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Abstract In this paper, we consider the second-order cone tensor eigenvalue com-
plementarity problem (SOCTEiCP) and present three different reformulations to the
model under consideration. Specifically, for the general SOCTEiCP, we first show
its equivalence to a particular variational inequality under reasonable conditions. A
notable benefit is that such a reformulation possibly provides an efficient way for
the study of properties of the problem. Then, for the symmetric and sub-symmetric
SOCTEiCPs, we reformulate them as appropriate nonlinear programming problems,
which are extremely beneficial for designing reliable solvers to find solutions of the
considered problem. Finally, we report some preliminary numerical results to verify
our theoretical results.
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1 Introduction

A tensor, as a natural extension of the concept of matrices, is a multidimensional
array, whose order refers to the dimensionality of the array, or equivalently, the number
of indices needed to label a component of that array. Mathematically, a real mth order
n-dimensional square tensor, denoted byA, can be expressed asA = (ai1···im ), where
each component ai1···im ∈ R for 1 � i1, · · · , im � n. For the sake of convenience, we
denote by Tm,n the space ofmth order n-dimensional real square tensors. If the entries
ofA ∈ Tm,n are invariant under any permutation of its indices, we callA a symmetric
tensor. For a vector x := (x1, · · · , xn)T ∈ R

n and a tensor A = (ai1···im ) ∈ Tm,n , we
define Axm−1 as an n-dimensional vector whose i th component is given by

(Axm−1)i =
n∑

i2,··· ,im=1

aii2···im xi2 · · · xim , for i = 1, 2, · · · , n,

and throughout, let Axm be the value at x of a homogeneous polynomial, defined by

Axm =
n∑

i1,i2,··· ,im=1

ai1i2···im xi1xi2 · · · xim .

Given two tensorsA, B ∈ Tm,n , we say that (A,B) is an identical singular pair, if

{
x ∈ R

n\{0} | Axm−1 = 0, Bxm−1 = 0
}

�= ∅.

Under the assumption that (A,B) is not an identical singular pair, we call (x, λ) ∈
(Cn\{0}) × C an eigenvector–eigenvalue pair of (A,B), if we could find a nonzero
solution x to the following n-system of equations:

(λA − B)xm−1 = 0, (1.1)

where thenonzerovector x satisfying (1.1) is also called an eigenvector of (A,B), andλ

is the associated eigenvalue to the eigenvector x of (A,B). The concept of eigenvector–
eigenvalue pair for tensors can be dated back to the independentwork of Lim [1] andQi
[2], and the appearance of such a concept has greatly initiated the rapid developments
of the spectral theory of tensors. In 2009, Chang et al. [3] further introduced a unified
definition of eigenvector–eigenvalue pair for general square tensors, thereby making
the study of tensor in the direction of complementarity problems more interesting,
e.g., see [4–7]. Indeed, the importance of tensor and its eigenvalue/eigenvector has
been highlighted due to the concise mathematical framework for formulating and
analyzing many real-world problems in areas such as magnetic resonance imaging [8,
9], higher-orderMarkov chains [10], and best-rank one approximation in data analysis
[11]. Accordingly, many nice properties such as the Perron-Frobenius theorem for
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eigenvalues/eigenvectors of nonnegative square tensor have been established, see,
e.g., [12,13].

In the literature, e.g., see [14,15], complementarity problems have been developed
well due to thewidespread applications in engineering and economics.As an important
special case of complementarity problems, the eigenvalue complementarity problem
(EiCP) for matrices also has been studied extensively, see [16–22] for example. Most
recently, the EiCP formatrices has been generalized to tensors in [5], where the authors
called it tensor generalized eigenvalue complementarity problem (TGEiCP) which
has been further studied from both theoretical and numerical perspective in [23–26].
It is well known that the second-order cone is an important class of cones in applied
mathematics, whose high applicability encourages the study of the specific EiCP on
second-order cones for matrices, which is called SOCEiCP. By utilizing the special
structure of second-order cones, some more interesting results have been developed,
see, e.g., [27,28]. To the best of our knowledge, the development of TGEiCP is still
in its infancy. Therefore, a natural question is that can we also extend the SOCEiCP
to tensors and obtain more interesting properties for such a specific TGEiCP.

In this paper, we study the second-order cone tensor eigenvalue complementarity
problem (SOCTEiCP), which seeks a nonzero vector x ∈ R

n and a scalar λ ∈ R

satisfying
x ∈ K, w := (λA − B) xm−1 ∈ K∗ and 〈x, w〉 = 0, (1.2)

whereA andB are two realmth order n-dimensional tensors, 〈·, ·〉 denotes the standard
inner product in real Euclidean space, K∗ is the dual cone of K, and here K is the
second-order cone defined by

K := Kn1 × Kn2 × · · · × Knr (1.3)

withKni := {
xi ∈ R

ni | xi◦ � ‖xi•‖
}
for i = 1, 2, · · · , r . Note that the n-dimensional

vector x can also be separated into r parts, i.e., x := (x1, x2, · · · , xr ) ∈ R
n1 ×

R
n2 × · · · × R

nr with
∑r

i=1 ni = n, and each part xi := (xi◦, xi•) ∈ R × R
ni−1 for

i = 1, · · · , r . It is obvious that each cone Kni is pointed and self-dual, which means
that (Kni )∗ = Kni , where the dual cone (Kni )∗ of Kni is defined by

(Kni )∗ :=
{
yi ∈ R

ni | 〈yi , xi 〉 � 0, ∀ xi ∈ Kni
}

.

As a consequence, we know that K is also pointed and self-dual.
The main contributions of this paper are summarized as follows: First, we show

that SOCTEiCP (1.2) is provably equivalent to a variational inequality, thereby estab-
lishing the existence of a solution to SOCTEiCP (1.2). Actually, one more important
benefit is that such a characterization might provides an efficient way for the study
of properties (e.g., sensitivity and stability) of SOCTEiCP (1.2) in the context of
variational inequality. Then, we focus on two special cases of SOCTEiCP (1.2) with
symmetric and sub-symmetric tensors, and reformulate both of them as two nonlin-
ear programming problems for the purpose of designing numerical algorithms to find
some of their eigenvector–eigenvalue pairs. To illustrate the solvability of SOCTE-
iCP (1.2), we employ the so-named scaling-and-projection algorithm (SPA) [5] to
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solve SOCTEiCP (1.2) and report some preliminary computational results to verify
the reliability of SPA.

The structure of this paper is divided into five parts. In Sect. 2, we first show that
SOCTEiCP (1.2) is essentially equivalent to a variational inequality problem. In Sect.
3, we consider two special cases of SOCTEiCP (1.2). More concretely, in Sect. 3.1, we
are concerned with the symmetric SOCTEiCP, that is, the underlying tensors A and
B are symmetric. Based upon such a symmetry condition, we can gainfully formulate
the symmetric SOCTEiCP as a fractional polynomial optimization problem. As a
more general case, in Sect. 3.2, we discuss the case where SOCTEiCP (1.2) has two
sub-symmetric tensors A and B. Similarly, we also give a nonlinear programming
formulation for the sub-symmetric SOCTEiCP. In Sect. 4, we report some numerical
results to verify the reliability of the SPA proposed in [5]. Finally, we complete this
paper with drawing some concluding remarks in Sect. 5.

Notation Let R
n denote the real Euclidean space of column vectors of length n. The

superscript T represents the transpose. DenoteR
n+ := {x ∈ R

n | x � 0}. For given x ∈
R
n , we also rewrite x := (x1, x2, · · · , xn)T as r parts, i.e., x := (x1, x2, · · · , xr ) ∈

R
n1 × R

n2 × · · · × R
nr , with

∑r
i=1 ni = n and xi := (xi◦, xi•) ∈ R × R

ni−1 for
i = 1, · · · , r . For A ∈ Tm,n and a subset J of the index set [r ] := {1, 2, · · · , r},
we denote by AJ the principal sub-tensor of A, which is obtained by homogeneous
polynomial Axm for all x = (x1, x2, · · · , xr ) with xi = 0 for i ∈ [r ]\J . So, AJ is a
tensor of order m and dimension |J |, where |J | = ∑

i∈J ni . Correspondingly, denote
by xJ the sub-vector of x = (x1, x2, · · · , xr ), which is obtained by removing the
components xi with i ∈ [r ]\J . For given C := (ci1i2···im ) ∈ Tm,n and x ∈ R

n , Cxm−2

denotes the n × n matrix with the (i, j)th element given by

(
Cxm−2

)

i j
:=

n∑

i3,··· ,im=1

ci ji3···im xi3 · · · xim .

2 A Variational Inequality Characterization to SOCTEiCP (1.2)

As a special case of TGEiCP introduced in [5], it is clear that SOCTEiCP (1.2) also
has at least one solution under some mild conditions. In this section, we reformulate
SOCTEiCP (1.2) as a variational inequality from a different perspective used in [5].We
start this section with recalling some basic definitions and properties on second-order
cones and tensors, which will be used in this paper.

For the second-order coneK defined by (1.3), it is well known that the complemen-
tarity condition on K can be decomposed into complementarity conditions on each
Kni , that is,

x, y ∈ K and 〈x, y〉 = 0
⇔ xi , yi ∈ Kni and 〈xi , yi 〉 = 0, for i = 1, 2, · · · , r,

(2.1)
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where x = (x1, x2, · · · , xr ) and y = (y1, y2, · · · , yr ) ∈ R
n1 × R

n2 × · · · × R
nr .

Moreover, for any z = (z◦, z•) and w = (w◦, w•) ∈ R × R
l−1, we define the Jordan

product between z and w as

z ◦ w := (〈z, w〉, w◦z• + z◦w•) . (2.2)

With the above definition of Jordan product of vectors, we have the following result
from [29].

Proposition 2.1 For any vectors z, w ∈ R
l , we have

z, w ∈ Kl and 〈z, w〉 = 0 ⇔ z, w ∈ Kl and z ◦ w = 0l ,

where 0l is a zero vector in R
l .

For given tensors A and B ∈ Tm,n , we define the function F : R
n → R

n by

F(x) = λ(x)Axm−1 − Bxm−1, (2.3)

where

λ(x) = Bxm
Axm

, (2.4)

which is called the generalized Rayleigh quotient related to A and B. Throughout
this paper, we assume that Axm �= 0 for any x ∈ K\{0}, which means that A (or
−A) is strictly K-positive, i.e., Axm > 0 (or −Axm > 0) for any x ∈ K\{0}. Under
this assumption, it is clear that F defined by (2.3) is well defined and continuous on
K0 := {x = (x1, x2, · · · , xr ) ∈ K | eTx = 1}, where e := (e1, e2, · · · , er ) with
ei = (1, 0, · · · , 0)T ∈ R

ni . Obviously, K0 is exactly a convex compact basis of K.
Consider the following variational inequality problem (VIP), which refers to the

task of finding a vector x̄ ∈ K0 such that

F(x̄)T(z − x̄) � 0, ∀ z ∈ K0. (2.5)

In what follows, we denote (2.5) by VIP(F,K0) for simplicity. Since K0 is a non-
empty convex compact set, we have the following existence result on the solutions of
VIP(F,K0) (e.g., see [14]).

Proposition 2.2 VIP(F,K0) has at least one solution.

Now, we establish the equivalence of (1.2) to VIP(F,K0), and show that (1.2) has
at least one solution.

Theorem 2.3 If x̄ is a solution of VIP(F,K0), then (x̄, λ̄) is a solution of (1.2), where
λ̄ := λ(x̄) and λ(x) is defined by (2.4).

Proof The proof is divided into two parts by distinguishing two cases of xi◦.

Case I We first consider the case where x̄ i◦ > 0 for i = 1, 2, · · · , r . Since x̄ is a
solution of VIP(F,K0), it immediately follows that x̄ is a minimizer of the following
optimization problem:
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min
x

{
F(x̄)Tx

∣∣ x ∈ K0

}
,

which can also be rewritten as

min F(x̄)Tx
s.t. (xi◦)2 − ‖xi•‖2 � 0,

xi◦ � 0, i = 1, · · · , r,
eTx = 1.

Since x̄ i◦ > 0 for every i = 1, 2, · · · , r , the linear independence constraint quali-
fication holds at x̄ , we know that x̄ satisfies the KKT conditions (see [30, Theorem
4.2.13]). Therefore, there exist Lagrange multipliers β̄ := (β̄1, β̄2, · · · , β̄r )

T, γ̄ :=
(γ̄1, γ̄2, · · · , γ̄r )

T ∈ R
r and δ̄ ∈ R such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(x̄) = 2C β̄ + Dγ̄ + δ̄e,

β̄i � 0, (x̄ i◦)2 − ‖x̄ i•‖2 � 0, β̄i
(
(x̄ i◦)2 − ‖x̄ i•‖2

) = 0, i = 1, · · · , r,

γ̄i � 0, x̄ i◦ � 0, γ̄i x̄ i◦ = 0, i = 1, · · · , r,

eT x̄ = 1,

(2.6)

where

C :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
x̄1◦

−x̄1•

]
0n1 · · · 0n1

0n2

[
x̄2◦

−x̄2•

]
· · · 0n2

...
...

. . .
...

0nr 0nr · · ·
[

x̄r◦
−x̄r•

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and D :=

⎡

⎢⎢⎢⎢⎣

e1 0n1 · · · 0n1
0n2 e2 · · · 0n2
...

...
. . .

...

0nr 0nr · · · er

⎤

⎥⎥⎥⎥⎦
∈ R

n×r

with 0ni being the zero vector inR
ni for i = 1, · · · , r . By (2.6), we know x̄TF(x̄) = δ̄,

which implies, together with the fact that x̄TF(x̄) = 0, that δ̄ = 0. Consequently, from
the first expression of (2.6), we get

F(x̄) = 2C β̄ + Dγ̄ . (2.7)

For the notational convenience, let us write

F(x̄) =: ȳ := (ȳ1, ȳ2, · · · , ȳr ) ∈ R
n1 × R

n2 × · · · × R
nr

with ȳi = (ȳi◦, ȳi•) ∈ R × R
ni−1. By (2.7), it is easy to verify that

ȳi◦ − ‖ȳi•‖ = 2β̄i
(
x̄ i◦ − ‖x̄ i•‖

)
+ γ̄i � 0, i = 1, · · · , r,
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which means that ȳi ∈ Kni for i = 1, · · · , r , and hence ȳ ∈ K (= K∗). Consequently,
we have λ̄Ax̄m−1 − Bx̄m−1 ∈ K as well as x̄ ∈ K. Since x̄TF(x̄) = 0, we know
x̄T

(
λ̄Ax̄m−1 − Bx̄m−1

) = 0, which implies that (x̄, λ̄) is a solution of (1.2) because
of x̄ �= 0.

Case II Now we consider the case of x̄ j◦ = 0 for some j . It follows from x̄ j ∈ Kn j

that x̄ j = 0. Using the constraint eT x̄ = 1, r � 2, we assume, for simplicity, that
there is exactly one such j and that j = 1, i.e., x̄ = (x̄1, ū) ∈ R

n1 × R
n−n1 with

x̄1 = 0, ū = (x̄2, · · · , x̄r ) and x̄ i �= 0, i = 2, · · · , r.

Correspondingly, we have

F(x̄) = λ(ū)

[
A12ūm−1

A22ūm−1

]
−

[
B12ūm−1

B22ūm−1

]
=

[
F1(ū)

F2(ū)

]
with λ(ū) := B22ūm

A22ūm
.

Here, for a given tensor C := (ci1i2···im ) ∈ Tm,n , let C12 and C22 be sub-tensors of C,
whose elements are defined by

(C12)i1i2···im :=ci1(n1+i2)···(n1+im ), i1=1, 2, · · · , n1; i2, · · · , im =1, 2, · · · , n − n1

and

(C22)i1i2···im := c(n1+i1)(n1+i2)···(n1+im ), i1, i2, · · · , im = 1, 2, · · · , n − n1,

respectively. Since x̄ = (0, ū) is a solution of VIP(F,K0), it turns out that

F(x̄)T(x − x̄) = F1(ū)Tx1 + F2(ū)T(u − ū) � 0 (2.8)

for any x1 ∈ R
n1 and u ∈ R

n−n1 satisfying x := (x1, u) ∈ K0. Taking x1 = 0 in (2.8)
immediately leads to

F2(ū)T(u − ū) � 0, ∀ u ∈ K̄0,

where K̄0 := {u = (u2, · · · , ur ) ∈ R
n−n1 | ui◦ � ‖ui•‖, u2◦ + · · · + ur◦ = 1}, which

means that ū is a solution of VIP(F2, K̄0). Since x̄ i �= 0 for i = 2, · · · , r , it follows
the proof of Case I that (ū, λ(ū)) is a solution to

u ∈ K̄, v := λA22u
m−1 − B22u

m−1 ∈ K̄ and 〈u, v〉 = 0, (2.9)

where K̄ is the second-order cone defined by K̄ := Kn2 ×· · ·×Knr . By (2.9), we have
F2(ū)Tū = 0. Consequently, by taking u = 0 in (2.8), it can be seen that F1(ū)Tx1 � 0
for any x1 ∈ Kn1 , and hence F1(ū) ∈ (Kn1)∗ = Kn1 . Therefore, we conclude that
(x̄, λ(x̄)) is a solution of (1.2). We complete the proof.

As a direct result of Proposition 2.2 and Theorem 2.3, if A and B are matrices, we
can easily obtain the solution existence result of SOCEiCPs.
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3 Nonlinear Programming for SOCTEiCP (1.2) with Special Structure

In this section, we focus on two special cases of SOCTEiCP (1.2) with symmetric
and sub-symmetric tensors A and B, and reformulate them as nonlinear program-
ming problems for the purpose of utilizing or designing optimization methods to find
solutions of the model.

3.1 The Symmetric SOCTEiCP

When A and B are symmetric, it is easy to see that the gradient of the generalized
Rayleigh quotient λ(x) defined in (2.4) is

∇λ(x) = m

Axm

(
Bxm−1 − λ(x)Axm−1

)
. (3.1)

Here we should notice that the gradient formula (3.1) of the Rayleigh quotient holds
only for the case where A and B are both symmetric.

The following lemma states two fundamental properties of λ(x), which have been
studied in [31] for matrices. Its proof is elementary and skipped here.

Lemma 3.1 For all x ∈ R
n\{0}, the following statements hold:

(i) λ(τ x) = λ(x), ∀ τ > 0;
(ii) xT∇λ(x) = 0.

Now, we consider the following fractional programming model:

max
x

{
λ(x) := Bxm

Axm
∣∣ x ∈ K0

}
,

which, from the definition of K0, can also be rewritten as

max λ(x) := Bxm

Axm

s.t. (xi◦)2 − ‖xi•‖2 � 0,

xi◦ � 0, i = 1, · · · , r,

eTx = 1.

(3.2)

Then, as a result of Theorem 2.3, the following theorem clarifies the relationship
between (1.2) and (3.2), that is, solving the symmetric SOCTEiCP actually reduces
to finding a stationary point of (3.2), which is greatly helpful for efficiently solving
the model under consideration.

Theorem 3.2 Assume thatA andB are symmetric tensors andA is strictlyK-positive.
Let x̄ be a stationary point of (3.2). Then (x̄, λ̄) is a solution of (1.2), where λ̄ := λ(x̄)
and λ(x) is defined by (2.4).
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For given nonempty subset J ⊂ [r ], we now consider the following second-order
cone optimization problem

max λJ (xJ ) := BJ (xJ )m

AJ (xJ )m

s.t.
∑

i∈J

xi◦ = 1,

(xi◦)2 − ‖xi•‖2 � 0, i ∈ J,
xi◦ � 0, i ∈ J.

(3.3)

Theorem 3.3 Assume thatA andB are symmetric tensors andA is strictlyK-positive.
Let (x̄, λ̄) be a solution of SOCTEiCP (1.2) with the second-order cone K defined by
(1.3). There exists a nonempty subset J ⊂ [r ] such that x̄ J is a stationary point of
(3.3).

Proof By the homogeneity of the complementarity system SOCTEiCP with respect
to x , we assume, without loss of generality, that x̄ ∈ K\ {0} satisfies eT x̄ = 1. Let us
write x̄ = (x̄1, x̄2, · · · , x̄r ) ∈ R

n1 ×R
n2 ×· · ·×R

nr with x̄ i = (x̄ i◦, x̄ i•) ∈ R×R
ni−1

for i = 1, 2, · · · , r . For the sake of simplicity, we write

ȳ := m

Ax̄m

(
λ̄Ax̄m−1 − Bx̄m−1

)
.

It is clear that ȳ ∈ K as w̄ = λ̄Ax̄m−1 − Bx̄m−1 ∈ K and Ax̄m > 0. Since (x̄, λ̄) is
a solution of SOCTEiCP, which implies 〈x̄, ȳ〉 = 0. By (2.2) and Proposition 2.1, it
holds that

ȳi◦ x̄ i• + x̄ i◦ ȳi• = 0, ∀ i = 1, 2, · · · , r. (3.4)

Since x̄ ∈ K\{0}, there exists a nonempty subset J = {
i ∈ [r ] | x̄ i◦ > 0

}
of [r ]. It is

clear that x̄ i = 0 for i ∈ [r ]\J , and hence λ̄ = BJ (x̄ J )m/AJ (x̄ J )m . Like Theorem
2.3, let δ̄, β̄, and γ̄ be Lagrange multipliers associated to the constraints of (3.3),
respectively. Accordingly, we take δ̄ = 0. And for every i ∈ J , since x̄ i◦ > 0, we take
γ̄i = 0 and

β̄i = 1

2x̄ i◦
ȳi◦. (3.5)

Obviously, β̄i � 0 and γ̄i x̄ i◦ = 0 for every i ∈ J . Moreover, from (3.4) and (3.5), it is
not difficult to see that

− 2x̄ i•β̄i = ȳi•, ∀ i ∈ J. (3.6)

Combining (3.5) and (3.6) leads to

ȳi = 2

[
x̄ i◦

−x̄ i•

]
β̄i , for i ∈ J. (3.7)
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Moreover, it follows from 〈x̄, ȳ〉 = 0 and (2.1) that 〈x̄ i , ȳi 〉 = 0 for i = 1, 2, · · · , r .
Consequently, from (3.7), we immediately obtain

β̄i

(
(x̄ i◦)2 − ‖x̄ i•‖2

)
= 1

2
〈x̄ i , ȳi 〉 = 0, ∀i ∈ J. (3.8)

Finally, using (3.7) and (3.8), together with the fact that eT x̄ = 1, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m

AJ (x̄ J )m

[
λ̄AJ (x̄ J )

m−1 − BJ (x̄ J )
m−1

]
= 2

∑

i∈J

(ci )J β̄i +
∑

i∈J

(di )J γ̄i + δ̄eJ ,

∑

i∈J

x̄ i◦ = 1,

β̄i � 0, (x̄ i◦)2 − ‖x̄ i•‖2 � 0, β̄i
(
(x̄ i◦)2 − ‖x̄ i•‖2

) = 0, i ∈ J,

γ̄i � 0, x̄ i◦ � 0, γ̄i x̄ i◦ = 0, i ∈ J,

(3.9)
where ci and di are the i th columns of C and D, respectively. By (3.9), we conclude
that x̄ J is a stationary point of (3.3).

As an interesting by-product of Theorem 3.3, we have the following result showing
that some special solutions of the symmetric SOCTEiCP are precisely stationary points
of (3.2).

Corollary 3.4 Assume that A and B are symmetric tensors and A is strictly K-
positive. Let (x̄, λ̄) be a solution of SOCTEiCP with the second-order cone K defined
by (1.3). If x̄ i◦ > 0 for i = 1, 2, · · · , r , then x̄ is a stationary point of (3.2).

3.2 The Sub-symmetric SOCTEiCP

For many real-world problems, the symmetry assumption on the two tensors A
and B is usually regarded as a little stronger condition. In this section, we consider a
slightly general case where the underlying tensors A and B of SOCTEiCP (1.2) are
sub-symmetric.

Before our discussion, we first introduce the key concept of sub-symmetry on
tensors. Let A ∈ Tm,n . We say that A is sub-symmetric with respect to the indices
{i2, · · · , im}, ifAi := (aii2···im )1�i2,··· ,im�n , an (m −1)th order n-dimensional higher
tensor, is symmetric for every i = 1, · · · , n. Apparently, a symmetric tensor A must
be sub-symmetric, but the reverse is not true. Hereafter, we further assume throughout
this section that m is even. Then, following the idea used in [20], we introduce an

additional vector y = λ
1

m−1 x , i.e.,

yi = λ
1

m−1 xi , for i = 1, 2, · · · , r

to derive the nonlinear programming formulation of the sub-symmetric SOCTEiCP,
where the complementarity requirement of (1.2) is absorbed into the objective func-
tion. More concretely, the nonlinear programming model can be expressed as follows:
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min f (x, y, w, λ) := ‖y − λ
1

m−1 x‖2 + (xTw)2

s.t. w − Aym−1 + Bxm−1 = 0,
(xi◦)2 − ‖xi•‖2 � 0, xi◦ � 0, i = 1, · · · , r,
(wi◦)2 − ‖wi•‖2 � 0, wi◦ � 0, i = 1, · · · , r,
eTx = 1,

eTy = λ
1

m−1 ,

(3.10)

where x = (x1, x2, · · · , xr ), y = (y1, y2, · · · , yr ), and w = (w1, w2, · · · , wr ) ∈
R
n1 × R

n2 × · · · × R
nr with xi = (xi◦, xi•), wi = (wi◦, wi•), and yi = (yi◦, yi•) ∈

R × R
ni−1 for i = 1, · · · , r .

With the preparation of the nonlinear programming (3.10), we have the following
theorem.

Theorem 3.5 The sub-symmetric SOCTEiCP has a solution if and only if the nonlin-
ear programming problem (3.10) has a global minimum with its objective value being
zero.

Proof Let (x̄, ȳ, w̄, λ̄) be a global minimum of (3.10) such that f (x̄, ȳ, w̄, λ̄) = 0.
It is obvious that x̄, w̄ ∈ K and x̄ �= 0. Moreover, it follows from f (x̄, ȳ, w̄, λ̄) = 0

that ȳ = λ̄
1

m−1 x̄ and x̄Tw̄ = 0. Consequently, it holds that

w̄ = Aȳm−1 − Bx̄m−1 = λ̄Ax̄m−1 − Bx̄m−1,

which, together with the fact that x̄Tw̄ = 0, implies that (x̄, λ̄) is a solution of the
sub-symmetric SOCTEiCP.

Conversely, let (x̄, λ̄) be a solution of the sub-symmetric SOCTEiCP. Denote x̃ :=
x̄/(eT x̄), ỹ := λ̄

1
m−1 x̃ , and w̃ := Aỹm−1−Bx̃m−1. It is easy to verify that (x̃, ỹ, w̃, λ̃)

is a global minimum of (3.10) satisfying f (x̃, ỹ, w̃, λ̃) = 0.

Notice that any global minimum of a nonlinear programming problem is a sta-
tionary point. Comparatively speaking, computing a stationary point is much easier
than finding a global minimum. Therefore, it is important to investigate when a sta-
tionary point of nonlinear programming problem is a solution of the sub-symmetric
SOCTEiCP, which will be addressed in the subsequent theorem.

Theorem 3.6 Assume that A,B ∈ Tm,n are sub-symmetric tensors. Let (x̄, ȳ, w̄, λ̄)

be a stationary point of (3.10) with λ̄ �= 0. Then f (x̄, ȳ, w̄, λ̄) = 0 if and only if
δ̄ = η̄ = 0, where δ̄ and η̄ are the Lagrange multipliers associated with the constraints

eTx = 1 and eTy = λ
1

m−1 in (3.10), respectively.

Proof Since (x̄, ȳ, w̄, λ̄) is a stationary point of (3.10), there exist Lagrangemultipliers
ᾱ ∈ R

n , β̄ ∈ R
r , γ̄ ∈ R

r , μ̄ ∈ R
r , θ̄ ∈ R

r , δ̄ ∈ R, and η̄ ∈ R, such that the following
KKT conditions for (3.10) hold:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2λ̄
1

m−1

(
ȳ − λ̄

1
m−1 x̄

)
+ 2

(
x̄Tw̄

)
w̄ = (m − 1)

(
Bx̄m−2

)T
ᾱ + 2Ĉ β̄ + Ê γ̄ + δ̄e,

2
(
ȳ − λ̄

1
m−1 x̄

)
= −(m − 1)

(
Aȳm−2

)T
ᾱ + η̄e,

2
(
x̄Tw̄

)
x̄ = ᾱ + 2D̂μ̄ + Ê θ̄ ,

− 1
m−1 λ̄

1
m−1−1 x̄T

(
ȳ − λ̄

1
m−1 x̄

)
= − 1

m−1 λ̄
1

m−1−1η̄,

w̄ − Aȳm−1 + Bx̄m−1 = 0,

β̄i � 0, (x̄ i◦)2 − ‖x̄ i•‖2 � 0, β̄i
[
(x̄ i◦)2 − ‖x̄ i•‖2

] = 0, i = 1, · · · , r,

γ̄i � 0, x̄ i◦ � 0, x̄ i◦γ̄i = 0, i = 1, · · · , r,

μ̄i � 0, (w̄i◦)2 − ‖w̄i•‖2 � 0, μ̄i
[
(w̄i◦)2 − ‖w̄i•‖2

] = 0, i = 1, · · · , r,

θ̄i � 0, w̄i◦ � 0, w̄i◦θ̄i = 0, i = 1, · · · , r,

eT x̄ = 1,

eT ȳ = λ̄
1

m−1 ,

(3.11)
where β̄i , γ̄i , μ̄i , θ̄i are the i th components of vectors β̄, γ̄ , μ̄, θ̄ ∈ R

r , respectively;

Ĉ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
x̄1◦

−x̄1•

]
0n1 · · · 0n1

0n2

[
x̄2◦

−x̄2•

]
· · · 0n2

...
...

. . .
...

0nr 0nr · · ·
[

x̄r◦
−x̄r•

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D̂ :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
w̄1◦

−w̄1•

]
0n1 · · · 0n1

0n2

[
w̄2◦

−w̄2•

]
· · · 0n2

...
...

. . .
...

0nr 0nr · · ·
[

w̄r◦
−w̄r•

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×r

and Ê := D used in (2.6).
Multiplying the first three expressions in (3.11) by x̄T, ȳT, and w̄T, respectively,

and using the last six expressions in (3.11), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2λ̄
1

m−1 x̄T
(
ȳ − λ̄

1
m−1 x̄

)
+ 2

(
x̄Tw̄

)2 = (m − 1)
(
Bx̄m−1

)T
ᾱ + δ̄,

2 ȳT
(
ȳ − λ̄

1
m−1 x̄

)
= −(m − 1)

(
Aȳm−1

)T
ᾱ + λ̄

1
m−1 η̄,

2
(
x̄Tw̄

)2 = w̄Tᾱ,

which, together with the fifth expression in (3.11), implies that

2(m − 1)(x̄Tw̄)2 + 2 f (x̄, w̄, λ̄, ȳ) = δ̄ + λ̄
1

m−1 η̄, (3.12)

where m � 2.
If δ̄ = η̄ = 0, it is clear from (3.12) that f (x̄, w̄, λ̄, ȳ) = 0. Conversely, if

f (x̄, ȳ, w̄, λ̄) = 0, then it holds that ȳ = λ̄
1

m−1 x̄ and x̄Tw̄ = 0. By the fourth
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expression in (3.11), it holds that λ̄
1

m−1 η̄ = 0, which implies η̄ = 0 from the given
condition that λ̄ �= 0. Consequently, from f (x̄, w̄, λ̄, ȳ) = 0 and (3.12), we conclude
that δ̄ = 0.

4 Numerical Experiments

In [5], the authors introduced a so-called SPA for TGEiCP. As remarked in that
paper, such an algorithm is computationally efficient as long as the underlying pro-
jection step has closed-form solution. Thus, in this section, we further report some
preliminary results to verify the efficiency of SPA for solving SOCTEiCPs.

Note that the underlying SOCTEiCP has more complicated structure than the
TGEiCP studied in [5]. It is necessary to summarize some numerical notes on the
second-order cone before the employment of SPA. For any vector z := (z◦, z•) ∈
R × R

l−1, it is well known from [32] (see also [29,33]) that the spectral factorization
of z is defined as

z = ζ1u1 + ζ2u2, (4.1)

where ζi ∈ R and ui ∈ R
l (i = 1, 2) are the spectral values and the associated spectral

vectors, respectively, given by

ζi := z◦ + (−1)i‖z•‖ (4.2)

and

ui :=

⎧
⎪⎨

⎪⎩

1

2

(
1, (−1)i

z•
‖z•‖

)
, if z• �= 0,

1

2

(
1, (−1)iw

)
, otherwise,

(4.3)

with any vector w ∈ R
l−1 satisfying ‖w‖ = 1. Clearly, decomposition (4.1) is unique

for the case z• �= 0. Define the projection of a given vector z ∈ R
l onto a convex set

Ω as
ΠΩ(z) := argmin

{‖z′ − z‖ | z′ ∈ Ω
}
.

Then, the projection of z ∈ R
l onto the second-order cone Kl can be further written

explicitly as
ΠKl (z) := max {0, ζ1} u1 + max {0, ζ2} u2, (4.4)

where ζi and ui (i = 1, 2) are defined by (4.2) and (4.3), respectively. We refer the
readers to [29] for the detailed derivation of (4.4).

Taking a close look at the SPA (see [5, Algorithm 1]), there is a notable relaxation
factor α in the projection scheme, which was taken as α = 1 in [18]. In fact, such a
constant α actually plays an important role in enlarging the step size sk to achieve the
acceleration of SPA in practice (see the numerical results reported in [5]). Here, we
can take α ∈ (1, 8) empirically to speed up the convergence.

Throughout the experiments, we wrote the code in Matlab R2012b and con-
ducted the numerical experiments on a TOSHIBA notebook with Intel(R) Core(TM)
i7-5600U CPU 2.60 GHz and 8GB RAM running on Windows 7 Home Premium
operating system.
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In our experiments, we consider two concrete examples, where the underlying
tensors A and B are symmetric. Note that A is a strictly K-positive tensor. We thus
take A as a sparse tensor throughout this section so that we can ensure and verify the
strict K-positiveness of A. Note that all tensors here are symmetric, and we only list
the nonzero upper triangular entries.

Example 4.1 We consider two 4-order 4-dimensional symmetric tensors A and B,
where the second-order cone is specified asK := K2 ×K2. The tensorsA and B take
their components as listed in Tables 1 and 2, respectively.

Example 4.2 This example deals with two 4-order 6-dimensional symmetric tensors
A and B, where all components of B are normally distributed in (−2, 2) and then
rounded to one digit by utilizing theMatlab script ‘roundn’. The second-order cone
is given by K := K4 ×K2, and both tensors A and B are specified as listed in Tables
3 and 4, respectively.

Following the suggestion in [5], we use

RelErr: = ‖y(k)‖ :=
∥∥∥B(x (k))m−1 − λkA(x (k))m−1

∥∥∥ � Tol (4.5)

to be the termination criterion and attain an approximate numerical solution with a
preset tolerance ‘Tol’. Now, we test four scenarios of ‘Tol’ by setting Tol := {

10−3 ,
5× 10−4, 10−4, 5 × 10−5

}
. In our experiments, we consider two cases of the starting

point u(0) ∈ K, which is generated in two steps. The first step is that we generate two
vectors z(0): one is a vector of ones, i.e., z(0) = (1, · · · , 1)T and the other one is a

Table 1 Nonzero components of the symmetric tensor A for Example 4.1

a1111 = 2 a1311 = 3 a2211 = 3 a3311 = 3 a4411 = 2 a1122 = 2
a1322 = 2 a2222 = 3 a3322 = 3 a4422 = 3 a1133 = 2 a1333 = 3
a2233 = 2 a3333 = 2 a4433 = 2 a1144 = 3 a1344 = 3 a2244 = 3
a3344 = 2 a4444 = 2 a1212 = 2 a2312 = 2 a1113 = 3 a1313 = 2
a2213 = 2 a3313 = 3 a4413 = 3 a1414 = 3 a3414 = 2 a1223 = 3
a2323 = 3 a2424 = 3 a1434 = 2 a3434 = 3

Table 2 Nonzero components of the symmetric tensor B for Example 4.1

b1111 = 1 b1311 = 1 b2211 = 3 b2311 = 1 b2411 = −1 b4411 = −2
b1122 = 1 b1322 = 2 b1422 = 1 b2222 = 2 b2322 = 1 b2422 = −1
b3422 = 1 b4422 = 1 b1133 = −2 b1233 = 1 b1333 = 1 b2233 = −2
b2433 = −1 b3333 = −1 b3433 = 1 b4433 = −1 b1444 = 1 b2244 = −1
b2444 = −1 b3344 = 1 b4444 = −1 b1112 = 1 b1312 = −1 b1412 = −1
b2212 = −1 b2312 = 1 b3412 = 1 b4412 = −1 b2213 = −2 b3313 = 1
b3413 = 1 b4413 = 1 b1214 = 2 b1414 = 1 b2214 = 1 b2314 = 1
b2414 = 2 b1423 = 1 b2223 = 1 b3323 = 2 b4423 = 1 b1124 = −2
b1224 = −1 b1324 = 1 b2324 = 1 b3324 = 1 b3424 = 1 b1134 = −2
b1234 = 1 b1434 = 1 b2234 = −2 b4434 = −1
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Table 3 Nonzero components of the symmetric tensor A for Example 4.2

a1111 = 2 a1511 = 3 a2211 = 3 a3311 = 2 a4411 = 2 a5511 = 3
a6611 = 2 a1212 = 2 a2512 = 2 a1313 = 3 a3313 = 3 a3513 = 2
a1414 = 3 a4514 = 2 a1115 = 2 a1515 = 3 a2215 = 3 a3315 = 3
a4415 = 3 a6615 = 3 a1616 = 2 a5616 = 3 a1122 = 2 a1522 = 2
a2222 = 2 a3322 = 2 a4422 = 2 a5522 = 3 a6622 = 2 a2323 = 3
a2424 = 3 a1225 = 2 a2525 = 3 a2626 = 2 a1133 = 2 a1533 = 2
a2233 = 2 a3333 = 2 a4433 = 3 a5533 = 2 a6633 = 3 a3434 = 2
a1335 = 3 a3535 = 2 a3636 = 2 a1144 = 3 a1544 = 3 a2244 = 3
a3344 = 3 a4444 = 2 a5544 = 2 a6644 = 2 a1445 = 3 a4545 = 2
a4646 = 2 a1155 = 2 a1555 = 2 a2255 = 2 a3355 = 3 a4455 = 3
a6655 = 2 a1656 = 2 a5656 = 3 a1166 = 3 a1566 = 2 a2266 = 2
a3366 = 2 a4466 = 2 a5566 = 2 a6666 = 2.

Table 4 Nonzero components of the symmetric tensor B for Example 4.2

b1111 = −1.0 b1211 = 1.1 b1311 = 1.0 b1411 = −0.4 b1511 = 0.8 b1611 = −0.3
b2211 = 0.1 b2311 = −0.3 b2411 = −0.8 b2511 = −0.1 b2611 = −0.1 b3311 = 0.2
b3411 = 0.9 b3511 = −0.3 b3611 = −1.0 b4411 = 1.2 b4511 = 0.4 b4611 = −0.6
b5511 = 1.4 b5611 = 0.2 b6611 = 0.5 b1112 = −2.6 b1212 = 1.0 b1312 = −0.7
b1412 = −1.2 b1512 = 1.5 b1612 = 0.3 b2212 = 0.8 b2312 = 0.4 b2412 = −0.4
b2612 = 0.3 b3312 = −2.3 b3412 = 0.8 b3512 = −0.6 b3612 = 0.7 b4412 = −0.5
b4512 = −2.2 b4612 = 0.7 b5512 = −1.6 b5612 = 0.2 b1113 = 0.1 b1213 = 0.3
b1313 = −0.1 b1413 = 0.3 b1513 = −1.1 b1613 = −0.6 b2213 = −0.3 b2313 = −0.3
b2413 = −0.6 b2513 = 1.0 b2613 = 0.1 b3313 = −1.2 b3413 = −0.3 b3513 = −1.8
b3613 = 0.3 b4413 = −0.7 b4513 = 0.5 b4613 = 0.3 b5513 = −0.2 b5613 = 1.0
b6613 = 0.9 b1114 = 1.0 b1214 = −0.8 b1414 = −0.1 b1514 = −0.4 b1614 = 0.4
b2214 = 1.7 b2314 = 1.0 b2414 = 0.6 b2514 = 0.2 b2614 = 1.4 b3314 = 0.4
b3414 = −0.9 b3514 = −0.6 b3614 = 0.3 b4414 = −0.3 b4514 = 0.2 b4614 = 0.3
b5514 = −1.0 b5614 = 0.2 b6614 = −0.8 b1115 = 0.1 b1215 = 0.3 b1315 = 0.3
b1415 = −0.1 b1615 = −0.2 b2215 = −0.5 b2315 = −0.7 b2415 = 0.7 b2515 = −0.1
b2615 = −0.2 b3315 = 0.4 b3415 = −0.2 b3515 = 1.8 b3615 = 0.4 b4415 = −1.1
b4515 = 0.4 b4615 = −0.1 b5515 = −1.2 b5615 = −0.4 b6615 = −1.2 b1116 = 1.2
b1216 = 1.6 b1316 = 0.4 b1416 = −0.3 b1516 = 1.4 b1616 = 0.2 b2216 = 0.2
b2316 = 0.8 b2416 = −1.1 b2516 = −0.4 b2616 = 0.1 b3316 = −0.1 b3416 = −0.6
b3516 = 0.1 b3616 = −0.6 b4416 = −0.7 b4516 = −0.7 b4616 = 0.8 b5516 = 0.8
b5616 = −0.5 b6616 = −1.2 b1122 = 0.6 b1222 = −1.2 b1322 = −1.4 b1422 = −1.2
b1522 = 0.3 b1622 = −0.4 b2222 = −0.4 b2322 = 0.5 b2422 = 1.2 b2522 = 1.1
b2622 = −0.8 b3322 = 0.9 b3422 = 0.4 b3522 = 1.0 b3622 = −0.3 b4422 = 0.3
b4522 = −0.1 b4622 = 0.6 b5522 = 0.3 b5622 = 1.0 b6622 = 0.1 b1123 = 0.9
b1223 = 0.3 b1323 = 1.4 b1423 = −0.8 b1523 = −0.7 b1623 = 0.5 b2223 = 1.0
b2323 = −0.5 b2423 = −0.9 b2523 = −0.1 b2623 = −1.4 b3323 = −0.6 b3523 = 0.1
b3623 = 0.4 b4423 = 1.5 b4523 = 0.8 b4623 = 0.1 b5523 = 0.2 b5623 = 1.7
b6623 = 0.6 b1124 = 0.2 b1224 = −0.2 b1324 = −0.6 b1424 = −1.2 b1524 = −0.7
b1624 = 0.8 b2224 = −0.4 b2324 = 0.5 b2424 = −0.1 b2524 = −0.5 b2624 = 0.6
b3324 = 2.3 b3424 = 0.4 b3524 = 0.2 b3624 = −1.1 b4424 = −1.1 b4524 = 0.9
b4624 = −0.9 b5624 = −0.9 b6624 = −0.6 b1125 = 0.7 b1225 = 0.5 b1325 = −0.8
b1425 = 1.2 b1525 = 0.3 b1625 = −0.4 b2225 = −0.9 b2425 = 0.1 b2525 = −0.1
b2625 = 1.1 b3325 = −2.1 b3425 = −0.8 b3525 = 0.5 b3625 = −0.4 b4425 = −0.1
b4525 = 0.5 b4625 = 0.7 b5525 = 0.3 b5625 = −0.7 b6625 = −1.6 b1126 = −2.0
b1226 = 1.1 b1326 = 0.6 b1426 = 1.3 b1526 = 0.6 b1626 = −0.5 b2226 = 1.0
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Table 4 continued

b2326 = 0.5 b2426 = 0.4 b2526 = −0.2 b2626 = 0.4 b3326 = 1.7 b3426 = 0.7
b3526 = −0.4 b3626 = 0.1 b4426 = −0.4 b4526 = −0.7 b4626 = 0.2 b5526 = 0.2
b5626 = −0.7 b6626 = 0.5 b1133 = −0.5 b1233 = 0.8 b1333 = 0.9 b1433 = −0.3
b1533 = 0.1 b1633 = 0.6 b2233 = −1.1 b2333 = 0.3 b2433 = −0.6 b2533 = −1.1
b2633 = −1.2 b3333 = 0.8 b3433 = −0.6 b3533 = 1.5 b3633 = 0.8 b4433 = −1.5
b4533 = −0.3 b4633 = 0.7 b5533 = −0.1 b5633 = 0.2 b6633 = 1.6 b1134 = −0.9
b1234 = 0.7 b1334 = −0.4 b1434 = −0.6 b1534 = 0.2 b1634 = 0.4 b2234 = −0.2
b2334 = −0.4 b2434 = −1.0 b2534 = −0.3 b2634 = 1.6 b3334 = 1.0 b3434 = 0.1
b3534 = −0.6 b3634 = 1.3 b4434 = 1.0 b4534 = 0.9 b4634 = −1.0 b5534 = −1.3
b5634 = 1.1 b6634 = 2.3 b1135 = −2.3 b1235 = −0.1 b1335 = −0.2 b1435 = −0.1
b1535 = 0.2 b1635 = −0.3 b2235 = −0.3 b2335 = −0.3 b2435 = −0.1 b2535 = −0.3
b2635 = −0.9 b3335 = −0.4 b3435 = 0.1 b3535 = 0.4 b4435 = −0.4 b4535 = 0.1
b4635 = −0.2 b5535 = 1.6 b5635 = −0.9 b6635 = −0.4 b1136 = 1.1 b1236 = 0.5
b1336 = 0.2 b1436 = −0.5 b1536 = −0.3 b1636 = −0.1 b2236 = 0.2 b2336 = −0.2
b2436 = −0.5 b2536 = −0.6 b2636 = 0.1 b3336 = −0.6 b3436 = 1.4 b3536 = 0.6
b3636 = 0.1 b4436 = −0.7 b4536 = 0.7 b4636 = 0.9 b5536 = 1.0 b5636 = 0.2
b6636 = −1.0 b1144 = −1.4 b1244 = −0.8 b1344 = 0.6 b1444 = −2.2 b1544 = −0.3
b1644 = 0.9 b2244 = −1.1 b2344 = 0.6 b2444 = −0.5 b2544 = 0.2 b2644 = −0.7
b3344 = 1.6 b3444 = −0.8 b3544 = 0.1 b3644 = −0.5 b4444 = −0.8 b4544 = 0.3
b4644 = 0.4 b5544 = −0.3 b5644 = 0.4 b6644 = 1.1 b1145 = −1.3 b1245 = −0.6
b1445 = −1.3 b1545 = −0.2 b1645 = 0.2 b2345 = 0.2 b2445 = 0.1 b2545 = −1.5
b2645 = 0.4 b3345 = 0.2 b3445 = −0.8 b3545 = 0.9 b3645 = −0.3 b4445 = 0.5
b4545 = 1.6 b4645 = 1.6 b5545 = 1.5 b5645 = −0.9 b6645 = −0.6 b1246 = 1.1
b1346 = 0.1 b1446 = 0.6 b1546 = 0.7 b1646 = 0.5 b2246 = 0.4 b2346 = 0.3
b2446 = −0.3 b2546 = −0.3 b2646 = 0.4 b3346 = 0.6 b3446 = 0.4 b3546 = −1.0
b3646 = −0.1 b4446 = 0.5 b4546 = 0.2 b4646 = 0.9 b5546 = 0.8 b5646 = 0.5
b6646 = −1.8 b1155 = 0.4 b1255 = 2.2 b1355 = 1.1 b1455 = 1.0 b1555 = −0.1
b1655 = 0.9 b2255 = −1.1 b2355 = 0.1 b2455 = 0.5 b2555 = 0.2 b2655 = −0.7
b3355 = −0.7 b3455 = 0.4 b3555 = 0.9 b3655 = 0.3 b4455 = −0.9 b4555 = −0.2
b4655 = −1.0 b5555 = −0.2 b6655 = −0.4 b1156 = −0.5 b1256 = −0.5 b1356 = −0.7
b1456 = 0.4 b1556 = 0.1 b1656 = 0.1 b2256 = 0.3 b2356 = 0.8 b2456 = 0.1
b2556 = −0.1 b2656 = 0.7 b3356 = −0.8 b3456 = −0.3 b3556 = 0.5 b3656 = −0.8
b4456 = −0.5 b4656 = 0.9 b5556 = −0.2 b5656 = 0.2 b6656 = −0.6 b1166 = 1.5
b1266 = −0.6 b1366 = 0.6 b1466 = −1.3 b1566 = 1.2 b1666 = 0.5 b2266 = −0.4
b2466 = 0.9 b2566 = −0.2 b2666 = 0.3 b3366 = −0.2 b3466 = 0.5 b3566 = −1.7
b3666 = −0.6 b4466 = 1.8 b4566 = −1.1 b4666 = 0.6 b5566 = −0.4 b5666 = 0.4
b6666 = −1.0

random vector uniformly distributed in (0, 1). Then, to guarantee the starting point
u(0) ∈ K, we project the intermediate vectors z(0) onto the second-order cone K, i.e.,
u(0) = ΠK(z(0)) in the second step.As suggested in [5],we throughout the experiments
take α as α = 5. To support that the SPA is reliable for finding one of solutions of
SOCTEiCPs, we report the number of iterations (‘Iter.’), computing time in seconds
(‘Time’), the relative error (‘RelErr’) defined by (4.5), eigenvalue (‘EigValue’), and the
associated eigenvector (‘EigVector’). The numerical results with respect to different
initial points are listed in Tables 5 and 6, respectively.

It can be easily seen from the data reported in Tables 5 and 6 that the SPA can
successfully find some eigenvector–eigenvalue pairs of SOCTEiCPs, even though it
seems that the number of iterations increases significantly as the precision improve-
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ment on solutions. All numerical results sufficiently show that the SPA is a reliable
solver for SOCTEiCPs.

5 Conclusions

We study a class of SOCTEiCPs, which generalize the SOCEiCP for matrices
introduced in recent papers [27,28]. Although SOCTEiCP (1.2) is a specific case of
TGEiCP, we propose a new potentially helpful variational inequality reformulation
for the problem under consideration. As we know, variational inequality is a powerful
tool for mathematics analysis. Thus, such a variational inequality characterization
might help us analyze further properties of SOCTEiCP (1.2), which are also our
future concerns. Besides, we consider a special case of SOCTEiCP (1.2) with two
symmetric tensors A and B, and present a nonlinear programming reformulation. To
break through the limitation of the symmetry condition, we discuss a class of slightly
general SOCTEiCPs with sub-symmetric tensors, and similarly show that solving
the sub-symmetric SOCTEiCP reduces to finding a stationary point of a nonlinear
programming problem. However, our results do not completely break the bottleneck of
(sub-) symmetry condition, and in the future, we will study more general SOCTEiCPs
in the absence of symmetric and sub-symmetric properties.

Acknowledgements The authors would like to thank the two anonymous referees for their careful reading
and valuable comments, which help us improve the presentation of this paper greatly.
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