
J. Oper. Res. Soc. China (2016) 4:371–377
DOI 10.1007/s40305-016-0119-1

An Optimal Online Algorithm for Scheduling on Two
Parallel Machines with GoS Eligibility Constraints

Jia Xu1 · Zhao-Hui Liu1

Received: 27 October 2015 / Revised: 5 January 2016 / Accepted: 21 February 2016 /
Published online: 5 March 2016
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag Berlin Heidelberg 2016

Abstract We consider the online scheduling problem on two parallel machines with
the Grade of Service (GoS) eligibility constraints. The jobs arrive over time, and the
objective is to minimize the makespan. We develop a (1 + α)-competitive optimal
algorithm, where α ≈ 0.555 is a solution of α3 − 2α2 − α + 1 = 0.

Keywords Scheduling · Parallel machine · Eligibility constraint · Online algorithm

Mathematics Subject Classification 68M20 · 90B35

1 Introduction

We consider the following scheduling problem with machine eligibility con-
straints. There are n jobs J1, J2, · · · , Jn to be processed on m parallel machines
M1, M2, · · · , Mm . Every job J j is associated with a release time r j , a processing time
p j , and a processing setM j ⊆ {M1, M2, · · · , Mm}, which mean that the job can only
be processed at or after time r j and on themachines inM j , and its processing takes p j

time units. The objective is to determine a schedule thatminimizes themakespanCmax,
i.e., the maximum completion time of the jobs. We discuss the problem in the online

This research was supported by the National Natural Science Foundation of China (No. 11171106).

B Zhao-Hui Liu
zhliu@ecust.edu.cn

Jia Xu
xj851217@163.com

1 Department of Mathematics, East China University of Science and Technology, Shanghai 200237,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-016-0119-1&domain=pdf

372 J. Xu, Z.-H. Liu

setting. That is, the information of any job is available only after it is being released,
even about its existence. But when a job appears, we have the option of scheduling it
immediately or postponing its scheduling till some later time. In contrast, in the offline
setting, we have full information about all jobs in advance. Using the 3-field notation
of Graham et al. [1], we denote the online problem as P|M j , r j , online|Cmax and the
corresponding offline problem as P|M j , r j |Cmax. In this paper, we confine ourselves
to a special type of processing set, i.e., the Grade of Service (GoS) processing set. In
this case, for any two jobs Ji and J j , it holds that either Mi ⊆ M j or Mi ⊇ M j .
Thus, the jobs and machines can be graded such that a job can be processed on a
machine only when the grade of the job is not below the grade of the machine. We
useM j (GoS) to indicate the special eligibility constraint. Also, we concern ourselves
with the two-machine case, i.e., P2|M j (GoS), r j , online|Cmax.

To evaluate the performance of an algorithm, we use the worst-case performance
ratio and the competitive ratio for the offline problem and online problem, respectively.
Let σ ∗ denote the offline optimal schedule and σ denote the schedule generated by the
algorithm in context. Let Cmax(σ

∗) and Cmax(σ) denote the makespan of σ ∗ and σ ,
respectively. If Cmax(σ) � ρCmax(σ

∗), this algorithm is said to be a ρ-approximation
algorithm for the offline problem, and a ρ-competitive algorithm for the online prob-
lem.

When there are no eligibility constraints, i.e., each job can be processed on
any machine, Chen and Vestjens [2] presented a 3/2-competitive algorithm for
P|r j , online|Cmax, and Noga and Seiden [3] showed a 1.382-competitive optimal
algorithm for the two-machine problem P2|r j , online|Cmax.

When there are some eligibility constraints, Shchepin and Vakhania [4] provided
a (2 − 1

m)-approximation algorithm for the offline problem P|M j |Cmax in which
all jobs are available at time zero, and Muratore et al. [5] gave a Polynomial Time
Approximation Scheme (PTAS) algorithm for the offline GoS constraints problem
P|M j (GoS)|Cmax. Shmoys et al. [6] showed that if there is a ρ-approximation algo-
rithm for some scheduling problem in which all jobs are available at time zero, then
there exists a 2ρ-competitive algorithm for the corresponding problem in which the
jobs are released online over time. Therefore, P|M j , r j , online|Cmax has a (4− 2

m)-
competitive algorithm, and P|M j (GoS), r j , online|Cmax has a (2 + ε)-competitive
algorithm.Xu andLiu [7] considered several problemswith equal processing times and
gave a

√
2-competitive optimal algorithm for P|M j (GoS), p j = p, r j , online|Cmax.

In this paper, we present a (1+α)-competitive optimal algorithm for P2|M j (GoS),

r j , online|Cmax, where α ≈ 0.555 is a solution of α3 − 2α2 − α + 1 = 0.

2 Algorithm

For P2|M j (GoS), r j , online|Cmax, we need only to consider two types of process-
ing sets: {M1} and {M1, M2}. For convenience, we call the jobs that can only be
processed on M1 1-jobs and the other jobs 2-jobs. Lee et. al. [8] have showed the
following lemma.

Lemma 2.1 Any online algorithm for P2|M j (GoS), r j , online|Cmax has a compet-
itive ratio at least 1 + α ≈ 1.555, where α is a solution of α3 − 2α2 − α + 1 = 0.

123

An Optimal Online Algorithm for Scheduling... 373

Here we present a (1 + α)-competitive algorithm H for P2|M j (GoS), r j , online|
Cmax. By Lemma 2.1, H is optimal. In Algorithm H, Jmax(t) denotes the longest
available 2-job at time t , and pmax(t) denotes its processing time.

Algorithm H

While M1 is idle Do
If there is an available 1-job, then schedule it on M1;
Else Do
If there are two or more available 2-jobs, schedule the second longest 2-job on M1;
If there is only one available 2-job Jmax(t) at current time t , and pmax(t) � α

1−α
pa ,

where pa is the processing time of the job Ja processed on M2 at time t (assume
pa = 0 if M2 is idle at this time), then schedule Jmax(t) on M1;

Else keep M1 idle until a new job is released.
While M2 is idle Do
If the current time t � αpmax(t), then schedule Jmax(t) on M2;
Else keep M2 idle until time t = αpmax(t).

Let σ and σ ∗ denote the schedule generated by AlgorithmH and the offline optimal
schedule, respectively.We useC j andC∗

j to denote the completion times of job J j in σ

and σ ∗, respectively, and use S j and S∗
j to denote its start times in the two schedules.

Let C and C∗ denote the makespan of σ and σ ∗, respectively. Let Jn be the last
completed job, and L be the completion time of the machine that does not process Jn ,
in σ .

Obviously, if several 1-jobs Ju1 , Ju2 , · · · , Ju j are scheduled continuously on M1
in σ , then we can replace the jobs by a larger 1-job Ju with pu = ∑

1�i� j Jui and
ru = min1�i� j rui . This replacement does not increase the length of σ ∗, and keeps
the length of σ and the positions of other jobs in σ unchanged. After this replacement,
we can make sure there are no two 1-jobs scheduled on M1 continuously in σ .

Lemma 2.2 If J j is scheduled on M2 in σ , then S j � αp j .

Proof By Algorithm H, if J j is scheduled on M2, then J j is just Jmax(S j). Therefore,
S j � αpmax(S j) = αp j .

Lemma 2.3 If Jn is 2-job, and C − L > pn, then C/C∗ � 1 + α.

Proof If Jn is scheduled on M1, by C − L > pn , M2 is idle at time Sn . Further, by
the algorithm, we have pn � α

1−α
pa = 0 and rn = Sn ; otherwise, Jn is scheduled on

M2. So, C = rn = C∗. Next we suppose that Jn is scheduled on M2.
If M2 is idle just before Jn in σ , then Sn = αpn or rn , which means C = (1+α)pn

or rn + pn . Since C∗ � rn + pn , we have C/C∗ � 1+ α. Now we suppose rn < Sn ,
and there is a job Jn−1 finished at time Sn on M2. As C − L > pn , M1 is idle
at time Sn . Then, we have pn > α

1−α
pn−1. Since we always schedule the current

longest available 2-job on M2, it holds that rn > Sn−1. So, C − C∗ � pn−1. If
pn−1 � α

1+α
C , then C − C∗ � α

1+α
C , and the lemma holds. If pn−1 > α

1+α
C , then

pn > α
1−α

pn−1 > α2

1−α2C , and by Lemma 2.2, Sn−1 � αpn−1 > α2

1+α
C . So,

C = Sn−1 + pn−1 + pn >
−α3 + α2 + α

1 − α2 C.

123

374 J. Xu, Z.-H. Liu

Since α3 − 2α2 − α + 1 = 0, we have C > −α3+α2+α
1−α2 C = C , a contradiction.

In the following analysis, we suppose that if Jn is 2-job, then C − L � pn .
If C − L � pn , then the machine that processes Jn is always busy from time L to

C . If C − L > pn , then Jn is 1-job, and M2 is idle after time L . By the algorithm, no
2-jobs start on M1 after time L . Thus, if M1 has idle time in [L ,C], we can easily get
C = C∗. In other words, we can also suppose that the machine which processes Jn is
always busy from time L to C .

In the algorithm, M1 can be idle for two reasons: There is no available job or there
is only one available 2-job J j with p j > α

1−α
pa . Also, M2 can be idle for two reasons:

there is no available 2-job or the current time t < αpmax(t). Call a time interval as
idle time interval if there is at least one machine idle during this time interval. We can
distinguish the idle time interval into two types:

(i) a-type: no available job for any idle machine during the interval;
(ii) b-type: there is an available job for some idle machine during the interval.

If there is no idle time before L , then by Lemma 2.2, M2 does not process any job
after time zero, and L = 0. Further, M1 does not process any 2-job after time zero, i.e.,
σ is optimal. In the following, we suppose that there is at least one idle time interval
before L in σ .

Let [ts, t f] be the last idle time interval before L in σ . Notice that if there exists t ′
with ts < t ′ < t f such that [ts, t ′] and [t ′, t f] are idle time interval of different types,
we treat [t ′, t f] as the last idle time interval and let ts = t ′.

Let J̄ (t f) denote the set of jobs released before time t f but completed after time
t f in σ . For J j ∈ J̄ (t f), the processing mount after time t f in σ and σ ∗ is equal to
min{p j ,C j − t f } and min{p j ,max{0,C∗

j − t f }}, respectively. Let

δ j = max{0,min{p j ,C j − t f } − min{p j ,max{0,C∗
j − t f }}}.

Lemma 2.4 If δ j > 0, then δ j � S j and δ j � t f − S∗
j hold.

Proof It follows from δ j > 0 that min{p j ,C j − t f } > min{p j ,max{0,C∗
j − t f }}.

Then, p j > C∗
j − t f = S∗

j + p j − t f , i.e., t f − S∗
j > 0.

When C∗
j < t f , we have δ j = min{p j ,C j − t f } and S∗

j + p j = C∗
j < t f . Then,

δ j � p j < t f − S∗
j and δ j � C j − t f < C j − (S∗

j + p j) = S j − S∗
j � S j . When

t f � C∗
j < p j + t f , δ j = min{p j ,C j − t f } − (C∗

j − t f). Thus, δ j � (C j − t f) −
(C∗

j − t f) = S j −S∗
j � S j and δ j � p j −(C∗

j − t f) = p j −(S∗
j + p j − t f) = t f −S∗

j .

Let δ = ∑
J j∈ J̄ (t f)

δ j . If J̄ (t f) = ∅, let δ = 0.

Lemma 2.5 If [ts, t f] is a-type, then δ � t f .

Proof If M1 is idle during [ts, t f], then all the jobs scheduled at or after time t f must
be released at or after time t f . So, | J̄ (t f)| � 1. If J̄ (t f) = ∅, the lemma holds. If
| J̄ (t f)| = 1, say J̄ (t f) = {Jb}, then according to Lemma 2.4, δ = δb � Sb � t f .

If M2 is idle during [ts, t f], then all the 2-jobs scheduled at or after time t f must
be released at or after time t f . If there is no job scheduled before t f and completed at

123

An Optimal Online Algorithm for Scheduling... 375

or after time t f on M1, then all the jobs scheduled at or after time t f must be released
at or after time t f . Thus, J̄ (t f) = ∅, and the lemma holds. Now suppose there is a
job Jb scheduled before time t f and completed at or after time t f on M1. If all the
jobs scheduled after Jb on M1 are released at or after time t f , then J̄ (t f) = {Jb} and
δ = δb � Sb � t f . If there exists another job Jc in J̄ (t f), then Jc must be 1-job and
rc > Sb. Thus, Jb is 2-job. If δc = 0, then δ = δb � t f . If δc > 0, since S∗

c � rc > Sb,
we have δc � t f − S∗

c � t f − Sb. Thus, t f � δc + Sb � δc + δb = δ.

Theorem 2.6 If [ts, t f] is a-type, then C/C∗ � 1 + α.

Proof First suppose that Jn is 2-job. If Sn < t f , then [ts, t f] is merely an a-type idle
time interval on the machine that does not process Jn in σ . Therefore, all the jobs
scheduled at or after time t f must be released at or after t f , and deleting them does
not change the positions of the other jobs (including Jn). But the deletion operation
will decrease L and cause L � ts , and hence, we turn to deal with the new σ . Now
suppose Sn � t f . Since Jn is 2-job, we have C − L � pn . Further, since [ts, t f] is an
a-type idle time interval, we have rn � t f , and by Lemma 2.5, we have δ � t f . Thus,

C∗ � rn + pn � t f + pn � δ + C − L .

By the definition of δ, for those jobs released before t f and completed at or after t f in
σ , the processing mount after t f in σ ∗ is δ less than in σ . Then we have

C∗ � t f + 1

2
(C + L − 2t f − δ) = C − 1

2
(C − L + δ) � C − 1

2
C∗.

It leads to C � 3
2C

∗.
Next we suppose that Jn is 1-job. If no job is completed at time Sn on M1, then

rn = Sn and σ is optimal. If there is some job Jn−1 completed at time Sn on M1, then
Jn−1 is 2-job. As in the case where Jn is 2-job, we can suppose Sn−1 � t f . Notice
that rn > Sn−1. If pn−1 � α

1+α
C , we have C − C∗ < pn−1 � α

1+α
C , which leads to

C < (1+ α)C∗. If pn−1 > α
1+α

C , as Jn−1 is a 2-job scheduled on M1, there must be

some job Jk on M2 such that pk � 1−α
α

pn−1 > 1−α
1+α

C . Clearly, Ck > Sn−1 � t f . If

Sk < t f , then J̄ (t f) = {Jk} and δ = δk � Sk , which implies L − δ � pk > 1−α
1+α

C .
Then,

C∗ � t f + 1

2
(C + L − 2t f − δ) = 1

2
C + 1

2
(L − δ) >

1

1 + α
C.

If Sk � t f , then L − t f � L − Sk � pk . By Lemma 2.5, δ � t f . Then we have

C∗ � t f + 1

2
(C + L − 2t f − δ) � 1

2
C + 1

2
(L − t f) >

1

1 + α
C.

This completes the proof.

In the remaining part of this section, we suppose that the last idle time interval
[ts, t f] is b-type. The following Lemmas 2.7 and 2.8 are obvious for Algorithm H.

123

376 J. Xu, Z.-H. Liu

Lemma 2.7 If M1 is idle during [t1, t2], then there is at most one job released before
time t2 and scheduled at or after time t2.

In fact, when [t1, t2] is a b-type idle time interval, there is only one job released
before time t2 and scheduled at or after time t2; when [t1, t2] is an a-type idle time
interval, there is no job released before time t2 and scheduled at or after time t2.

Lemma 2.8 If M2 is idle during [ts, t f]which is b-type, then job Jmax(t f) is scheduled
at time t f on M2, where t f = αpmax(t f).

Theorem 2.9 If [ts, t f] is b-type, then C/C∗ � 1 + α.

Proof We first consider the case where M2 is idle during [ts, t f]. If Jmax(t f) is com-
pleted later than L , then Jmax(t f) is the last completed job and the theorem holds
obviously. So, we suppose that Jmax(t f) is completed no later than L in σ . Let [t ′s, t ′f]
be the last idle time interval onM1 (if there is not such time interval,we let t ′s = t ′f = 0).
Clearly, t ′f � t f . By Lemma 2.7, there is at most one job, say Jk , released before t ′f
and scheduled at or after time t ′f in σ . Let δ′

k denote the processing mount of Jk before
time t ′f in σ ∗. Clearly, δ′

k � t ′f . Then we have

C∗ � 1

2
(C + L − t f − t ′f − δ′

k) + t ′f � 1

2
(C + L − t f).

If L − t f � 1−α
1+α

C , then C∗ � 1
1+α

C , and the theorem holds. So, we suppose

L−t f < 1−α
1+α

C . ByLemma2.8, t f = αpmax(t f) � α(L−t f). Then L = t f +L−t f <

(1 − α)C .
If Jn is 2-job, then

pn � C − L > αC >
1 − α

1 + α
C > L − t f � pmax(t f).

Thus, rn > t f , and C∗ � rn + pn > t f + C − L , and C − C∗ < L − t f < 1−α
1+α

C ,

which leads to C < 1+α
2α C∗ < (1 + α)C∗.

If Jn is 1-job, as in the proof of Theorem 2.6, we can find the last 2-job Jn−1 on M1.
By the algorithm, there is a job Jk , with pk � 1−α

α
pn−1, scheduled on M2. If Sk � t f ,

then L− t f � pk � 1−α
α

pn−1. If Sk < t f , we have pk � Sk
α

<
t f
α

= pmax(t f). Again,
L − t f � pmax(t f) > pk � 1−α

α
pn−1. So, pn−1 � α

1−α
(L − t f) < α

1+α
C . Noticing

that rn > Sn−1, we have C − C∗ < pn−1 < α
1+α

C . Consequently, C/C∗ � 1 + α

holds.
Next we consider the case where M1 is idle during [ts, t f]. If M2 is idle at time

t f , then the same argumentation as above works. Thus, we suppose there is a job Ja
processed on M2 at time t f . By Lemma 2.7, there is only one job released before time
t f and scheduled at or after time t f . Clearly, the only job must be longer than α

1−α
pa ,

so it is released after Sa . That is, all the jobs scheduled at or after time t f are released
after time Sa . Let δ′

a denote the processing mount of Ja before time Sa in σ ∗. Clearly,
δ′
a � Sa . Then we have

123

An Optimal Online Algorithm for Scheduling... 377

C∗ � 1

2
(C + L − t f − Sa − δ′

a) + Sa � 1

2
(C + L − t f). (2.1)

If Jn is 1-job, then just as before, we can find the last 2-job Jn−1 on M1. Notice that
rn > Sn−1. If pn−1 � α

1+α
C , we have C −C∗ < pn−1 � α

1+α
C and C < (1+α)C∗.

If pn−1 > α
1+α

C , then there is a job Jk scheduled at or after time Sa on M2 such that

pk � 1−α
α

pn−1 > 1−α
1+α

C . If Ja and Jk are different jobs, then Jk is scheduled after Ja ,

and we have L − t f � pk > 1−α
1+α

C . Notice that there is a 2-job longer than α
1−α

pa
released before t f and scheduled at or after time t f . This 2-job is scheduled after Ja
in σ . Thus, if Ja and Jk are the same job, we have L − t f � α

1−α
pa > pk > 1−α

1+α
C .

It follows from (2.1) that C/C∗ � 1 + α.
If Jn is 2-job, then pn � C − L . By (2.1), we need only to consider the case of

L − t f < 1−α
1+α

C . If rn � t f , then

C∗ � rn + pn � t f + (C − L) >
2α

1 + α
C >

1

1 + α
C.

Thus, we suppose that Jn is just the job released before t f and scheduled at or after t f .
Clearly, pn > α

1−α
pa and Sn � Ca . If Sn > Ca , then there exists a job J j scheduled

on M2 such that p j � pn and r j � t f . Thus, C∗ � r j + p j � t f + pn > 2α
1+α

C , and
the theorem holds. If Sn = Ca , then

C = Sa + pa + pn > αpa + pa + α

1 − α
pa = 1 + α − α2

1 − α
pa = 1 + α

α
pa,

where the last equality follows from α3 − 2α2 − α + 1 = 0. As pn > pa , we have
rn > Sa . Then, C − C∗ � pa < α

1+α
C , and the theorem holds.

Combining the above analysis with Lemma 2.1, we obtain the following result.

Theorem 2.10 Algorithm H is a (1 + α)-competitive optimal algorithm for P2|M j

(GoS), r j , online|Cmax.

References

[1] Graham,R.L., Lawler, E.L., Lenstra, J.K.: Optimization and approximation in deterministic sequencing
and scheduling: a survey. Ann. Discret. Math. 5, 287–326 (1979)

[2] Chen, B., Vestjens, A.: Scheduling on identical machines: how good is LPT in an online setting? Oper.
Res. Lett. 21(4), 165–169 (1997)

[3] Noga, J., Seiden, S.: An optimal online algorithm for scheduling two machines with release times.
Theor. Comput. Sci. 268, 133–143 (2001)

[4] Shchepin, E.V., Vakhania, N.: An optimal rounding gives a better approximation for scheduling unre-
lated machines. Oper. Res. Lett. 33, 127–133 (2005)

[5] Muratore, G., Schwarz, U.M.,Woeginger, G.J.: Parallelmachine schedulingwith nested job assignment
restrictions. Oper. Res. Lett. 38, 47–50 (2010)

[6] Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-line. SIAM J. Comput.
24(6), 1313–1331 (1995)

[7] Xu, J., Liu, Z.: Online scheduling with equal processing times and machine eligibility constraints.
Theor. Comput. Sci. 572, 58–65 (2015)

[8] Lee, K., Leung, J.Y.-T., Pinedo, M.L.: Makespan minimization in online scheduling with machine
eligibility. 4OR 8, 331–364 (2010)

123

	An Optimal Online Algorithm for Scheduling on Two Parallel Machines with GoS Eligibility Constraints
	Abstract
	1 Introduction
	2 Algorithm
	References

