., Chan, PL.Y.: An adaptive genetic algorithm with dominated genes for
distributed scheduling problems. Expert Syst. Appl. 29(2), 364-371 (2005)

[12] De Giovanni, L., Pezzella, F.: An improved genetic algorithm for the distributed and flexible job-shop
scheduling problem. Eur. J. Oper. Res. 200(2), 395408 (2010)

[13] Deng, J., Wang, L., Wang, S.Y., Zheng, X.L.: A competitive memetic algorithm for the distributed
two-stage assembly flow-shop scheduling problem. Int. J. Prod. Res. 54(12), 3561-3577 (2016)

[14] Wang, S.Y., Wang, L.: An estimation of distribution algorithm-based memetic algorithm for the
distributed assembly permutation flow-shop scheduling problem. IEEE Trans. Syst. Man Cybern.
Syst. 46(1), 139-149 (2016)

[15] Naderi, B., Ruiz, R.: The distributed permutation flowshop scheduling problem. Comput. Oper. Res.
37(4), 754-768 (2010)

@ Springer

Multi-objective Optimization of the Distributed... 415

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[39]
[40]

[41]

Liu, H., Gao, L.: A discrete electromagnetism-like mechanism algorithm for solving distributed
permutation flowshop scheduling problem. In: 2010 International Conference on Manufacturing
Automation (ICMA), pp. 156-163. IEEE (2010)

Gao, J., Chen, R.: A hybrid genetic algorithm for the distributed permutation flowshop scheduling
problem. Int. J. Comput. Intell. Syst. 4(4), 497-508 (2011)

Gao, J., Chen, R.: An NEH-based heuristic algorithm for distributed permutation flowshop scheduling
problems. Sci. Res. Essays 6(14), 3094-3100 (2011)

Gao, J., Chen, R., Liu, Y.: A knowledge-based genetic algorithm for permutation flowshop scheduling
problems with multiple factories. Int. J. Adv. Comput. Technol. 4(7), 121-129 (2012)
Gao,J.,Chen,R., Deng, W.: Anefficient tabu search algorithm for the distributed permutation flowshop
scheduling problem. Int. J. Prod. Res. 51(3), 641-651 (2013)

Lin, S.W., Ying, K.C., Huang, C.Y.: Minimising makespan in distributed permutation flowshops using
a modified iterated greedy algorithm. Int. J. Prod. Res. 51(16), 5029-5038 (2013)

Wang, S.Y., Wang, L., Liu, M., Xu, Y.: An effective estimation of distribution algorithm for solving
the distributed permutation flow-shop scheduling problem. Int. J. Prod. Econ. 145(1), 387-396 (2013)
Xu, Y., Wang, L., Wang, S., Liu, M.: An effective hybrid immune algorithm for solving the distributed
permutation flow-shop scheduling problem. Eng. Optim. 46(9), 1269-1283 (2014)

Naderi, B., Ruiz, R.: A scatter search algorithm for the distributed permutation flowshop scheduling
problem. Eur. J. Oper. Res. 239(2), 323-334 (2014)

Wang, J., Wang, L., Shen, J.: A hybrid discrete cuckoo search for distributed permutation flowshop
scheduling problem. In: 2016 IEEE Congress on Evolutionary Computation, pp. 2240-2246. IEEE
(2016)

Wang, K., Huang, Y., Qin, H.: A fuzzy logic-based hybrid estimation of distribution algorithm for
distributed permutation flowshop scheduling problems under machine breakdown. J. Oper. Res. Soc.
67(1), 68-82 (2016)

Pareto, V.: Oeuvres Compleétes: Tome 7, Manuel d’économie Politique. Librairie Droz, Geneva (1981)
Ciavotta, M., Minella, G., Ruiz, R.: Multi-objective sequence dependent setup times permutation
flowshop: a new algorithm and a comprehensive study. Eur. J. Oper. Res. 227(2), 301-313 (2013)
Ishibuchi, H., Murata, T.: A multi-objective genetic local search algorithm and its application to
flowshop scheduling. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 28(3), 392-403 (1998)
Varadharajan, T.K., Rajendran, C.: A multi-objective simulated-annealing algorithm for scheduling
in flowshops to minimize the makespan and total flowtime of jobs. Eur. J. Oper. Res. 167(3), 772-795
(2005)

Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective genetic algorithm and its applications to flow-
shop scheduling. Comput. Ind. Eng. 30(4), 957-968 (1996)

Yagmahan, B., Yenisey, M.M.: Ant colony optimization for multi-objective flow shop scheduling
problem. Comput. Ind. Eng. 54(3), 411-420 (2008)

Gelders, L.F., Sambandam, N.: Four simple heuristics for scheduling a flow-shop. Int. J. Prod. Res.
16(3), 221-231 (1978)

Ponnambalam, S.G., Jagannathan, H., Kataria, M., Gadicherla, A.: A TSP-GA multi-objective algo-
rithm for flow-shop scheduling. Int. J. Adv. Manuf. Technol. 23(11-12), 909-915 (2004)

Yenisey, M.M., Yagmahan, B.: Multi-objective permutation flow shop scheduling problem: literature
review, classification and current trends. Omega 45, 119-135 (2014)

Deng, J., Wang, L.: A competitive memetic algorithm for multi-objective distributed permutation flow
shop scheduling problem. Swarm Evol. Comput. 32, 121-131 (2017)

Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: improving the strength Pareto evolutionary algorithm.
Tik-report (2001)

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: NSGA-IL In: International Conference on Parallel Problem Solving
From Nature, pp. 849-858. Springer, Berlin, Heidelberg (2000)

Bandyopadhyay, S., Bhattacharya, R.: Solving multi-objective parallel machine scheduling problem
by a modified NSGA-II. Appl. Math. Model. 37(10), 6718-6729 (2013)

Bolaiios, R., Echeverry, M., Escobar, J.: A multiobjective non-dominated sorting genetic algorithm
(NSGA-II) for the Multiple Traveling Salesman Problem. Decis. Sci. Lett. 4(4), 559-568 (2015)
Sahu, D.P,, Singh, K., Prakash, S.: Maximizing availability and minimizing makespan for task schedul-
ing in grid computing using NSGA II. In: Proceedings of the Second International Conference on
Computer and Communication Technologies, pp. 219-224. Springer, India (2016)

@ Springer

416

S. Cai et al.

[42]

[43]

[44]
[45]
[46]
[47]

[48]

[49]
[50]
[51]

[52]

[53]
[54]
[55]
[56]
[57]

[58]

Long, J., Zheng, Z., Gao, X., Pardalos, PM.: A hybrid multi-objective evolutionary algorithm based
on NSGA-II for practical scheduling with release times in steel plants. J. Oper. Res. Soc. 67(9),
1184-1199 (2016)

Autuori, J., Hnaien, F., Yalaoui, F., Hamzaoui, A., Essounbouli, N.: Comparison of solution space
exploration by NSGA 2 and SPEA 2 for Flexible Job Shop Problem. In: 2013 International Conference
on Control, Decision and Information Technologies, pp. 750-755. IEEE (2013)

Blumenfeld, D.E., Burns, L.D., Daganzo, C.E, Frick, M.C., Hall, R.W.: Reducing logistics costs at
General Motors. Interfaces 17(1), 26-47 (1987)

Wang, W.F., Yun, W.Y.: Scheduling for inland container truck and train transportation. Int J. Prod.
Econ. 143(2), 349-356 (2013)

Siddiqui, A.W., Verma, M.: A bi-objective approach to routing and scheduling maritime transportation
of crude oil. Transp. Res. Part D Transp. Environ. 37, 65-78 (2015)

Chen, Z.L., Lee, C.Y.: Machine scheduling with transportation considerations. J. Sched. 4, 3-24
(2001)

Naderi, B., Zandieh, M., Balagh, A.K.G., Roshanaei, V.: An improved simulated annealing for hybrid
flowshops with sequence-dependent setup and transportation times to minimize total completion time
and total tardiness. Expert Syst. Appl. 36(6), 9625-9633 (2009)

Tang, L., Liu, P.: Flowshop scheduling problems with transportation or deterioration between the
batching and single machines. Comput. Ind. Eng. 56(4), 1289-1295 (2009)

Zhu, H., Leus, R., Zhou, H.: New results on the coordination of transportation and batching scheduling.
Appl. Math. Model. 40(5), 4016-4022 (2016)

Zabihzadeh, S.S., Rezaeian, J.: Two meta-heuristic algorithms for flexible flow shop scheduling
problem with robotic transportation and release time. Appl. Soft Comput. 40, 319-330 (2016)

Low, C., Li, RK., Wu, G.H.: Ant colony optimization algorithms for unrelated parallel machine
scheduling with controllable processing times and eligibility constraints. In: Proceedings of the Insti-
tute of Industrial Engineers Asian Conference 2013, pp. 79-87. Springer, Singapore (2013)

Soltani, S.A., Karimi, B.: Cyclic hybrid flow shop scheduling problem with limited buffers and
machine eligibility constraints. Int. J. Adv. Manuf. Technol. 76(9-12), 1739-1755 (2015)

Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper.
Res. 47(1), 65-74 (1990)

Baesler, F., Palma, C.: Multiobjective parallel machine scheduling in the sawmill industry using
memetic algorithms. Int. J. Adv. Manuf. Technol. 74(5-8), 757-768 (2014)

Hyun, C.J., Kim, Y., Kim, Y.K.: A genetic algorithm for multiple objective sequencing problems in
mixed model assembly lines. Comput. Oper. Res. 25(7), 675-690 (1998)

Zhang, H., Li, B., Zhang, J., Qin, Y., Feng, X., Liu, B.: Parameter estimation of nonlinear chaotic
system by improved TLBO strategy. Soft Comput. 20(12), 4965-4980 (2016)

Derrac,J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical
tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol.
Comput. 1(1), 3-18 (2011)

@ Springer

	Multi-objective Optimization of the Distributed Permutation Flow Shop Scheduling Problem with Transportation and Eligibility Constraints
	Abstract
	1 Introduction
	2 Mathematic Model
	2.1 Assumptions
	2.2 Notations
	2.3 Formulation of the Proposed Problem

	3 Heuristics for the DPFSSP with Single Objective
	3.1 Heuristics for Makespan or Maximum Lateness
	3.2 A Greedy Algorithm for Objective Total Costs

	4 An Improved NSGA-II Algorithm
	4.1 The Representation of Individuals
	4.2 Initialization
	4.3 Crossover
	4.4 Mutation
	4.5 Non-dominated Sorting and Crowding Distance
	4.6 Local Search
	4.7 Selection
	4.8 Re-/initialization
	4.9 Procedure of the Improved NSGA-II
	4.10 Computational Complexity Analysis

	5 Experiment of the Proposed NSGA-II Method
	5.1 The Evaluation of Results of the Experiments
	5.2 Parameters Setting
	5.3 Comparison with NSGA-II and SPEA 2 in Small-Sized Instances
	5.4 Comparison with NSGA-II and SPEA2 in Large-Sized Instances
	5.5 Statistical Analysis
	5.5.1 Sign Test
	5.5.2 Wilcoxon Test

	6 Conclusions and Future Research
	Acknowledgements
	References

