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Abstract In this paper, we consider a block-structured convex optimization model,
where in the objective the block variables are nonseparable and they are further linearly
coupled in the constraint. For the 2-block case, we propose a number of first-order
algorithms to solve this model. First, the alternating direction method of multipliers
(ADMM) is extended, assuming that it is easy to optimize the augmented Lagrangian
function with one block of variables at each time while fixing the other block. We
prove that O (1/t) iteration complexity bound holds under suitable conditions, where
t is the number of iterations. If the subroutines of the ADMM cannot be implemented,
then we propose new alternative algorithms to be called alternating proximal gradient
method of multipliers, alternating gradient projection method of multipliers, and the
hybrids thereof. Under suitable conditions, the O (1/¢) iteration complexity bound is
shown to hold for all the newly proposed algorithms. Finally, we extend the analysis
for the ADMM to the general multi-block case.
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1 Introduction
In this paper, we consider the following model:

min f(x,y) + h1(x) + ha(y)
s.t. Ax + By =b, (1.D
xeX,ye),

wherex e R?,y e R7, A e R"*P B e R"*4, b € R™, X, ) are closed convex sets,
f is a smooth jointly convex function, and /1, hy are (possibly nonsmooth) convex
functions. The so-called augmented Lagrangian function for problem (1.1) is

Ly(x,y, 1) = f(x,y) +hi1(x) + ha(y) = AT (Ax + By — b) + gqu + By — b|%,

where A is the multiplier.

Many emerging applications from various fields can be formulated as optimization
problems in the form of (1.1). For instance, the constrained lasso (classo) problem is
described as

min 1Y = XBI5 + <l
s.t. CB < b,

(1.2)

where X € R™*P Y € R™ are the observed data, and C € R"*P b € R" are
predefined matrix and vector, respectively. The classo problem was first studied by
James et al. [1] as a generalization of the lasso problem. By introducing additional
linear constraints, [ 1] shows that many widely used statistical models can be expressed
as special cases of (1.2), including the fused lasso, generalized lasso, monotone curve
estimation, and so on. In fact, we can partition the variable 8 into blocks as f =
(,BIT, cee, ,BIT<)T where B; € RPi and partition other matrices and vectors in (1.2)
correspondingly. Moreover, if we also introduce another slack variable z, then the
classo problem can be cast in the form of (1.1) as follows:

2 K
+7 2 1IBilh
2 i=1 (1.3)

K
st. D Cifi+z=b, 2=0.
i=1

K
Y — > XiBi
i=1

min %
B

The second example is the demand response (DR) control problem in the smart grid
system [2—4]. Basically, it tries to minimize the cost incurred to a utility company which
purchases electricity from the electricity market. To achieve this, the utility company
controls the power consumption of some appliances of the users. Specifically, the
problem can be formulated as
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n + n +
min C; ((Z Wixi — p) )+ Cs ((p -2 ‘I'ixi) )+ Ca(p)
x.p i=1 i=1 (1.4)

st. x>0, p=>0,
x; €X,i=1,2,...,n,

where C,(-) and C,(-) are the cost functions that measure the insufficient and the
excessive power bids, respectively, and C,(-) is the bidding cost function; see [3]. The
variable p € R’ represents the amount of electricity that the utility company bids
from a day-ahead market, and x; is the control variable of the usage of the appliances
of customer i, and ¥; € RL>" is the matrix of the appliance load profile of customer
i, thus W;x; is the total electricity consumption of customer i; see [5]. By introducing

+

n

anew variable z = (Z Ux; — p) , the above problem can be rewritten in the form
i=1

of (1.1) as

n
I;lilgl Ci(@) + Cs (z +p—2 \Ilixi) + Ca(p)
: i=1
n
st. z+p— > Wix; >0,
i=1
220, x>0, p=20,x;€eX;,i=1,2,..,n.

(1.5)

In fact, optimization problems in the form of (1.1) have many other interesting applica-
tions in various areas including signal processing, image processing, machine learning,
and statistical learning; see [6,7] and the references therein.

In the case where no coupling term f (x, y) is in the objective, there is a well-known
algorithm—Alternating Direction Method of Multipliers (ADMM)—established for
solving (1.1). The iterative scheme of the ADMM runs as follows:

k+1
k+1

X = argmin,cy £, (x, yk, Ak),
y = argminye)i £)/ (-xk+] > Vs )"k)s (16)
Ak — gk ]/(A)Ck+l 4 Byk+1 — b).

The ADMM is known to be a manifestation of the so-called operator splitting method
which can be traced back to 1970s. Considerable amount of early studies on the ADMM
can be found in, e.g., [8—11]. The method has gained new momentum in the recent
years because of its first-order nature, and its potentials to compute distributively,
which are important characteristics for solving very large scale problem instances.
For an overview on its recent developments, one is referred to the surveys [12—15]
and the references therein. The convergence properties of the ADMM are well known.
In fact, its convergence follows from that of the so-called Douglas-Rachford operator
splitting method; see [11,16]. However, the rate of convergence was only established
recently. In particular, [17,18] show that the ADMM converges at the rate of O(1/1),
where ¢ is the number of total iterations. Furthermore, with additional conditions on the
objective function or the constraints, the ADMM can be shown to converge linearly;
see [19-22]. One extension of the ADMM is to allow multi-block of variables. That
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extension of the ADMM turns out to perform very well for many instances encountered
in practice, compared to other competing first-order alternatives. However, it may fail
to converge in general. Specifically, in [23] by constructing a counterexample, the
authors show that the ADMM may diverge with 3 blocks of variables. Therefore, it
became clear that some additional conditions will be necessary in order to guarantee
convergence, other than mere convexity. Indeed, under the strong convexity condition
on some parts of the objective and certain assumptions on the constraint matrices, [24—
27] show that an O(1/t) convergence rate can still be achieved for the multi-block
ADMM. Another direction of study is to consider applications of ADMM to solve
nonconvex problems. For instance, [28] shows that the ADMM can converge for some
restricted class of nonconvex problems.

The current paper considers the ADMM in the presence of a coupling term f in the
objective. Only a handful of papers in the literature considered this model so far, most
noticeably [7] and [6]. In [7], the authors consider the general multi-block setting and
they propose a upper-bound minimization method of multipliers (BSUMM) approach
to cope with the nonseparability of the objective in (1.1); essentially, the nonseparable
part of the augmented Lagrangian function is replaced by an upper bound. Under
some error bound conditions and a diminishing dual stepsize assumption, the authors
are able to show that the iterates produced by the BSUMM algorithm converge to
the set of primal-dual optimal solutions. Very recently, Cui et al. [6] consider the
problem (1.1) by introducing a quadratic upper bound function for the nonseparable
part of augmented Lagrangian function; they show that their algorithm has an O (1/¢)
convergence rate.

Our contribution In this paper, we study the ADMM and its variants for (1.1).
(Some adaptations of the ADMM are particularly relevant if there is a coupling term
in the objective, as the minimization subroutines required by the ADMM may become
difficult to implement; more discussions on this later.) Instead of using some upper
bound approximation (a.k.a. majorization-minimization), we work with the original
objective function. In this context, we may extend the ADMM approach directly to
solve this more general formulation. It turns out that under the assumptions that the
gradient of the coupling function V f is Lipschitz continuous and one of 41 and A3
is strongly convex, then an O(1/¢) convergence rate can still be assured. In some
applications, it is difficult or impossible to implement the ADMM iteration, because
the augmented Lagrangian function in (1.6) may be difficult to optimize even if the
other block of variables and the Lagrangian multipliers are fixed. This motivates us to
propose the Alternating Proximal Gradient Method of Multipliers (APGMM), which
essentially iterates between proximal gradient methods of each block variables before
the multiplier is updated. We show that the APGMM has a convergence rate of O(1/¢)
if V f is Lipschitz continuous. If optimizing the augmented Lagrangian function for
one block of variables is easy while optimizing the other block of variables is difficult,
then a hybrid between ADMM and APGMM is a natural choice. We show in that
case an O(1/t) convergence rate remains valid. What if the gradient proximal sub-
routines are still too difficult to be implemented? One would then opt to compute the
gradient projections. Hence, we propose the Alternating Gradient Projection Method
of Multipliers (AGPMM), which replaces the proximal gradient steps in APGMM
by the gradient projections. Fortunately, the same O(1/¢) iteration bound still holds
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for such simplifications as well as its ADMM hybrid version. At this stage, all the
methods mentioned above are considered in the context of the 2-block model (1.1).
In general however, they can be extended to the multi-block model with a coupling
term. Similarly, under the Lipschitz continuity of V f and the assumptions in [27], an
O(1/t) iteration bound still holds for the multi-block model.

The rest of the paper is organized as follows. In Sect. 2, we present some preliminary
results and notations. In Sects. 3 and 4, we introduce ADMM, APGMM, AGPMM, and
their hybrids. The results on the rate of convergence of these algorithms are presented
in the subsections of the same section, while the detailed proofs of the convergence
results are presented in Appendix 1. In Sect. 5, we extend our analysis of the ADMM to
a general setting with multiple (more than 2) blocks of variables. Finally, we conclude
the paper in Sect. 6.

2 Preliminaries

Let us first introduce some notations that will be frequently used in the analysis
later. The aggregated primal variables x, y and the primal-dual variables x, y, A are,
respectively, denoted by u and w, and the primal-dual mapping F, namely

N by —AT)
U= ( ), w:i=|y]|, Fw):= —BTa , 2.1
Y y Ax + By — b

and h(u) := f(x,y) +hi(x) + ha(y).
Throughout this paper, we assume f to be smooth and has a Lipschitz continuous
gradient; i.e.,

Assumption 2.1 The coupling function f satisfies
IVf@2) =V @l < Lllug —uill, Yur,up € X x Y, (2.2)

where L is a Lipschitz constant for V f.

For a function f satisfying Assumption 2.1, itis useful to note the following inequal-
ities.

Lemma 2.2 Suppose that function f satisfies (2.2), then we have
T L 2
fu2) < )+ V) (uz —up) + Slluz — I, (2.3)
for any uy, uy. In general, if f is also convex then
T L 2
fw2) < flu) +V[fus) (uz —up)+ Elluz —us|l”, (2.4)
forany uy, us, u3.
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136 X. Gao, S.-Z. Zhang

Inequality (2.3) is well known; see [29]. Moreover, (2.4) can be found as Fact 2 in
[30].
For convenience of the analysis, we introduce some matrix notations. Let

G 0 0 I, 0 0
0=(0 yB™B 0 ,P=[0 I, 0 |.
0 -B %1,,1 0 —yB I,
G 0 0
M:=|0 yBT™B 0 : (2.5)
0 0 %1,,1

hence, Q = M P. Given a sequence {w*}, we denote an associated auxiliary sequence
to be

)Ek xk+1
wh = 3| = ykt : (2.6)
Ak A —y (Ax*T1 4+ Byk — b)

Based on (2.6) and (2.5), the relationship between the new sequence {wk} and the
original {w} is

wtl =k — p (wk - zZ)k) . 2.7

3 Alternating Direction Method of Multipliers

As we discussed earlier, the ADMM can be applied straightforwardly to solve (1.1),
assuming that the augmented Lagrangian (with a proximal term) can be optimized for
each block of variables, while the other variables are fixed. This gives rise to the
following scheme:

ADMM
Initialize x0 € X, y0 €Y and AV
fork=0,1,---,do
XK = argmin, e v L (x, y¥, 2K) + 3 [lx — x|
= argminy ey £, KTy, 25 + 31l — yE I
)\k—H — )\,k . y(Axk—H + Byk—H o b)
end for

In the above algorithm, G and H are two pre-specified positive semidefinite matrices.
In fact, this algorithm is also known as the G-ADMM and proposed in [20] where no
coupled objective function is involved. The main result concerning its convergence
and iteration complexity is summarized in the following theorem, whose proof can be
found in Appendix 1.

Theorem 3.1 Suppose that V f satisfies Lipschitz condition (2.2), and hy(y) is
strongly convex with parameter o > 0, i.e.,

ha(y) > ho(2) + Hy() (v — 2) + %uy —z? 3.1)

@ Springer



First-Order Algorithms for Convex Optimization with... 137

where h’2(z) € dhy(2) is a subgradient of hy(z). Let {wk} be the sequence generated
by the ADMM, and G > 0, H > (L + L?z) I,. Then the sequence {w*} generated by

the ADMM converges to an optimal solution. Moreover, for any integer n > 0 letting

n

1 n
iy = —Zuk, (3.2)
k=1

we have
h(it)) —h(™) + pl|Ax; + By, — b|
1 (. . 1 2
< o (diste®, A% + distp%, V9% + = (p+12°1) ). 33
2t H y
where X* x Y* is the optimal solution set, dist(x, §)y = infyeg X — yllp, and
H:=yB"B+H.

The following lemma shows the connection between different convergence mea-
sures.

Lemma 3.2 (Lemma 2.4 in [31]) Assume that p > 0, and x € X is an approximate
solution of the problem f* .= inf{f(x) : Ax —b = 0,x € X} where [ is convex,
satisfying

FE) — f*+ pllAT — b]| < e. (3.4)
Then, we have
1A% — bl < ——— and f&) — f* <e.
p— 7]

where )* is an optimal Lagrange multiplier associated with the constraint Ax —b = 0
in the problem inf{f (x) : Ax —b =0, x € X}, assuming ||A*|| < p.

In other words, estimation (3.3) in Theorem 3.1 automatically establishes that
h(ity) — h(u*) < O(1/t) and [|AX; + By, — b|| < O(1/1).

The same applies to all subsequent iteration complexity results presented in this paper.

4 Variants of the ADMM
In some applications, the augmented Lagrangian function may be difficult to min-
imize for some block of variables while fixing all others. For instance, consider the

sparse logistic regression problem (see [32]) given by

min [(x, ¢) + Bllx|l1, (4.1)
X,C
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138 X. Gao, S.-Z. Zhang

m
where [(x, ¢) = % > log(1 + exp(—bi(aiTx +¢))) and {(a;, b;), i =1, ---,m} is
i=1
a given training set with m samples aj, as, --- ,a, and b; € {£1},i =1,--- ,m as
the binary class labels. To solve this problem within the ADMM framework, we can
introduce a new variable z, and reformulate the problem as

min [(x, ¢) + Bzl
Bzl ws)
s.t. x —z=0.

Asin the ADMM, although the subroutine of solving z is easy, the subroutine of solving
(x, ¢) can be difficult. In order to deal with those types of problems, we propose several
variants of ADMM which incorporate different first-order methods into the ADMM
framework.

4.1 Alternating Proximal Gradient Method of Multipliers

In this subsection, we consider an approach where we apply proximal gradient for
each block of variables. The method bears some similarity to the Iterative Shrinkage-
Thresholding Algorithm (ISTA) (cf. [33]), although we are dealing with multiple
blocks of variables here. We shall call the new method APGMM, presented as follows:

APGMM
Initialize x0 € X, y0 € Yand AV
fork=0,1,---,do
xKH = argmin, ey Vi f (x5, YO T (x — x%) + Ay (x) + SllAx + ByF
—b— LA+ gl = xFIg:
yktH = argminycy Vyf(xk, YOT(y =5 + ha(y) + %HAka
+By — b — SA P+ 5l = Il
)\‘k—H — )\'k _ )/(Axk+l+Byk+l—b).
end for

The convergence property and iteration complexity are summarized in the following
theorem, whose proof is in Appendix 1.

Theorem 4.1 Suppose that V f satisfies Lipschitz condition (2.2). Let {w*} be the
sequence generated by the APGMM, and G > L1, and H > L1,. Then, the sequence
{(wk} generated by the APGMM converges to an optimal solution. Moreover, with the
same notations as before, it holds that h(i;) — h(u*) + p||Ax; + By, — b|| < O(1/1).

4.2 Alternating Gradient Projection Method of Multipliers
Implementing the proximal gradient step may be difficult for some applications.

One may wonder if it is possible to further simplify the subroutines. It is therefore
natural to consider the simple Gradient Projection method. Namely, for each block of
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variables, we simply sequentially compute the projection of the gradient of the aug-
mented Lagrangian function before updating the multipliers. The method is depicted
as follows:

AGPMM

Initialize x € X, y¥ € Y and 1Y

fork=0,1,---,do
XK = [k — (Ve f (5, 30 + Ve (%) — ATAK + AT(AxK 4+ Byk — b))
Y = [y — a(Vy £ (K, Y+ Vo (vF) — BTAK + BT (AxK T+ Byk —b))]y;
Akl — yk V(Akarl 4 Byk+1 — b).

end for

where [x]y denotes the projection of x onto X', and [y]y denotes the projection of y
onto .

Note here that we used ‘PG’ as acronym for Proximal Gradient, and ‘GP’ as acronym
for Gradient Projection. The acronyms are quite similar, and so some attention is
needed not to confuse the two! Below we shall present the main convergence and the
iteration complexity results for the above method; the proof of the theorem can be
found in Appendix 1.

Theorem 4.2 Suppose that V f satisfies Lipschitz condition (2.2). Let w* be the
sequence generated by the AGPMM, and G = y ATA + élp, H = élq — yBTB.
Moreover, suppose that o is chosen to satisfy H — 2L1; > 0 and G — 2L1I, > 0.
Then, the sequence {w*} generated by the AGPMM converges to an optimal solution.
Moreover, with the same notations as before, it holds that h(i,;) — h(u™) + p||Ax; +

By, —bll < O(1/1).

4.3 Hybrids

Similar to the sparse logistic regression problem in (4.1), there are instances where
one part of the block variables is easy to deal with, while the other part is difficult (e.g.,
the fused logistic regression in [34]). To take advantage of that situation, we propose
the following two types of hybrid methods. The first one is to combine ADMM with
Proximal Gradient (ADM-PG) in two blocks of variables:

ADM-PG
Initialize x € X, y¥ € Y and 1Y
fork=0,1,---,do
A = argmingey £, (0, Y549 + 3l — 2
Y = argminyey Vy £ FF YTy = y6) + ha(p) + Sl AKH!
+By — b — SA P+ 5 lly = Il
kk—l—l — )\’k _ V(Axk—H + Byk—H _ b)
end for

The iteration complexity of the above method is as follows. The proof of the theorem
can be found in Appendix 1.
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Theorem 4.3 Suppose that V f satisfies Lipschitz condition (2.2). Let w* be the
sequence generated by the ADM-PG, and G > 0, H > Ll,. Then, the sequence
{(w*} generated by the APGMM converges to an optimal solution. Moreover, with the
same notations as before, it holds that h(it;) — h(u*) + p||Ax; + By, — b|| < O(1/1).

Another possible approach is to combine ADMM with Gradient Projection (ADM-
GP), which works as follows:

ADM-GP

Initialize x° € X, y¥ € Y and 1Y

fork=0,1,---,do
X = argming ey Ly (x, y¥, 06) + §[lx — x|1%;
Y =y —a(Vy £ O 3 4V ha (38) — BTAR 4 BT (Ax*H 4+ Byk — b))]y;
Akl — ak y(Axk—H 4 Byk+l — b).

end for

The main convergence result is as follows, and the proof of the theorem can be
found in Appendix 1.

Theorem 4.4 Let w* be the sequence generated by the ADM-GP, G > 0, and H :=
élq — y BT B. Moreover, suppose that « is chosen to satisfy H — LI, > 0. Then, the
sequence {w*} generated by the ADM-GP converges to an optimal solution. Moreover,
with the same notations as before, it holds that h(it;) — h(u™) + p||Ax; + By, — b|| <
o/).

Remark that for all the algorithms discussed above, besides showing the O(1/¢)
rate of convergence in the ergodic sense, we have also shown the convergence of the
iterates generated by the algorithms. Moreover, for all the variants of ADMM, we do
not assume the strong convexity of the objective functions. Another point to note is that
AGPMM and ADM-GP can be viewed as special cases of APGMM and ADM-PG,
respectively. In fact, one can absorb the separable function /; into the nonseparable
function f and choose matrices G and H appropriately in such a way that APGMM
and ADM-PG actually become AGPMM and ADM-GP, respectively.

5 The General Multi-Block Model

Different variations of the ADMM have been a popular subject of study in the recent
years. In particular, ADMM has been extended to solve general formulation with
multiple blocks of variables; see [27] and the references therein for more information.
In this section, we shall discuss the iteration complexity of the ADMM for multi-block
optimization with a nonseparable objective function. In particular, the problem that
we consider is as follows:

n
min f(xq, x2, -+, x0) + 2 hi(x;)

i=1
S.t. A1x1+A2x2+"'+Anxn=b, (51)

xi €X,i=1,2,-n,
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where A; € R"*Pi b € R™, X; C RP areclosed convexsets,and f, h;ji =1, - ,n,
are convex functions. Note that many important applications are in the form of (5.1),
e.g., multi-stage stochastic programming. Accordingly, the ADMM algorithm for solv-
ing the problem (5.1) is

The Multi-block ADMM

Initialize with x) € X;,i =1, -+, n, and AV
fork=0,1,---,do
k+1 : k k 1k 1 k2 .
x}( | = argmln){]EXl ‘C}/(-xlks );:25 T ;{xn’)" )+ j”xl _l-xl ||H19 .
+ : + k 1k 2 .
Xy =argming ey, Ly, (X]7, X2, X3, -+, X, AY) + 5 lx2 —x2||H2,
k+1_ . k+1 k+1 .k koyky o Lyw. k2 .
X _argmlnxiek}‘c}/(xl ""7xl'_1’-xl5-xl‘+17"’7xn7)" )+2||xl_xi ”Hi’
x**1 = argmin L, M a8 + D, — xK12,
n - g XnEXnk %/ 1 7k | s Mp—10 s 2 n nllH,>
MAL =2k — BAx T+ Apxy T+ Ak,
end for
Here, H;,i = 1,---,n, are pre-specified positive semidefinite matrices, y is the

augmented Lagrangian constant, and 8 is the dual stepsize. In fact, this also generalizes
the ADMM in the sense that a proximal term is included in the subproblem. Without
the coupled objective function, this algorithm has also been analyzed in [35]. As we
will show, an O (1/¢) convergence rate of the ADMM can still be achieved even for this
general problem. In the following subsection, we sketch a convergence rate analysis
highlighting the key components and steps. The details, however, will be omitted for
succinctness.
Let us start with the assumptions.

Assumption 5.1 The functions k;,i = 2, - - - , n, are strongly convex with parameters
o; > 0:

/ o;
hi(y) = hi(x) + (v — x) Thy (x) + Sy = x|,

where h; (x) € 0h;(x) is in subdifferential of &; (x).

Assumption 5.2 The gradient of function f(x{, x2, - - - , x,,) is Lipschitz continuous
with parameter L > 0:

IVFOy, 2, - s x) =V f(xn, x2, - ) [ SLIGq — X1, 05 — X2, -+, X, — X) |
forall (x{, x5, -+, x,), (x1,x2, -+, X,) € X X -+ X &),
In all the following propositions and theorems, we denote w* = (x{‘, cee, xﬁ, 26y

to be the iterates generated by ADMM, and u = (x1, -+ , xj).
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Proposition 5.3 Suppose that there are y, B, and § satisfying

n—1 .
max {Amax(AiTA,-)} Yy +48 < min o;.
2<i<n 2<isn
Moreover, suppose that the matrices H;,i = 2, --- , n, satisfy

n—i+Dn+i—2)L?

HI-S:=H,-—(L+ )1,,1.50 V2 <i<n.

8§
Let (xk+1, coo xkH Uy e Q be the sequence generated by ADMM. Then, for
= (x{, -+ ,x;) € Q" and A € R", the following inequality holds
— AT k1

xf — k! T !

h *_h(k—H) : T.k+l
™) u + o gkt ,,_A”)L
A — Ak > Akt — b
i=1

2
n

2
Ly el i1 n
(IS ae T a o | S San
=2\ Jl7i=1 j=i j=1 =i
k2 k+1 2 l - * k2 . k+1
+_ﬂ (H)u—)» I“=1r = H )+§Z(”xl —X; ”Hi_”'xi ”H)
i=1

3
y =B 1
( 7 )||A"—xk“||2+5§ (B [
i=1

The following proposition exhibits an important relationship between two consec-
utive iterates w* and w**! from which the convergence readily follows.

Proposition 5.4 Let w* be the sequence generated by the ADMM, then

n

4

23 (1w wh? = s w* whh 2) 4w — w2,
i=2

k+1,2 k k+1,2
—lw* = wh N — k- kT > 0,

where L;(w*, w) —ZAx +ZA ixj —b,i=2,---,n, and

j=1
N ) 1 1 1 . 1 1 1 y—p
M =diag (EHI,... ,EHH, ,Elm) , H=diag (2H1, 2H2"" ,EH’f, 25 Im).
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Propositions 5.3 and 5.4 lead to the following theorem:

Theorem 5.5 Under the assumptions of Propositions 5.3 and 5.4, and

1 1 1 —
H:diag(EHl,E 2S’ ’EH":,%I,”) > 0,

we conclude that the sequence {w*} generated by the ADMM converges to an optimal
solution. Moreover, for any integert > 0, let

k=0
and for any p > 0, we have
n
hias) — h@*) +p | D Ak —b
i=1
2
1 n—1 n n | )
<o |lr2| 2 A (x7 —X?) + D M = XD, + 5 (p + ||x°||)
i=1 || j=i+1 iz

6 Concluding Remarks
In [36], the following model is considered

min  f(x) +g(y) + H(x, y), (6.1)

which can be regarded as (1.1) without constraints, and the so-called proximal alter-
nating linearized minimization (PALM) algorithm is proposed. The main focus of [36]
is to analyze the convergence of PALM for a class of nonconvex problems based on
the Kurdyka—t.ojasiewicz property. In that regard, it has an entirely different aim. We
note, however, that PALM is similar to APGMM applied to (6.1) when there is no
coupling linear constraint. On the linearized gradient part, one noticeable difference
is that APGMM operates in a Jacobian fashion, while PALM is Gauss-Seidel. If the
computation of gradient is costly, then the Jacobian style is cheaper to implement. As
shown in [36], PALM can be extended to allow multiple blocks. Similarly, APGMM is
also extendable to solve (5.1). The same is true for the other variations of the ADMM
proposed in this paper. It remains a future research topic to establish the convergence
rate of such types of first-order algorithms. Other future research topics include the
study of first-order algorithms for (1.1) where the objective is nonconvex but satis-
fies the Kurdyka-L.ojasiewicz property. It is also interesting to consider stochastic
programming models studied in [31], but now allowing the objective function to be
nonseparable.
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Appendix: Proofs of the Convergence Theorems
Appendix 1: Proof of Theorem 3.1

0 0 —AT
We have F(w)=(0 0 —BT
A B

0
— | 0], for any w; and wy, and so
0 b

> x

(w1 — w2) T (F(wy) — F(wy)) = 0.

Expanding on this identity, we have for any wlwl, ..o wlandw = % kzo wk,
that B
=
W —w)TF) == > " —w)"Fwh). (7.1)
"=

We begin our analysis with the following property of the ADMM algorithm.

Proposition 7.1 Suppose h» is strongly convex with parameter o > 0. Let {0*} be
defined by (2.6), and the matrices Q, M, P be given in (2.5). First of all, for any
w € Q, we have

h(u) — h(@i@®) + (w — 5 TF @5
2

> (w— "' Q! —a*) — ((% + 2L—0) Iy* = 512
+( = HTHGE =), (7.2)
Furthermore,
(w — )T Q" — o)
. % (1w = w15 = w = w13, + %nxk -8 + %uxk —AR a3
Proof By the optimality condition of the two subproblems in ADMM, we have

where 7 (x**1y € ahy (x**1), and

(y — yk+1)T [Vyf(xk-i-l, yk-H) + h/z(yk+1)

—BTOF — y (A B )+ HOM 0] 20, vy e
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where ) (xkT1) € dhy (x* ).
Note that A = AF — y(Axkt! 4+ Byk — b). The above two inequalities can be
rewritten as

(x

and

T [fo(ik, Vo) + @) — ATIK £ GG - xk)] >0, Vxed,(74)

0 = [V F G T + 1Y = BT+ y BTG — 9 + HGE = 9]
>0, Vyel. (7.5)

Observe the following chain of inequalities

(x =IOV FEE Y+ 0 =TTV, FEE 5
= (x — TV G YO + & = DTV, FER VR
+(y = POV, FGR T — vy £ G Y0)

< (0 =TV FGER YO + (0 = DTV FGER Y0 + Ly = 3115 = 351
= (x =)V G Y + = YOIV FGER Y + OF = 59TV, £ G

+LIly = 511y~ = 55

< fl,y) — FEE Y — GF =TV FGEE Y + Ly = FR11pF - 74

(from (2.3))

< flx,y) — fFE ~k>+ || — 512+ Lily — 5511y~ = 581
< fly) — FESTH ||y’€—yk||2
o 5 L2 -
+=1lly = 5% + = Iy* = 712 (7.6)
2 20
Since

1 -
(AF* + BF* —b) — BG* — Y5 — —0F =35 =0,
Y

we have

(h— 3T (A)Zk 4 B — b)

= (=T (—B(y’“ -+ %(xk - ik)) : (7.7)

By the strong convexity of the function /> (y), we have

(y — T (5%) < ha(y) — hz(y")—%ny—ykn? (7.8)
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Because of the convexity of &1 (x) and combining (7.8), (7.7), (7.6), (7.5), and (7.4),
we have

3 L L? 3 3 3
hw) —h(@) + (= + = ) Iy =717+ & = FHTHG =y
2 20
x—i\ T — ATHk G(xk — 75
+ -3 — BTk - yB'BG =3 >0
»— ik AF* + B —b —BON =3 + (0 =35

for any w € Q and @k,

By definition of Q, (7.2) of Proposition 7.1 follows. For (7.3), due to the similarity,
we refer to Lemma 3.2 in [17] (noting the matrices Q, P, and M).

The following theorem exhibits an important relationship between two consecutive
iterates w* and w**! from which the convergence would follow.

Proposition 7.2 Ler w* be the sequence generated by the ADMM, ¥ be defined as
in (2.6) and H satisfies Hy := H — (L + %2) I, > 0. Then the following holds:

1
* k2 * k+1,2 k ~ k2
(o = w12 = w” = w2 ) = St —afiE, =00 39)

N =

where

G 0 0 G 0 0
H=yB"™B+H, M=(0 H 0 and Hy= (0 Hy 0
0 0 1p, 0 0  ln

(7.10)

Proof It follows from Proposition 7.1 that

h(u) — h@®) + (w — ) TF @5
L L2
> (w— wHTQw* — wh)— ((Tz) Iy =512+ = 7 THGE - y"))

1 1
= 3 (1w ="', — o = whi) + 5

1 -
k ~k 2 k k2
X" =X + — A" —A
2|| I 2yll I

L L?
- ((5 + 2—) IV =517 + & = 3HTHG" - y">) : (7.11)
o}
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Note that Hy := H — (L + %Z)Iq > 0, we have the following

L? - » -
(5 + —) Iy* =301+ & = 5THG" -5
L L? P
(5 )ny I+

- 1 -
(||y 0 = Iy = 1) = 310 =515,

1 - ~
5 (1 =41 = Iy = 50 = 1 - 51%)

(7.12)
Thus, combining (7.11) and (7.12), we have
h(u) — h(@®) + (w — 9 TF @5
> 2 (1w =0ty = wi3,) = 5 (1 = 1 — Iy = 5*13)
+%||x" —71E + %ny" — 37, + %nx" — 2Kp2 (7.13)
By the definition of M and H, according to (7.10), it follows from (7.13) that
h@@*) = h(u) + " — w)"F @)
e (L A IR P (AP
Letting w = w™* in (7.14), we have
h@i@®) — hw*) + (@* — w*)TF @5
e (A A TPl R T N CAE)

By the monotonicity of F' and using the optimality of w™*, we have

1 * k2 * k+1,2 1 k
5 (I =% = o = w2 ) = S -
h(@i*) — h(u*) + @F

@y — h*) + (@*

1%,

>
> —wTFw*)
>

h
0

’

which completes the proof.

@ Springer



148 X. Gao, S.-Z. Zhang

Appendix 2: Proof of Theorem 3.1.

Proof First, according to (7.9), it holds that {wk} is bounded and

lim [|w* — @X| g, = 0. (7.16)
k—o00

Thus, those two sequences have the same cluster points: For any w* — w, by (7.16)
we also have W% — w>. Applying inequality (7.2) to {w*}, {#*} and taking the
limit, it yields that

h(u) — h@™) + (w — w®)TFWw™) > 0. (7.17)

Consequently, the cluster point w is an optimal solution. Since (7.9) is true for any
optimal solution w*, it also holds for w™, and that implies w* will converge to w™.
Recall (7.2) and (7.3) in Proposition 7.1, those would imply that

h(u) — h(i@*) + (w — )T F @)

3 y L L? 3 3 3
> (w— wk>TQ<wk—wk>—((5+§) Iy =512 + (v = $HTHGE - y"))
1 k41,2 k2 L L2 k ~k 2
> 3 (lw = w1 —w —wh15) = ((5 + 55 ) * =3

+ (y - i")T HG* - y")) : (7.18)

Furthermore, since H — (L + %2) I; = 0, we have

L L? . . .
(— + —) Iy = 35517 + (v = HTHGE — 5

2 20

L L? ko owkyp2 , L k2 k12 ko <ky2
—(5+§) Iy = y*I +§(||y—y Iz =y =Yg —1lly" =y IIH)

1 -
<3 (=241 = 1y = 1% (7.19)

Thus, combining (7.18) and (7.19) leads to
h(u) — h(@®) + (w — %) T F (@*)
1
> 3 (1w = w1, — 1w — w1,
1 -
=5 (I =15 = 1y =313 - (7.20)
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By the definition of M in (2.5) and denoting H= yB"B + H, (7.20) leads to

h(@*) = h(u) + (W — w)TF @)

1 1
<5 (e =08 = e =G + 3 (I = 415 — 1y =1

)
1
el (et R LVl o (7.21)
2y
n—1
Before proceeding, let us introduce w,, := % > w*. Moreover, recall the definition
k=0

of u, in (3.2), we have

n n—1
iy =2 D ut =2 > it
k=1 k=0

Now, summing the inequality (7.21) over k =0, 1, --- ,r — 1 yields

h@) — hG) + (B — w)TF ()
t—1 t—1
<) — k) + o 3@k - w)TF()

k=0 k=0

1 02 02 1 02
< — (1 =312 + 11y = U3+~ — 2992), 7.22
o (IIX g + 1y =yl yll [ (7.22)

where the first inequality is due to the convexity of # and (7.1).
Note the above inequality is true forall x € X', y € ), and A € R™, hence it is also
true for any optimal solution x*, y*, and B, = {A : |A|| < p}. As aresult,

sup {hGi) — hw) + (i, — )T F (i)
reB,

= sup {hG) = hw) + (& = xT(=AT2)
reB,

+ G = YT B") + (i = T (A% + BS, — b))

— sup {h(ﬁt) — h(u*) + AT (Ax* + By* — b) — AV (A%, + By, — b)}

reB,
= sup {hG) — hw*) = 27T, + B5, — b))
reB,
= h(u;) —h(u*)+,0||A)Et + By, — b||, (7.23)
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which, combined with (7.22), implies that

(i) — h(®) + pll A% + By, — b||

1 1
< o =20 + 1y =017 + = sup 1= 20017 ),
2t Y xeB,

and so by optimizing over (x*, y*) € X* x V*, we have

h(iy) — h(®) + pll A%, + By, — bl

1 1 2
<5 (dist(xo, X + dist(y0, V) + ” (,0 + ||A0||) ) . (7249)
This completes the proof.

Appendix 3: Proof of Theorem 4.1

Similar to the analysis for ADMM, we need the following proposition in the analysis
of APGMM.

Proposition 7.3 Let {wX} be defined by (2.6), and the matrices Q, M, P be given as
in (2.5). For any w € 2, we have

h(u) — h(i*) + (w — &%) TF(@*)

L
> (w— )Tk — ok - (wa"—i"u"’ +1IIyF =51+ v - ik)TH@"—y")) (7.25)

1 k412 k2 1 k ~k 2 1 k Tk 2
= 5 (= w0 = o = wh )+ it = P0G+ k- 2

L
- (5 (et = 212+ % = 5492) + 0 = O THGE - y")) : (7.26)
Proof First, by the optimality condition of the two subproblems in APGMM, we have

(= DT [V, £ G5, 3 4 D) = ATGE =y (AT 4 By — b))

+ Gk —xk)] >0, Vred
and

(= T[T 5 39 + I8 = BTGE =y (Ax**! 4 By — )

+HO 0] 20, wyew.
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Note that A = 1% — y (Axkt! + Byk — b), and by the definition of w¥, the above
two inequalities are equivalent to

(x — T [fo(xk, V) + 1 ) — ATIK 4+ Gk — xk)] >0, VxeX (727)
and
(=TT [V F G5 + B = BTRF 4y BTBGE — vh)
+HG" - y")] >0, Vyel. (7.28)
Notice that

(x = FTV Y + 0 = 59TV FEL Y

= (x =XV + 0 = YTV R Y 4+ F = 79TV F R
+OF =TV R Y

< ey = R Y = G =TV R ) = GF =0TV, Gk Y
(from (2.3))

<F ) = 7T + 2 (I = P+ 1 - 4P (1.29)
Besides, we also have
(AF + B5* —b) - BGF — ) - % (3 -7F) =o.
Thus

O = TAF + B —b) = (1 = 19T (—B(yk -+ i(xk - Xk)) .
(7.30)

By the convexity of &1 (x) and A2 (y), combining (7.30), (7.29), (7.28), and (7.27), we
have

L
hw) = h@) + 5 (16 = 12+ 108 = 5412) + 0= FHTHGE -3

x—i\ T —ATik Gk — 7
+ -3 ~BTjk - yBTBON =54 >0
A — Ak AZF 4+ Bk — b —BOK =N + 0k =35

for any w € Q and w*.
By definition of Q, we have shown (7.25) in Proposition 7.3. Equality (7.26) directly
follows from (7.3) in Proposition 7.1.
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With Proposition 7.3 in place, we can show Theorem 4.1 by exactly following the
same steps as in the proof of Theorem 3.1, noting of course the altered assumptions on
the matrices G and H. In the meanwhile, we also point out the following proposition
which is similar to Proposition 7.2. Since most steps of the proofs are almost identical
to that of the previous theorems, we omit the details for succinctness.

Proposition 7.4 Let w* be the sequence generated by the APGMM, ¥ be as defined
in (2.6), and H and G are chosen so as to satisfy Hy := H — L1; > 0 and G, :=
G — LI, > 0. Then the following holds:

1 * k2 * k412 1 k ~k 2
5 (" = whi =t — Wt ) = St — @i, > o,
where
G 0 0 Gy, 0 0
M=|0 H o0 |, H/=| 0 H 0
0 0 +in 0 0 Sl

and H = yBTB + H.

Theorem 4.1 follows from the above propositions.

Appendix 4: Proof of Theorem 4.2

Similar to the analysis for APGMM, we do not need any strong convexity here,
but we do need to assume that the gradients Vyh(x) and Vyhy(y) are Lipschitz
continuous. Without loss of generality, we further assume that the Lipschitz constant
is the same as V f (x, y) which is L, that is,

Vihi(x2) = Vihi(xp)ll < Lilxz — xill, Vxi,x2 € &,
IVyha(y2) = Vyhao (DIl < Lily2 = yill, Yy, y2 € V. (7.31)
Proposition 7.5 Let {0*} be defined by (2.6), and the matrices Q, M, P be as given

in(2.5),and G := yATA+ élp, H = élq —yBTB > 0. First of all, for any w € ,
we have

h(u) — h(ﬁk) + (w — ﬁ)k)TF(II}k)

> =Tk — ) — (LU = F9 + 1y = 51P)
+o = FITHG =) (7.32)
1 1 - 1 .

=3 (Ilw — wkt! ||%4 —lw— wk”%/[) + E”xk B xk||2G n Z”)\k 5k

= (LA = 24 1 = 541D + 0 = HTHGE - 9). (7.33)
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Proof First, by the optimality condition of the two subproblems in AGPMM, we have
(x — xkHHT [xk+] — o (Ve 650+ Yy )
—ATOK — y(Axk + Byk — b)))] >0, VieX

and
o = T[T £ 6500 + Vo (0h)

—BT(KX — y(AxK! 4 Byk — b)))] >0, Vyel.

Noting Ak =2k — 5 (Ax¥T! + By* — b) and the definition of ¥, the above two
inequalities are, respectively, equivalent to

(x =397 [vxﬂx", Y + Vahp () — ATAE 4y ATAGE — &%)

1
+—@G&h - xk)i| >0, VxeX (7.34)
(07

and

- 1
-7 [vyﬂx’& YO + Vyha (V%) — BTAK + ;(y" — y")}

>0, Vye)l. (7.35)
Similar to Proposition 7.3, we have

(x =TV, £ E Y0 + (v =TTV, £, V)
(from (2.3))

b L 5 -
e = FE 43 (I =P+ -547). @36
Moreover, by (2.4), we have
T k v Lok k2
(0 =TTV () <) = (@) + St = 22,
i v L i
(v = 7TV (%) < ha(y) — o GF) + Eny" — 5% (7.37)
Besides,

PR i 1 i
(AZ* 1+ BF* — b) — BGF — y&) — » (,\" - x") —0.
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Thus

(= 9T (AZ* + BY* — b)
= (=BT (—B(yk -5+ ! (/\" - X")) ) (7.38)
%

Combining (7.38), (7.37), (7.36), (7.35), and (7.34), and noticing that G := yATA +
él,,, H = élq — yBTB, we have, for any w € Q2 and Wk, that

h() = h(@) + LA = 397 + 15" = 519 + o = 39 THGE =5

x— i\ T —ATjk Gk — 7
+ vy — BTk - yBTBG! =37 >0.
A— 2k AF* + Bj* —b —BGF - + Lok =35

Using the definition of Q, (7.32) follows. In view of (7.3) in Proposition 7.1, equal-
ity (7.33) also readily follows.

With Proposition 7.5, similar as before, we can show Theorem 4.2 by following the
same approach as in the proof of Theorem 3.1. We skip the details here for succinctness.

Proposition 7.6 Let w* be the sequence generated by the AGPMM, w* be defined
in (2.6), and G = yATA + %Ip, H = élq — y BT B. Suppose that a satisfies that
Hg:=H —2LI; > 0and G5 := G —2LI, > 0. Then the following holds

Us k2 x_ ok !
. _ . k2 Y ik k2 s
> (I = w2, — o — w2 ) = Sl — @41, > 0,

where

GO0 0 Gy 0 0
M=[0 H 0 , Hj =0 Hy O i
00%1,,1 00%1,,1

and H = yBTB + H.

Theorem 4.2 now follows from the above propositions.
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Appendix 5: Proofs of Theorems 4.3 and 4.4

Proposition 6.1 Let {0k} be defined by (2.6), and the matrices Q, M, P be given
in (2.5). For any w € 2, we have

h(u) — h(@®) + (w — 05 TF @5
- - L - - -
> (w— Tk — o) - (Enyk — 1P+ - FTHG - yk))
1 k412 k2 1 k ~k 2 1 k k2
=5 (I = w I = = wbI,) + 5 = 50+ i =3

L - ~ -
- (Eny" —F P+ =3THG" - y")) : (7.39)
Proof First, by the optimality condition of the two subproblems in ADM-PG, we have

()C _ )Ck+1)T I:fo(xk+l’ yk) + h/l ()Ck+1) _ AT()\,k _ '}/(A)Ck+1 + Byk _ b))

—I—G()ck+l - xk)] >0, Vxe X
and

(y _ yk-‘rl)T I:Vyf(xk+l’ yk) + hlz(yk-‘rl) _ BT()\,k _ ]/(A)Ck+1 + Byk+l _ b))

+HOM =9 >0, vyew.

Noting ¥ = A¥ — y(Ax**! 4+ Byk — b) and the definition of w*, the above two
inequalities are equivalent to

(= T [V f G 09 + Vol (5 — ATRE + GG — )]
>0, VxedX (7.40)

and

(= FT[ Vs F G + 82GY) = BT + 7 BTBGE — )

FHGK - yk)] >0, Vyel. (7.41)
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Moreover,

(x =TV G YO + v = 9TV, FER Y6
= (x =TV G V) + = YOIV FER Y + F = 39TV, FER VR
< fl,y) = FE Y — G =0TV FGER YR

(from (2.3))

k- L 5
< fl,y) — FEN 75 + Eny" — 5592 (7.42)
Besides,

~ - - 1 -
(AF* + BF* — b) — BG* — %) — » (-3 =o,

and so

= HTAzk + By* —b)

= =T (—B(yk -5 + %(xk - X")) . (7.43)

By the convexity of &1 (x) and A, (y), combining (7.43), (7.42), (7.41), and (7.40), we
have

L
h(w) = h@*) + Sy = 502 + 0 = FHTHG )

x -\ —ATik Gk — i)
+( -7 ~ BTk - yBTBO =34 >0
A — Ak AZk + Bk — b —BOK =7 + 0k =35

for any w € Q and wk.
By similar derivations as in the proofs for Proposition 7.5, (7.39) follows.

With Proposition 6.1 in place, we can prove Theorem 4.3 similarly as in the proof
of Theorem 3.1. We skip the details here for succinctness.

For ADM-GP, we do not need strong convexity, but we do need to assume that
the gradient Vyh;(y) of hy(y) is Lipschitz continuous. Without loss of generality, we
further assume that the Lipschitz constant of Vi3 (y) is the same as V f (x, y) which
is L:

IVyha(y2) — Vyho (YOI < Lily2 — y1ll, Yy1.y2 € V. (7.44)
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Proposition 6.2 Let {0X} be defined by (2.6), and the matrices Q, M, P be given
in (2.5), and H := &Iq — yBTB = 0. For any w € Q, we have

h(u) — h(@®) + (w — 5 TF @5
> =T Q! — ") — (LI =517 + ¢ = HTHG = b))
= 5 (I = wA* 1y — o — b i) + gt - 2 %nx" — P

— (L =1+ 0 = TG - D). (7.45)
Proof By the optimality condition of the two subproblems in ADMM, we have
(x — xkH1)T [fo(ka’ v6) + W, Kty — ATGK = 3 (Ax ! 4+ Byk — by)
F G = xk)] >0, VreX
and
(y — yk+l)T [yk+1 _ yk +a (Vyf(xk+l’ yk) 4 Vyhz(yk) — BTG — V(Axk—H

+By =b))| =0, vyew.

Noting Ak =2k — 5 (Ax¥T! + By* — b) and the definition of ¥, the above two
inequalities are equivalent to

(x — ¥9T [fo(ik, Vo) + h| G5 — ATRK 4+ GG — xk)] >0, VxedX (7.46)
and
3 3 N
(y—39T [vyf(xk, Y + Vyha (%) — BTAF + a(y" - y")}
>0, Vye). (7.47)
Therefore,

(x =IOV FEE Y + 0 =TTV, FEE Y
= (x — IV G Y + 0 = YOIV FGEE YO 4+ OF = 39TV, £ER Y6
< fl,y) = FE Y = GF = OV, FGE v

ko~ L -
< fl,y) — FE 5 + Eny" — 5512 (7.48)

Moreover, by (2.4), we have
~ - L -
v =59 Vs <ha(y) = b5 + S Iy* = 5112 (7.49)
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Since

1 ~
Aik+B§k—b—B(§k—yk)—;(Ak—kk)=0,

we have
n —2A9TAzk + BF* — b)
= =T (—B(yk -5+ %(x" - 7\")) . (7.50)

By the convexity of /11 (x), combining (7.50), (7.49), (7.48), (7.47), (7.46), and noticing
H = llq — yBTB for any w € Q2 and wk, we have

T o

h(u) — h(@*) + LIyE = 51 + (v = 9 THG* - 5

x— i\ T — AT GOk — i)
+y-7 -BTRF ) - yBTBG -39 > 0.
)k AT+ BF* — b =BG =+ 0F =15

As aresult, (7.45) follows.

The proof of Theorem 4.4 follows a similar line of derivations as in the proof of
Theorem 3.1, and so we omit the details here.
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