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Abstract We propose a two-phase-SQP (Sequential Quadratic Programming) algo-
rithm for equality-constrained optimization problem. In this paper, an iteration process
is developed, and at each iteration, two quadratic sub-problems are solved. It is proved
that, under some suitable assumptions and without computing further higher-order
derivatives, this iteration process achieves higher-order local convergence property in
comparison to Newton-SQP scheme. Theoretical advantage and a note on l1 merit
function associated to the method are provided.

Keywords Constrained optimization · Newton-SQP method ·
Cubic-order convergence

Mathematics Subject Classification 90C30 · 90C55

1 Introduction

Sequential quadratic programming (SQP) method is one of the most successful
methods for solving constrained nonlinear optimization problems. This is an iterative
procedure which generates a sequence of points (not necessarily feasible points),
obtained by solving quadratic programming sub problems, and converges to the
Karush-Kuhn-Tucker (KKT) point. This idea was first proposed by Wilson [1] in
1963. Since then SQP method has been studied extensively by many researchers (see
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[2–8]). The readers may see Boggs [9], Gould et al. [10], Schittkowski et al. [11]
for some good reviews on SQP algorithms, discussed so far. Some SQP methods use
convex quasi-Newton approximation which makes the algorithm slow in case of large
scale problems, whereas some other SQP methods employ the exact Hessian of the
Lagrangian, which are Newton like methods. Under suitable assumptions the Newton
version of the SQP algorithm converges to the minimum point without the use of line
search and additional parameters. The Newton-SQP framework is the same as solving
a Newton system derived from the KKT conditions, in which case it is often difficult
to choose an initial iterate, close enough to the true solution to guarantee the conver-
gence of the algorithm. These SQP methods, discussed so far, at most show quadratic
or superlinear local convergence property. For the past few decades, researchers have
shown their interest (see [12–16]) in iterative algorithms with higher-order conver-
gence property. Again we notice that equality-constrained optimization emerges as a
special branch of interest in constrained optimization theory (see [17,18]).

In this paper, we suggest a two-phase-SQP method for equality-constrained
optimization problems, which provides local cubic-order convergence under some
comfortable assumptions. We have also discussed the conditions for the associated
line search method to the scheme, under the l1 merit function.

Section 2 explains the Newton-SQP method. The two-phase-SQP is proposed in
Sect. 3 which is followed by the convergence analysis in Sect. 4. We propose a note
on l1 merit function of the new scheme in Sect. 5. Numerical examples are provided
in Sect. 6, and finally some concluding remarks are provided in Sect. 7.

2 Background: Existing Newton-SQP Method

Consider the following optimization problem with equality constraints.

(EP): Min f (x) (2.1a)

s.t. h(x) = 0, (2.1b)

where f : R
n → R and h : R

n → R
m are smooth functions. The motivation

behind the local SQP approach is to model (EP) at the current iterate xk by a quadratic
programming subproblem, then use the minimizer of the subproblem to define a new
iterate xk+1.

Lagrangian function for the problem (EP) isL (x, λ) = f (x) − λTh(x), λ ∈ R
m .

Denote A(x) = [∇h1(x),∇h2(x), · · · ,∇hm(x)]T where hi (x) is the i th component
of the vector h(x). The KKT system for (EP) is

P(x, λ) �
[∇ f (x) − A(x)Tλ

h(x)

]
= 0. (2.2)

Any solution (x∗, λ∗) of (EP) for which A(x) has full rank, satisfies (2.2). System
(2.2) consists of n + m equations in n + m unknowns x and λ. Let P ′(xk, λk) be the
first-order Frechet derivative of P at (xk, λk). The next iterate (xk+1, λk+1) is given by
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xk+1 = xk + x̂k and λk+1 = λk + λ̂k , where (̂xk, λ̂k) is the value of (α, β) ∈ R
n ×R

m ,
satisfying the following system:

P ′(xk, λk)
[
α

β

]
= −P(xk, λk),

which is same as
[∇2

xxLk − AT
k

Ak 0

] [
α

β

]
=

[−∇ fk + AT
k λk

−hk

]
, (2.3)

where Lk � L (xk, λk), fk � f (xk), Ak � A(xk).
The Newton step generated from the iterate (xk, λk) is thus given by

[
xk+1
λk+1

]
=

[
xk
λk

]
+

[
x̂k
λ̂k

]
, (2.4)

where x̂k and λ̂k can be obtained by solving (2.3). If the following assumptions are
true, then (2.3) has unique solution (see [19]).
Assumptions

(A-1) The constraint Jacobian matrix A(x) has full rank.
(A-2) The matrix ∇2

xxL (x, λ) is positive definite on the tangent space of the con-
straints, i.e., dT∇2

xxL (x, λ)d > 0 for d ∈ {d ∈ R
n | A(x)d = 0, d �= 0}.

Consider the following quadratic programming problem as an approximate model
of (EP) at (xk, λk):

(QPk): Mins∈Rn fk + ∇ f Tk s + 1

2
sT∇2

xxLk s

s.t. Aks + hk = 0.

The Lagrange function of (QPk) is

LQP � fk + ∇ f Tk s + 1

2
sT∇2

xxLk s − lT(Aks + hk),

where l is the Lagrange multiplier of (QPk). If the assumptions (A-1) and (A-2) hold,
then (QPk) has a unique solution (sk, lk), that satisfies the first-order KKT conditions
of (QPk), which are:

∇2
xxLksk + ∇ fk − AT

k lk = 0, (2.5a)

Aksk + hk = 0. (2.5b)

These two equations can be written in the following matrix form:

[∇2
xxLk −AT

k
Ak 0

] [
sk
lk

]
=

[−∇ fk
−hk

]
. (2.6)
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Subtracting AT
k λk from both side of the first equation of (2.3), we have

[∇2
xxLk −AT

k
Ak 0

] [
x̂k

λk + λ̂k

]
=

[−∇ fk
−hk

]
,

i.e.,

[∇2
xxLk −AT

k
Ak 0

] [
x̂k

λk+1

]
=

[−∇ fk
−hk

]
, (2.7)

where λk+1 = λk + λ̂k+1.
Now the local SQP iterates are (xk+1, λk+1), where xk+1 = xk+sk andλk+1 = lk . If

the assumptions (A-1) and (A-2) hold then P ′(xk, λk) becomes a non singular matrix.
Hence from (2.6) and (2.7) we have that sk = x̂k and lk = λk+1. In this way, the
new iterate (xk+1, λk+1) can be generated by solving (QPk). Further it is proved in [9]
that chosen (x0, λ0) close to the solution (x∗, λ∗) of (EP), then sequence {(xk, λk)}
converges to (x∗, λ∗) quadratically.

In the next section, this concept is used to develop a new algorithm to solve (EP)
with higher-order convergence property.

3 Two-Phase-SQP Technique

Let (sk, lk) be the solution of (QPk), which is obtained using the process described
in Sect. 2. lk is the Lagrange multiplier at kth stage. Denote

xk̄ = xk + sk and λk̄ = lk .

At this new point (xk̄, λk̄) find Ak̄ � [∇h1(xk̄),∇h2(xk̄), · · · ,∇hm(xk̄)]T and
∇2
xxLk̄ � ∇2

xxL (xk̄, λk̄). Consider the following optimization problem (QPk1) at
(xk, λk):

(QPk1): Mins∈Rn fk + (∇ f Tk + 1
2λ

T
k Bk

)
s + 1

4 s
T

(∇2
xxLk + ∇2

xxLk̄

)
s (3.1a)

s.t. 1
2Cks + hk = 0, (3.1b)

where Bk = Ak̄ − Ak , Ck = Ak̄ + Ak .
(QPk1) is a convex quadratic programming problem on the tangent subspace

{d | dT∇2
xxL (x, λ)d > 0, A(x)d = 0}. Assume that Ck is of full rank. The unique

solution (sk̄, lk̄) of (QPk1) satisfies the first-orderKKToptimality condition of (QPk1).
lk̄ be the Lagrange multiplier of (QPk1). Then from KKT optimality conditions

1

2

(
∇2
xxLk + ∇2

xxLk̄

)
sk̄ + ∇ fk + 1

2
BT
k λk − 1

2
CT
k lk̄ = 0, (3.2a)

1

2
Cksk̄ + hk = 0. (3.2b)

123



Two-Phase-SQP Method with Higher-Order Convergence Property 389

Adding 1
2C

T
k λk to both sides of (3.2a), we get

1

2

(
∇2
xxLk + ∇2

xxLk̄

)
sk̄ + ∇ fk+1

2
BT
k λk − 1

2
CT
k (lk̄ − λk) = 1

2
CT
k λk, (3.3a)

1

2
Cksk̄ + hk = 0. (3.3b)

(3.3a) and (3.3b) can be written as the following matrix equation:

[ 1
2 (∇2

xxLk + ∇2
xxLk̄) − 1

2C
T
k

1
2Ck 0

] [
sk̄

lk̄ − λk

]
=

[−∇ fk + AT
k λk

−hk

]
.

This is equivalent to

1

2

([∇2
xxLk −AT

k
Ak 0

]
+

[∇2
xxLk̄ −AT

k̄
Ak̄ 0

] ) [
sk̄

lk̄ − λk

]
=

[−∇ fk + AT
k λk

−hk

]
,

i.e.,

1

2

(
P ′(xk, λk) + P ′(xk̄, λk̄)

) [
sk̄

lk̄ − λk

]
= −P(xk, λk). (3.4)

Denote

x̂k̄ = sk̄ and λ̂k̄ = lk̄ − λk .

The iteration process discussed above can be summarized in the following two steps:

First step:

[
xk̄
λk̄

]
=

[
xk
λk

]
+

[
x̂k
λ̂k

]
, (3.5a)

where (̂xk ,̂λk) is the value of (α, β) satisfying

P ′(xk, λk)
[
α

β

]
= −P(xk, λk). (3.5b)

Second step:

[
xk+1
λk+1

]
=

[
xk
λk

]
+

[
x̂k̄
λ̂k̄

]
, (3.6a)

where (̂xk̄ ,̂λk̄) is the value of (α, β) satisfying

1

2

(
P ′(xk, λk) + P ′(xk̄, λk̄)

) [
α

β

]
= −P(xk, λk). (3.6b)
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Since λk+1 = λk + λ̂k̄ , so from (3.4) and (3.6a), λk+1 = λk +(lk̄ −λk) = lk̄ . Hence the
new iterate (xk+1, λk+1) can be generated by solving the KKT optimality conditions
given in (3.2a) or by its equivalent form given in (3.5) and (3.6).

We state the algorithm for the proposed two-phase-SQP (TP-SQP) scheme in its
simplest form in the following algorithm:

Algorithm 1: Algorithm for Two-Phase-SQP method
Select an initial pair (x0, λ0)
do { Evaluate fk , ∇ fk , ∇2

xxLk , hk and Ak ;
Solve (QPk) to obtain sk and lk ;
Set xk̄ ← xk + sk and λk̄ ← lk
Evaluate Ak̄ and ∇2

xxLk̄ ;
Solve (QPk1) to obtain sk̄ and lk̄ − λk ;
Set xk+1 ← xk + sk̄ and λk+1 ← lk̄; }

Until (A Convergence test is not satisfied);

For solving the equality-constrained optimization problem, a good initial estimate
x0 for x∗ can be used to obtain a good initial estimate λ0 for the optimal multiplier
vector λ∗, which may be considered as follows in the light of [9]:

λ0 =
[
A(x0)A(x0)

T
]−1

A(x0)∇ f (x0). (3.7)

λ0 can be made arbitrarily close to λ∗ by choosing x0 close to x∗.

4 Convergence Analysis

Theorem 4.1 If P is thrice Frechet differentiable function and (x0, λ0) is sufficiently
close to the solution (x∗, λ∗) of (EP), then sequence (xk, λk) generated by Algorithm
1 converges cubically to (x∗, λ∗).

Proof Let uk and vk are m + n dimensional vectors, where uk � (xk, λk) and vk �
(xk̄, λk̄), respectively. Then the steps (3.5) and (3.6) can be written as follows.

vk = uk − [
P ′(uk)

]−1
P(uk), (4.1a)

uk+1 = uk − 2
[
P ′(uk) + P ′(vk)

]−1
P(uk). (4.1b)

We denote α = (x∗, λ∗). Here P : Rn+m → R
n+m . Using Taylor expansion of P(α)

about uk , we have

P(α) = P(uk) + P ′(uk)(α − uk) + 1

2! P
′′(uk)(α − uk)

2

+ 1

3! P
′′′(uk)(α − uk)

3 + · · · (4.2)
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Subtracting α from both the sides of (4.1b), and denoting ek = uk − α, we have

ek+1 = ek − 2
[
P ′(uk) + P ′(vk)

]−1
P(uk),[

P ′(uk) + P ′(vk)
]
ek+1 = [

P ′(uk) + P ′(vk)
]
ek − 2P(uk). (4.3)

Since (x∗, λ∗) is the solution of (EP), so P(x∗, λ∗) = 0. From (4.2),

P(uk) = −P ′(uk)(α − uk) − 1

2! P
′′(uk)(α − uk)

2

− 1

3! P
′′′(uk)(α − uk)

3 + · · ·

= P ′(uk)ek − 1

2! P
′′(uk)e2k + 1

3! P
′′′(uk)e3k + · · ·

[P ′(uk)]−1P(uk)

= ek − [P ′(uk)]−1P ′′(uk)
1

2!e
2
k + [P ′(uk)]−1P ′′′(uk)

1

3!e
3
k + · · · (4.4)

Expanding P ′(vk) with respect to uk we get,

P ′(vk) = P ′(uk) + P ′′(uk)(vk − uk) + 1

2! P
′′′(uk)(vk − uk)

2 + · · ·

= P ′(uk)−P ′′(uk)
[
P ′(uk)−1P(uk)

]
+ 1

2! P
′′′(uk)

[
P ′(uk)−1P(uk)

]2+· · ·
(From (4.1a))

= P ′(uk) − P ′′(uk)
[
ek − [P ′(uk)]−1P ′′(uk)

1

2!e
2
k

+ [P ′(uk)]−1P ′′′(uk)
1

3!e
3
k + · · · ] + 1

2! P
′′′(uk)e2k + · · · (from (4.4))

(4.5)

The right hand side of (4.3) gives

[
P ′(uk) + P ′(vk)

]
ek − 2P(uk) = 1

2! P
′′(uk)

[
P ′(uk)

]−1
P ′′(uk)e3k

+ 1

2! P
′′′(uk)e3k − 2

3! P
′′′(uk)e3k + · · · (4.6)

Using (4.6), Expression (4.3) can be written as

[
P ′(uk) + P ′(vk)

]
ek+1 = Bke

3
k + O(||ek ||4), (4.7)
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where

Bk =
[
1

2! P
′′(uk)

[
P ′(uk)

]−1
P ′′(uk) + 1

3! P
′′′(uk)

]
.

This shows that the Algorithm 1 has cubic-order convergence.
One may observe the following theoretical advantages of the TP-SQP scheme.

– Without computing higher-order derivatives, a higher-order convergence is
achieved in comparison to Newton-SQP framework.

– TP-SQP scheme involves the same order of arithmetic operations as compared to
Newton-SQP method.

One may associate a line search technique to each iteration of Algorithm 1 with the
help of a merit function, which can decide whether a trial step should be accepted or
not. In the next section, we limit our discussion to l1 merit function for the proposed
scheme. It has been discussed how to choose the penalty parameter μ that makes the
chosen direction a descent one in every iteration.

5 A Note on l1-Merit Function for the Proposed Scheme

The l1-merit function is of the form φ1 : Rn+1 → R, as

φ1(x;μ) = f (x) + μ‖h(x)‖1,

where μ is the penalty parameter, ‖.‖1 is l1 norm. In TP-SQP method, the step length
is of one unit length. The steplength αk ∈ (0, 1] is associated if the following decrease
condition holds:

φ1(xk + αk pk;μk) � φ1(xk;μk) + ηαkD(φ1(xk;μ); pk),

where η ∈ (0, 1) and D(φ1(xk;μ); pk) denotes the directional derivative of φ1 in the
direction pk . This requirement is analogous toArmijo condition of unconstrained opti-
mization problem provided that pk is a descent direction, that is,D(φ1(xk;μ); pk) �
0. Descent direction holds if μ is chosen sufficiently large as shown in the following
theorem:

Theorem 5.1 For the TP-SQP scheme, ifmax {‖Aksk̄‖1, ‖ 1
2 (Ak̄−Ak)sk̄‖1} � ‖hk‖1,

then μ > 4‖λk‖∞ + 2‖λk+1‖∞ implies

D(φ1(xk;μ); sk̄) � 0.

Proof

φ1(xk + αsk̄;μ) − φ(xk;μ)

= f (xk + αsk̄) − fk + μ‖h(xk + αsk̄)‖1 − μ‖hk‖1
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= ( fk + α∇ f Tk sk̄ + 1

2
α2sT

k̄
∇2 f (xk + t1sk̄)sk̄) − fk

+μ‖hk + αAksk̄ + 1

2
α2sT

k̄
∇2h(xk + t2sk̄)sk̄‖1 − μ‖hk‖1

( where t1, t2 ∈ (0, α))

� α∇ f Tk sk̄ + μ‖hk + αAksk̄‖1 − μ‖hk‖1 + γα2‖sk̄‖21
(γ is the upper bound of the second derivatives of f and h)

= α∇ f Tk sk̄ + μ‖hk + α(−2hk − Ak̄sk̄)‖1 − μ‖hk‖1 + γα2‖sk̄‖21(
Since from (3.3b),

1

2
(Ak + Ak̄)sk̄ + hk = 0

)

= α∇ f Tk sk̄ + μ‖(1 − α)hk − α(hk + Ak̄sk̄)‖1 − μ‖hk‖1
+ γα2‖sk̄‖21

� α∇ f Tk sk̄ + μ(1 − α)‖hk‖1 + μα‖hk + Ak̄sk̄‖1 − μ‖hk‖1
+ γα2‖sk̄‖21 (for 0 < α � 1).

This implies

limα→0
φ1(xk + αsk̄;μ) − φ1(xk;μ)

α
� ∇ f Tk sk̄ − μ‖hk‖1 + μ‖hk + Ak̄sk̄‖1,

i.e.,

D(φ1(xk;μ); sk̄) � ∇ f Tk sk̄ − μ‖hk‖1 + μ‖hk + Ak̄sk̄‖1.

Multiplying sT
k̄
in left to both sides of (3.2a) and using lk̄ = λk+1, the above inequality

becomes

D(φ1(xk;μ); sk̄)
� −sT

k̄

(1
2
(∇2

xxLk + ∇2
xxLk̄)

)
sk̄ + sT

k̄

(1
2
(AT

k + AT
k̄
)(λk+1 − λk)

)
+ sT

k̄
AT
k λk − μ‖hk‖1 + μ‖hk + Ak̄sk̄‖1.

Using (3.3a), we get

D(φ1(xk;μ); sk̄)�−sT
k̄

(
1

2

(
∇2
xxLk+∇2

xxLk̄

))
sk̄−hTk λk+1 + hTk λk+(Aksk̄)

Tλk

− μ‖hk‖1 + μ‖1
2
(Ak̄ − Ak)sk̄‖1

�−sT
k̄

(
1

2

(
∇2
xxLk+∇2

xxLk̄

))
sk̄+‖hk‖1‖λk+1‖∞+‖hk‖1‖λk‖∞

+ ‖Aksk̄‖1‖λk‖∞ − μ‖hk‖1 + μ

2
‖hk‖1.
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Using the given condition max {‖Aksk̄‖1, ‖ 1
2 (Ak̄ − Ak)sk̄‖1} � ‖hk‖1, we get

D(φ1(xk;μ); sk̄) � −sT
k̄

(
1

2
(∇2

xxLk + ∇2
xxLk̄)

)
sk̄

+ ‖hk‖1
(
‖λk+1‖∞ + 2‖λk‖∞ − μ

2

)

� 0 (for μ > 2‖λk+1‖∞ + 4‖λk‖∞) .

It follows that under the assumption stated, sk̄ will be a descent direction for φ if
∇2
xxLk̄ is positive definite and μ > 2‖λk+1‖∞ + 4‖λk‖∞.

6 Numerical Examples

Following two examples are examined with the proposed algorithm, and the results
are analyzed. The algorithm will terminate whenever the norm of the gradient of the
Lagrangian comes close to zero.

Example 6.1

(P1): min x1 + x2

s.t. x21 + x22 − 2 = 0

Example 6.2

(P2): min (
√
3)3x1x2x3

s.t. x21 + x22 + x23 − 1 = 0

(P1) and (P2) are solved in MATLAB R-2013(b) by Newton-SQP method and TP-
SQP method with the tolerance limit is 10−15 and different initial points. Value of λ0
is chosen using (3.7). The number of iterations by both the methods are provided in
Table 1. Since the proposed scheme has local cubic-order convergence property, it is
expected that the number of iterations of the proposed scheme to attain the solution
must be less than the number of iterations ofNewton-SQP scheme,which has quadratic
convergence property. Table 1 certainly meets this expectation.

7 Conclusion

In this paper, we have proposed a local scheme to solve a nonlinear equality-
constrained optimization problem with higher-order convergence property. Without
computing higher-order derivatives, TP-SQP scheme achieves higher-order conver-
gence propertymore quickly thanNewton-SQPmethod.However, sincewe are solving
twoquadratic subproblems in each iteration, for the aspect of software implementation,
TP-SQP scheme is more suitable than the Newton-SQPmethod for those optimization

123



Two-Phase-SQP Method with Higher-Order Convergence Property 395

Table 1 Comparison between the number of iterations for Newton-SQP and TP-SQP

Minimizer (x∗; λ∗) (x0; λ0) Number of
iterations
(Newton-SQP)

Number of
iterations (TP-SQP)

P1 (−1,−1; 0.5) (−0.8,−0.8;−0.625 0) 6 4
(−0.2,−0.3,−1.923 1) 10 5
(−1, 0; −0.5) 8 5
(−0.9,−0.3;−0.667) 8 4

P2
(
3−0.5, 3−0.5, 3−0.5;−1.5

)
(0.2, 0.3, 0.1; 0.334 0) 9 6

(0.4, 0.5, 0.6; 1.217 4) 6 3
(0.7, 0.6, 0.5; 1.488) 6 3
(0.23, 0.34, 0.45; 0.739 3) 7 5

problems, where the former one takes almost half the number of iterations than the
latter one. In future, in the light of TP-SQP scheme, one may propose schemes even
having order of convergence more than three.
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