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Abstract Linear programming is the core problem of various operational research
problems. The dominant approaches for linear programming are simplex and interior
point methods. In this paper, we show that the alternating directionmethod of multipli-
ers (ADMM), which was proposed long time ago while recently found more and more
applications in a broad spectrum of areas, can also be easily used to solve the canonical
linear programming model. The resulting per-iteration complexity is O(mn) wherem
is the constraint number and n the variable dimension. At each iteration, there are m
subproblems that are eligible for parallel computation; each requiring only O(n) flops.
There is no inner iteration as well. We thus introduce the new ADMM approach to lin-
ear programming, which may inspire deeper research for more complicated scenarios
with more sophisticated results.
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1 Introduction

We consider the canonical linear programming (LP) model

min{cTx | aTi x � bi , i = 1, 2, · · · ,m}, (1.1)

where c, ai , i = 1, · · · ,m are given vectors in R
n and bi ∈ R. As one of the most

fundamental mathematical problems in operational research, LP has been intensively
studied in the literature. The simplex and interior point methods represent two most
important categories among different methods for LP, we refer to, e.g., [1–3] for
reviews. The purpose of this short note is to show that the alternating direction method
of multipliers (ADMM), which was originally proposed in [4] and has recently found
many impressive applications in a broad spectrumof areas, can be easily used for theLP
model (1.1). We thus aim at proposing the new ADMM approach to LP, which is com-
pletely different from the major simplex and interior point approaches in the literature.

To introduce ADMM, we consider a convex minimization problem with linear
constraints and its objective function is the sum of two functions without coupled
variables:

min
{
ϑ1(x1) + ϑ2(x2)

∣
∣A1x1 + A2x2 = b, x1 ∈ X1, x2 ∈ X2

}
, (1.2)

where Xi ⊆ R
si are nonempty closed convex sets; ϑi : Rsi → R are closed proper

convex functions and Ai ∈ R
t×si for i = 1, 2; and b ∈ R

T. Note that we use bold
letters in (1.2) because it may be in block-wise form. For example, x1 may include
more than one variable and ϑ1 may be the sum of more than one function.

Let λ ∈ R
T and β ∈ R denote the Lagrangian multiplier and penalty parameter of

(1.2), respectively. Then, the augmented Lagrangian function of (1.2) is

Lβ(x1, x2,λ) = ϑ1(x1) + ϑ2(x2) − λT(A1x1 + A2x2 − b)

+ β

2
‖A1x1 + A2x2 − b‖2. (1.3)

When the ADMM proposed in [4] is applied to (1.2), the iterative scheme reads as
⎧
⎨

⎩

xk+1
1 = argmin

{Lβ(x1, xk2,λ
k)

∣
∣ x1 ∈ X1

}
,

xk+1
2 = argmin

{Lβ(xk+1
1 , x2,λk)

∣
∣ x2 ∈ X2

}
,

λk+1 = λk − β(A1xk+1 + A2x
k+1
2 − b).

(1.4)

We refer the reader to [5–7] for some recent review papers on ADMM; in particular, its
applications in various fields such as image processing learning, statistical learning,
computer vision, wireless network, and cloud computing. It worths to mention that
these application models usually have nonlinear objective functions, but they are in
separable formand thus the decomposition over variables oftenmakes the subproblems
in (1.4) extremely easy.
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Next, we will show that after an appropriate reformulation, the LP model (1.1)
can be solved by the ADMM scheme (1.4); this application results in a per-iteration
complexity of O(mn) where m is the constraint number and n is the variable dimen-
sion. Moreover, at each iteration, there arem subproblems that are eligible for parallel
computation, and they all have closed-form solutions. Indeed, each of these subprob-
lems only requires O(n) flops. We refer to [8] for some augmented Lagrangian-based
efforts to LP.

2 Reformulation

In this section, we reformulate the LP model (1.1) as a more favorable form so that
the ADMM scheme (1.4) can be used conveniently. Without loss of generality, we
assume m is odd, i.e., m = 2l + 1 where l is an integer. For the case where m is even,
we can add a dummy constraint to make m odd (or vice versa if m is assumed to be
even).

Clearly, if we introduce auxiliary variables xi ∈ R
n for i = 1, · · · ,m and define

θi (xi ) = cTxi and Xi := {x ∈ R
n | aTi x � bi }, i = 1, · · · ,m,

the LP model (1.1) can be written as

min
m∑

i=1
θi (xi )

s.t.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I −I
I −I

I −I
. . .

. . .

. . .
. . .

I −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
x3
...

xm−1
xm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0.

xi ∈ Xi , i = 1, · · · ,m.

(2.1)

Let us denote by A the coefficient matrix in (2.1). Then we have

A = (A1, A2, · · · , Am) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I −I
I −I

I −I
. . .

. . .

. . .
. . .

I −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(m−1)×m blocks

,
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where Ai ’s denote the columns of A. For these columns Ai ’s, we have

AT
i A j =

⎧
⎪⎪⎨

⎪⎪⎩

I, if i = j = 1 or i = j = m,

2I, if 1 �= i = j �= m,

−I, if |i − j | = 1,
0, otherwise.

Further, let us regroup the variables, functions, and constraint sets in (2.1) as

x1 =

⎛

⎜
⎜
⎜
⎝

x1
x3
...

xm

⎞

⎟
⎟
⎟
⎠

, x2 =

⎛

⎜
⎜
⎜
⎝

x2
x4
...

xm−1

⎞

⎟
⎟
⎟
⎠

,

A1 = (A1, A3, · · · , Am), A2 = (A2, A4, · · · , Am−1),

ϑ1(x1) = θ1(x1) + θ3(x3) + · · · + θm(xm),

ϑ2(x2) = θ2(x2) + θ4(x4) + · · · + θm−1(xm−1),

and

X1 = X1 × X3 × · · · × Xm, X2 = X2 × X4 × · · · × Xm−1.

Then, the model (2.1) is a special case of the block-wise model (1.2) with the specifi-
cations above and b = 0. Thus, the ADMM scheme (1.4) is applicable. Note that we
additionally have the following identities:

AT
1A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I
2I

. . .

2I
I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

m+1
2 blocks

, AT
2A2 =

⎛

⎜
⎜
⎜
⎝

2I
2I

. . .

2I

⎞

⎟
⎟
⎟
⎠

m−1
2 blocks

,

and

AT
i A j =

{
0, if |i − j | > 1,
−I, if |i − j | = 1,

(2.2)

which are actually important facts thatmake the implementation of theADMMscheme
(1.4) extremely easy.

3 Application of ADMM for LP

Recall we assume m = 2l + 1 in (1.1). Moreover, to implement the ADMM (1.4)
to the reformulation (2.1), the Lagrange multiplier λ can be denoted as
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λ =

⎛

⎜
⎜
⎜
⎝

λ1
λ2
...

λm−1

⎞

⎟
⎟
⎟
⎠

.

3.1 Algorithm

Now, let us elucidate the k-th iteration of theADMMscheme (1.4)when it is applied
to solve the model (2.1). More specifically, starting from given xk2 and λk , the new
iterate (xk+1

1 , xk+1
2 ,λk+1) is generated by the following steps.

Step 1 With given (xk2,λ
k), obtain

xk+1
1 = argmin

{Lβ(x1, xk2,λ
k)

∣
∣ x1 ∈ X1

}

via

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

{
θ1(x1) + β

2 ‖x1 −
[
xk2 + 1

β
λk1

]
‖2 | x1 ∈ X1

}
,

For p = 1, · · · , l − 1, do
xk+1
2p+1 = argmin{θ2p+1(x2p+1) + β‖x2p+1 − qp‖2|x2p+1 ∈ X2p+1},
where qp = 1

2

[(
xk2p + xk2(p+1)

)
+ 1

β

(
−λk2p + λk2p+1

)]
.

xk+1
2l+1 = argmin

{
θ2l+1(x2l+1) + β

2 ‖x2l+1 −
[
xk2l − 1

β
λk2l

]
‖2|x2l+1 ∈ X2l+1

}
.

(3.1a)

Step 2 With given (xk+1
1 ,λk), obtain

xk+1
2 = argmin

{Lβ(xk+1
1 , x2,λk)

∣
∣ x2 ∈ X2

}

via

⎧
⎪⎨

⎪⎩

For p = 1, · · · , l, do
xk+1
2p = argmin{θ2p(x2p) + β‖x2p − qp‖2|x2p ∈ X2p},
where qp = 1

2

[(
xk+1
2p−1 + xk+1

2p+1

)
+ 1

β

(
−λk2p−1 + λk2p

)]
.

(3.1b)

Step 3 Update the Lagrange multipliers λk+1 = λk − β
(
A1x

k+1
1 + A2x

k+1
2

)
via

λk+1
p = λkp − β

(
xk+1
p − xk+1

p+1

)
, p = 1, 2, · · · ,m − 1. (3.1c)

3.2 An Illustrative Example

Let us take the particular example of (1.1) with m = 5 and see how to implement
the ADMM (1.4). That is, we consider the specific case of (2.1):
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min θ1(x1) + θ2(x2) + θ3(x3) + θ4(x4) + θ5(x5)

s.t.

⎛

⎜
⎜
⎝

I −I
I −I

I −I
I −I

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
x3
x4
x5

⎞

⎟
⎟
⎟
⎟
⎠

= 0

xi ∈ Xi , i = 1, · · · , 5.

(3.2)

For the coefficient matrix A in (3.2), we have

A1 =

⎛

⎜
⎜
⎝

I
0
0
0

⎞

⎟
⎟
⎠ , A2 =

⎛

⎜
⎜
⎝

−I
I
0
0

⎞

⎟
⎟
⎠ , A3 =

⎛

⎜
⎜
⎝

0
−I
I
0

⎞

⎟
⎟
⎠ , A4 =

⎛

⎜
⎜
⎝

0
0

−I
I

⎞

⎟
⎟
⎠ and A5 =

⎛

⎜
⎜
⎝

0
0
0

−I

⎞

⎟
⎟
⎠ .

(3.3)

We suggest regrouping this model as

min
(
θ1(x1) + θ3(x3) + θ5(x5)

) + (
θ2(x2) + θ4(x4)

)

s.t.

⎛

⎜
⎜
⎝

I
−I
I

−I

⎞

⎟
⎟
⎠

⎛

⎝
x1
x3
x5

⎞

⎠ +

⎛

⎜
⎜
⎝

−I
I

−I
I

⎞

⎟
⎟
⎠

(
x2
x4

)
= 0

x1 ∈ X1, x3 ∈ X3, x5 ∈ X5; x2 ∈ X2, x4 ∈ X4.

(3.4)

Then, using these notation:

x1 =
⎛

⎝
x1
x2
x3

⎞

⎠ , x2 =
(
x2
x4

)
, A1 = (A1, A3, A5), A2 = (A2, A4),

ϑ1(x1) = θ1(x1) + θ3(x3) + θ5(x5), ϑ2(x2) = θ2(x2) + θ4(x4),

(3.5)

and

X1 = X1 × X3 × X5, X2 = X2 × X4,

the model (3.2) is reformulated as a special case of (1.2) with

AT
1A1 =

⎛

⎝
I
2I

I

⎞

⎠
5+1
2 blocks

and AT
2A2 =

(
2I

2I

)

5−1
2 blocks

.

To execute the k-th iteration of the ADMM (1.4) for the problem (3.4), we start
with the given iterate
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xk2 =
(
xk2
xk4

)
and λk =

⎛

⎜
⎜
⎝

λk1
λk2
λk3
λk4

⎞

⎟
⎟
⎠ .

Below, let us explain how to solve the resulting subproblems (3.1a) and (3.1b).

(1) Obtain xk+1
1 = argmin

{Lβ(x1, xk2,λ
k)

∣
∣ x1 ∈ X1

}
.

The first step of (1.4) is
⎛

⎜
⎜
⎝

xk+1
1

xk+1
3

xk+1
5

⎞

⎟
⎟
⎠ = argmin

⎧
⎪⎨

⎪⎩

θ1(x1) + θ3(x3) + θ5(x5) + θ2(xk2 ) + θ4(xk4 )

−(λk)T
(
A1x1 + A3x3 + A5x5 + (A2xk2 + A4xk4 )

)

+β
2 ‖A1x1 + A3x3 + A5x5 + (A2xk2 + A4xk4 )‖2

∣
∣
∣
∣
∣
∣
∣

x1 ∈ X1,

x3 ∈ X3,

x5 ∈ X5

⎫
⎪⎬

⎪⎭

= argmin

⎧
⎪⎨

⎪⎩

θ1(x1) + θ3(x3) + θ5(x5)

−(λk)T
(
A1x1 + A3x3 + A5x5

)

+β
2 ‖(A1x1 + A3x3 + A5x5

) + (A2xk2 + A4xk4 )‖2

∣
∣
∣
∣
∣
∣
∣

x1 ∈ X1,

x3 ∈ X3,

x5 ∈ X5

⎫
⎪⎬

⎪⎭
.

(3.6)

Note that we get the second equation in (3.6) by ignoring some constant terms in its
objective function. Notice that the first-order optimality condition of the optimization
problem (3.6) is

(
xk+1
1 , xk+1

3 , xk+1
5

)
∈ X1 × X3 × X5,

⎛

⎜
⎜
⎜
⎝

θ1(x1) − θ1(x
k+1
1 )

+θ3(x3) − θ3(x
k+1
3 )

+θ5(x5) − θ5(x
k+1
5 )

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

x1 − xk+1
1

x3 − xk+1
3

x5 − xk+1
5

⎞

⎟
⎟
⎟
⎠

T

×

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
−AT1λk

−AT3λk

−AT5λk

⎞

⎠ + β

⎛

⎜
⎜
⎝

AT1

AT3

AT5

⎞

⎟
⎟
⎠

[
(
A1x

k+1
1 + A3x

k+1
3 + A5x

k+1
5

) + (
A2x

k
2 + A4x

k
4

)
]
⎫
⎪⎪⎬

⎪⎪⎭

� 0, ∀ (x1, x3, x5) ∈ X1 × X3 × X5.

It follows from the orthogonal property (2.2) that (xk+1
1 , xk+1

3 , xk+1
5 ) ∈ X1×X3×X5,

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ1(x1) − θ1(x
k+1
1 ) + (x1 − xk+1

1 )T
{−AT

1λk + βAT
1

[
A1x

k+1
1 + A2xk2

]} � 0, ∀x1 ∈ X1,

θ3(x3) − θ3(x
k+1
3 ) + (x3 − xk+1

3 )T
{−AT

3λk + βAT
3

[
A3x

k+1
3 + (A2xk2 + A4xk4 )

]} � 0, ∀x3 ∈ X3,

θ5(x5) − θ5(x
k+1
5 ) + (x5 − xk+1

5 )T
{−AT

5λk + βAT
5

[
A5x

k+1
5 + A4xk4

]} � 0, ∀x5 ∈ X5.

According to the structure A j in (3.3), we further have (xk+1
1 , xk+1

3 , xk+1
5 ) ∈ X1 ×

X3 × X5 and
⎧
⎪⎪⎨

⎪⎪⎩

θ1(x1) − θ1(x
k+1
1 )+ (x1 − xk+1

1 )T
{−λk1 + β[xk+1

1 − xk2 ]
}

� 0, ∀x1 ∈ X1,

θ3(x3) − θ3(x
k+1
3 )+ (x3 − xk+1

3 )T
{
(λk2 − λk3) + β[2xk+1

3 − (xk2 + xk4 )]
}

� 0, ∀x3 ∈ X3,

θ5(x5) − θ5(x
k+1
5 )+ (x5 − xk+1

5 )T
{
λk4 + β[xk+1

5 − xk4 ]
}

� 0, ∀x5 ∈ X5.
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Based on these inequalities, the solution of (3.6) can be obtained via

⎧
⎪⎨

⎪⎩

xk+1
1 = argmin{θ1(x1) + β

2 ‖x1 − [xk2 + 1
β
λk1]‖2

∣
∣ x1 ∈ X1},

xk+1
3 = argmin{θ3(x3) + β‖x3 − 1

2 [(xk2 + xk4 ) + 1
β
(−λk2 + λk3)]‖2

∣
∣ x3 ∈ X3},

xk+1
5 = argmin{θ5(x5) + β

2 ‖x5 − [xk4 − 1
β
λk4]‖2

∣
∣ x5 ∈ X5}.

(3.7)

This is just the concrete form of (3.1a) for the case where l = 2.

(2) Obtain xk+1
2 = argmin

{Lβ(xk+1
1 , x2,λk)

∣
∣ x2 ∈ X2

}
.

The second step of the k-th iteration of (1.4) is

(
xk+1
2

xk+1
4

)

= argmin

⎧
⎪⎪⎨

⎪⎪⎩

(
θ1(x

k+1
1 ) + θ3(x

k+1
3 ) + θ5(x

k+1
5 )

) + (
θ2(x2) + θ4(x4)

)

−(λk)T
(
(A1x

k+1
1 + A3x

k+1
3 + A5x

k+1
5 + (A2x2 + A4x4)

)

+ β
2 ‖(A1x

k+1
1 + A3x

k+1
3 + A5x

k+1
5

) + (A2x2 + A4x4)‖2

∣
∣
∣
∣
∣
∣
∣

x2 ∈ X2,

x4 ∈ X4,

⎫
⎪⎪⎬

⎪⎪⎭

= argmin

{
θ2(x2) + θ4(x4) − (λk)T

(
A2x2 + A4x4

)+
β
2 ‖(A1x

k+1
1 + A3x

k+1
3 + A5x

k+1
5

) + (
A2x2 + A4x4

)‖2

∣
∣
∣
∣
∣

x2 ∈ X2,

x4 ∈ X4

}

.

(3.8)

Again,we get the second equation in (3.8) by ignoring some constant terms in its objec-
tive function. Since the first-order optimality condition of the optimization problem
(3.8) is

(
xk+1
2 , xk+1

4

)
∈ X2 × X4,

⎛

⎝
θ2(x2) − θ2

(
xk+1
2

)

+θ4(x4) − θ4

(
xk+1
4

)

⎞

⎠ +
(
x2 − xk+1

2

x4 − xk+1
4

)T

×
{(

−AT
2λk

−AT
4λk

)

+β

(
AT
2

AT
4

)
[(

A2x
k+1
2 +A4x

k+1
4

)
+

(
A1x

k+1
1 +A3x

k+1
3 +A5x

k+1
5

)]
}

� 0, ∀ (x2, x4) ∈ X2 × X4,

it follows from the orthogonal property (2.2) that (xk+1
2 , xk+1

4 ) ∈ X2 × X4, and
{

θ2(x2) − θ2(x
k+1
2 ) + (x2 − xk+1

2 )T
{−AT

2λk + βAT
2

[
A2x

k+1
2 + (A1x

k+1
1 + A3x

k+1
3 )

]} � 0, ∀x2 ∈ X2,

θ4(x4) − θ4(x
k+1
4 ) + (x4 − xk+1

4 )T
{−AT

4λk + βAT
4

[
A4x

k+1
4 + (A3x

k+1
3 + A5x

k+1
5 )

]} � 0, ∀x4 ∈ X4.

According to the structure A j in (3.3), we further have (xk+1
2 , xk+1

4 ) ∈ X2 × X4, and
{

θ2(x2) − θ2(x
k+1
2 )+ (x2 − xk+1

2 )T
{
(λk1 − λk2) + β[2xk+1

2 − (xk+1
1 + xk+1

3 )]} � 0, ∀x2 ∈ X2,

θ4(x4) − θ4(x
k+1
4 )+ (x4 − xk+1

4 )T
{
(λk3 − λk4) + β[2xk+1

4 − (xk+1
3 + xk+1

5 )]} � 0, ∀x4 ∈ X4.
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Thus, the solution of (3.8) can be obtained via
{
xk+1
2 = argmin{θ2(x2) + β‖x2 − 1

2 [(xk+1
1 + xk+1

3 ) + 1
β
(−λk1 + λk2)]‖2

∣
∣ x2 ∈ X2},

xk+1
4 = argmin{θ4(x4) + β‖x4 − 1

2 [(xk+1
3 + xk+1

5 ) + 1
β
(−λk3 + λk4)]‖2

∣
∣ x4 ∈ X4}.

(3.9)

This is just the concrete form of (3.1b) for the case where l = 2.

3.3 Subproblems

Recall that when the LP model (1.1) is considered, we have

Xi = {x ∈ R
n | aTi x � bi }, i = 1, · · · ,m,

in (2.1). It is thus clear that when the ADMM scheme (1.4) is used to solve (1.1), the
computation at each iteration is dominated by the subproblems in form of

min{‖xi − qi‖2 | xi ∈ R
n, aTi xi � bi }, i = 1, · · · ,m,

where ai , qi ∈ R
n are given vectors and bi ∈ R is a given scalar. In this subsection,

we discuss how to solve these subproblems. The main result is summarized in the
following theorem.

Theorem 3.1 For given a, q ∈ R
n and b ∈ R, we have

argmin{‖x − q‖2 | x ∈ R
n, aTx � b} = q +

(
b − aTq

aTa

)

+
a. (3.10)

Proof First, for any q ∈ R
n , we know that

q1 = p+, q2 = (−p)+

are the unique decompositions satisfying the following conditions:

q = q1 − q2, 0 � q1 ⊥ q2 � 0. (3.11)

Note that the Lagrangian function of the minimization problem in (3.10) is

L(x, λ) = ‖x − q‖2 − λ(aTx − b).

The first-order optimality condition is

2(x − q) − λa = 0, (3.12a)

0 � λ ⊥ aTx − b � 0. (3.12b)
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Left multiplying aT to (3.12a), we get

(
aTx − b

)
− 1

2
λaTa = aTq − b.

Using (3.12b) and (3.11), we get

aTx − b =
(
aTq − b

)

+ ,
1

2
λaTa = [−(aTq − b)]+,

and thus

λ = 2
[b − aTq

aTa

]

+.

Substituting it into (3.12a), we obtain the assertion (3.10) immediately.

This theorem thus shows that when the ADMM scheme (1.4) is applied to (1.1),
all the resulting subproblems have closed-form solutions. This ADMM application
is thus easy to be implemented. Moreover, as shown, at each iteration, there are m
subproblems that are eligible for parallel computation; each of them only requires
O(n) flops. We summarize this complexity result in the following theorem.

Theorem 3.2 When the ADMM scheme (1.4) is applied to (1.1) via the reformula-
tion (2.1), at each iteration, there are m subproblems that are eligible for parallel
computation; each of them only requires O(n) flops.

4 Extension

We can easily extend our previous analysis to the LP model with equality con-
straints:

min{cTx | aTi x = bi , i = 1, 2, · · · ,m, x � 0}. (4.1)

Indeed, we can reformulate (4.1) as

min
m∑

i=1
θi (xi )

s.t.

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I −I
I −I

. . .
...

I −I
I −I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
...

xm−1
xm
y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0,

xi ∈ Xi = {x ∈ R
n | aTi x = bi }, i = 1, · · · ,m,

y ∈ Y = {y ∈ R
n | y � 0}.

(4.2)
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with θi (xi ) = cTxi for i = 1, · · · ,m. Furthermore, (4.2) can be regrouped as

x1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1
x2
...

xm−1
xm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, x2 = y, A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

I
I

. . .

I
I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−I
−I
...

−I
−I

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

which is a special case of (1.2), and thus the ADMM scheme (1.4) can be applied.
Note that for the case (4.2), A1 is an identity matrix and A2 can be viewed a “one
column” matrix. Thus, as the analysis in Sect. 3, the resulting subproblems are all
easy. Indeed, these subproblems have the forms of

min{‖x − q‖2 | x ∈ R
n, aTx = b} or min{‖x − q‖2 | x ∈ R

n+},

whose closed-form solutions can be given by

q +
(
b − aTq

aTa

)
a or q+,

respectively. Similarly as the analysis in Sect. 3, the ADMM scheme (1.4) for (4.1)
also needs to solvem subproblems that are eligible for parallel computation, and each
of them only requires O(n) flops.

Remark 4.1 Note that one can artificially treat each xi ∈ R as one block of variable
and each ci xi as one function; thus the direct extension of ADMM for amultiple-block
(more than two block) can be applied to solve (4.1). However, as proved in [9], the
direct extension of ADMM is not necessarily convergent.

Finally, we mention that we can extend our techniques for the LP models (1.1) and
(4.1) to a more general model

min

{

θ(x) | x ∈
m∏

i=1

Xi

}

, (4.3)

where θ(x) : Rn → R is a convex (not necessarily linear) function and Xi ’s are closed
convex nonempty sets that are not necessarily polyhedrons given by linear equalities
or inequalities. This model (4.3) includes more applications such as the feasibility set
problems and some image restoration models. We omit the detail for succinctness.

5 Conclusions

We show that the ADMM can be used to solve the canonical LP model. The iter-
ation is easy to implement; the resulting per-iteration complexity is O(mn) where m
is the constraint number and n is the variable dimension. The ADMM approach is
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completely different from the dominating simplex and interior point approaches in
the literature. This is also a new application of ADMM that is different from most
of its known applications in the literature. To use the ADMM, we need to introduce
auxiliary variables and reformulate the LP model. The storage for variables is thus
increased by m times accordingly. But, the decomposed m subproblems at each itera-
tion are eligible for parallel computation, and each of them has a closed-form solution
which can be obtained by O(n) flops. Thus, this new ADMM approach is particularly
suitable for the LP scenario where there are many constraints and parallel computing
infrastructure is available.
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