
J. Oper. Res. Soc. China (2016) 4:147–165
DOI 10.1007/s40305-016-0118-2

A New Infeasible-Interior-Point Algorithm Based on
Wide Neighborhoods for Symmetric Cone
Programming

Chang-He Liu1 · Dan Wu1 · You-Lin Shang1

Received: 26 June 2015 / Revised: 24 October 2015 / Accepted: 6 January 2016 /
Published online: 3 March 2016
© Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and
Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper, we present an infeasible-interior-point algorithm, based on
a new wide neighborhood for symmetric cone programming. We treat the classical
Newton direction as the sum of two other directions, and equip them with different
step sizes.We prove the complexity bound of the new algorithm for the Nesterov-Todd
(NT) direction, and the xs and sx directions. The complexity bounds obtained here are
the same as small neighborhood infeasible-interior-point algorithms over symmetric
cones.

Keywords Infeasible-interior-point algorithm · Wide neighborhood · Symmetric
cone programming · Euclidean Jordan algebra · Polynomial complexity

Mathematics Subject Classification 90C51 · 90C05 · 90C25

This work was partially supported by the National Natural Science Foundation of China (Nos. 11471102,
11426091, and 61179040), the Natural Science Foundation of Henan University of Science and
Technology (No. 2014QN039) and Key Basic Research Foundation of the Higher Education Institutions
of Henan Province (No. 16A110012).

B You-Lin Shang
mathshang@sina.com

Chang-He Liu
changheliu@163.com

Dan Wu
lywd2964@126.com

1 Department of Applied Mathematics, Henan University of Science and Technology,
Luoyang 471023, Henan, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40305-016-0118-2&domain=pdf


148 C.-H. Liu et al.

1 Introduction

Linear programming over coneK, or simply cone programming problem is defined
as minimizing a linear objective function subject to linear constraints and over cone
K, which is a closed, pointed, convex cone with a nonempty interior in R

n . In this
paper, we are interested in the interior-point-methods (IPMs) of the cone programming
where cone K is a symmetric cone, that is K is self-dual and its automorphism group
acts transitively on its interior. Symmetric cones are intimately related to Euclidean
Jordan algebras (see [1] and [2], etc), and these algebras provide us a basic toolbox to
carry out our analysis.

It is well known that symmetric cone programming (SCP) includes linear program-
ming (LP), semidefinite programming (SDP), and second-order cone programming
(SOCP) as special cases. Thus, more and more attention has been focused on the
optimization problems over symmetric cones. Nesterov and Todd [3–5] provided a
theoretical foundation of the primal-dual IPMs on a special class of conic program-
ming, where the associated cone is so-called self-scaled cone. Güler [2] observed that
the self-scaled cones are precisely symmetric cones, which have been studied much in
other areas of mathematical sciences (see, for example, [1]). Faybusovich [6,7] first
analyzed the IPMs over symmetric cones by using Euclidean Jordan algebraic tools.
Schmieta and Alizadeh [8] proved polynomial iteration complexities for variants of
the short, semi-long, and long step path-following algorithms based on commutative
class of search directions over symmetric cones. Vieira [9,10] proposed primal-dual
IPMs for SCP based on the kernel functions. Recently, Wang et al. [11–13] presented
a new class of full Nesterov-Todd (NT) step IPMs for SCP and convex quadratic opti-
mization over symmetric cone. They derived the iteration bounds that matched the
currently best known iteration bounds for full NT step feasible IPMs. Liu et al. [14]
proposed IPM with the second-order corrector step for SCP and showed the poly-
nomial convergence. In IPMs, an interesting result was given by Ai and Zhang [15]
for linear complementarity problem (LCP). Their algorithm decomposes the classical
Newton direction into two orthogonal ones and proceeds in a newwide neighborhood.
It is proved that their algorithm stops after at mostO(

√
nL) iterations, where n is the

number of variables and L is the input data length. This result yields the first wide
neighborhood path-following algorithm having the same theoretical complexity as a
small neighborhood algorithm for monotone LCP. Later, Li and Terlaky [16] gener-
alized Ai-Zhang’s algorithm [15] to SDP, and Potra [17] generalized the algorithm in
[15] to sufficient horizontal LCPs.

All above-mentioned methods are feasible IPMs, which require the starting point
is strictly feasible. However, it is sometimes difficult to obtain such starting point in
practice. Therefore, infeasible IPMs, which do not require that the iterates be feasible
to the relevant linear systems but only be in the interior of the cone K, have been the
focus of active research. Rangarajan [18] first proposed an infeasible IPM for SCP
using the so-called negative infinity wide neighborhood N−∞ and proved that the iter-
ation complexity bound isO(r2 log ε−1) for NT search direction and O(r2.5 log ε−1)

for xs and sx search direction. Potra [19] proposed the broad class of infeasible IPM for
solving linear complementarity problems over symmetric cones and established poly-
nomial complexity and superlinear convergence of algorithm. Recently, Gu et al. [20]
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generalized the full-Newton step infeasible IPM for LP of [21] to symmetric cones.
Liu and Yang [22–24] proposed some new infeasible IPMs using a new class of wide
neighborhoods and proved polynomial iteration complexities based on commutative
class of search directions. Motivated by these works, we present an improvement
infeasible IPM for SCP. We prove that the complexity bound of the new algorithm is
O(r log ε−1) for the NT direction, and O(r1.5 log ε−1) for the xs and sx directions.
The complexity bounds obtained here are the same as small neighborhood infeasible-
interior-point algorithms over symmetric cones.

In Sect. 2, we review the theory of Euclidean Jordan algebras and symmetric
cones. In Sect. 3, we first briefly explain the primal-dual path-following IPMs for
SCP problems, and then state the generic framework of our infeasible-interior-point
algorithm. In Sect. 4, we first demonstrate several technical lemmas, and then establish
the iteration complexity of the proposed algorithm based on the commutative class of
directions. Finally, some conclusions are given in Sect. 5.

2 Euclidean Jordan Algebras and Symmetric Cones

Let J be an n-dimensional vector space over real field R, along with a bilinear
map ◦ : J × J �−→ J . Then (J , ◦) is a Jordan algebra if for all x, y ∈ J ,
x ◦ y = y ◦ x and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) where x2 = x ◦ x . A Jordan algebra J
is called Euclidean if there exists a symmetric positive definite quadratic form Q on
J such that Q(x ◦ y, z) = Q(x, y ◦ z). An element e ∈ J is an identity element if
x ◦e = e◦x = x for all x ∈ J . The cone of squares of a Euclidean Jordan algebraJ is
the setK := {x2 : x ∈ J }. A cone is symmetric if and only if it is the cone of squares
of some Euclidean Jordan algebra (see [1, Theorems III.2.1 and III.3.1]). Since “◦” is
bilinear for every x ∈ J , there exists a linear operator Lx such that x ◦ y = Lx y for
all y ∈ J . For each x ∈ J define Qx := 2L2

x − Lx2 , which is called the quadratic
representation of x , and it plays an important role in our subsequent analysis.

For x ∈ J , let r be the smallest integer such that the set {e, x, x2, · · · , xr } is
linearly dependent. Then r is called the degree of x and denoted by deg(x). The rank
of J , denoted by rank(J ), is the maximum of deg(x) over all members x ∈ J . An
idempotent c is a nonzero element of J such that c2 = c. A complete system of
orthogonal idempotents is a set {c1, · · · , ck} of idempotents, where ci ◦ c j = 0 for all
i �= j , and c1 + · · · + ck = e. An idempotent is primitive if it is not the sum of two
other idempotents. A complete system of orthogonal primitive idempotents is called
a Jordan frame.

Theorem 2.1 [1, Theorem III.1.2]. Let J be a Euclidean Jordan algebra with rank
r . Then for every x ∈ J , there exist a Jordan frame {c1, · · · , cr } and real numbers
λ1, · · · , λr such that x = λ1c1+· · ·+λr cr . The numbers λi are called the eigenvalues
of x.

We define the following: The inverse x−1 := λ−1
1 c1 + · · · + λ−1

r cr , whenever all

λi �= 0; The square root x1/2 := λ
1/2
1 c1+· · ·+λ

1/2
r cr , whenever all λi � 0; The trace

tr(x) := λ1 + · · · + λr ; The determinant det(x) := λ1 · · · λr . Denote the minimum
(maximum) eigenvalues of x ∈ J by λmin(x)(λmax(x)). If x−1 is defined, we call x
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invertible. We call x ∈ J positive semidefinite (positive definite), denoted by x 	 0
(x 
 0), if all its eigenvalues are nonnegative (positive). It is clear that an element is
positive semidefinite (positive definite) if and only if it belongs to (the interior of) the
cone of squares.

Since tr(x ◦ y) is a bilinear function, the inner product can be defined as 〈x, y〉 :=
tr(x ◦ y). Since tr(·) is associative [1], it follows that the inner product is associative,
that is 〈x ◦ y, z〉 = 〈x, y ◦ z〉. Since the inner product is associative, it follows that
Lx and L−1

x are symmetric with respect to 〈·, ·〉, that is 〈Lx y, z〉 = 〈y, Lx z〉, and
〈L−1

x y, z〉 = 〈y, L−1
x z〉. From definition of Qx , it follows that it too is symmetric with

respect to 〈·, ·〉.
For x ∈ J , with eigenvalues λi , 1 � i � r , the Frobenius norm, the spectral norm,

and one-norm are defined, respectively, as

‖x‖F := √〈x, x〉 =
√√
√
√

(
r∑

i=1

λ2i

)

, ‖x‖2 := max
i

|λi |, ‖x‖1 :=
r∑

i=1

|λi |.

We state some useful propositions as follows:

Lemma 2.2 [20, Lemma 2.15]. If x ◦ y ∈ intK, then det(x) �= 0.

Lemma 2.3 [25, Theorem 3.1]. For x, y ∈ J , we have ‖x ◦ y‖1 � ‖x‖F‖y‖F .
Proposition 2.4 [1, Proposition III.2.2]. If x, y ∈ intK, then Qx y ∈ intK.

Proposition 2.5 [8, Proposition 21]. Let x, y, p ∈ intK and define x̃ := Qpx and
ỹ := Qp−1 y. Then

1. Qx1/2 y and Qy1/2x have the same spectrum.
2. Qx1/2 y and Qx̃1/2 ỹ have the same spectrum.

We say two elements x, y ∈ J operator commute if Lx L y = LyLx . The tool of
operator commutativity is very useful in the analysis of algorithms.

Theorem 2.6 [8, Theorem 27]. Let x and y be two elements of Euclidean Jordan
algebra J . Then x and y operator commute if and only if there is a Jordan frame
c1, · · · , cr such that x = ∑r

i=1 λi ci and y = ∑r
i=1 μi ci .

Lemma 2.7 [8, Lemma 30]. Let x, y ∈ intK and definew := Qx1/2 y, then tr(x◦y) =
tr(w). Moreover, if x and y operator commute then x ◦ y = w.

3 SCP Problems and Algorithm Framework

Let J be a Euclidean Jordan algebra with dimension n, rank r , and cone of squares
K. Consider the primal-dual pair of SCP problems

(P) min 〈c, x〉 s.t. Ax = b, x ∈ K,
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and
(D) max 〈b, y〉 s.t. A∗y + s = c, s ∈ K, y ∈ R

m,

where c ∈ J and b ∈ R
m . Here, A is a linear operator that maps J into R

m , and A∗
is its adjoint operator. Define the feasibility set and strictly feasibility set as follows:

F := {(x, y, s) ∈ K × R
m × K : Ax = b, A∗y + s = c},

F0 := {(x, y, s) ∈ intK × R
m × intK : Ax = b, A∗y + s = c}.

In this paper, we assume that A is surjective and F0 �= ∅. It is shown in [3,7] that
under the assumptions above, the sets of optimal solutions P∗ and D∗ are nonempty
and bounded, and moreover 〈x∗, s∗〉 = 0 for x∗ ∈ P∗ and (y∗, s∗) ∈ D∗. They also
proved that, for x, s ∈ K, 〈x, s〉 = 0 is equivalent to x ◦ s = 0. Therefore, x∗ and
(y∗, s∗) are optimal solutions if and only if they satisfy the following system:

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K, y ∈ R
m,

x ◦ s = 0, (3.1)

where the last equality is called the complementarity condition. Replace x ◦ s = 0 in
(3.1) with the perturbed complementary condition x ◦ s = μe for μ > 0, we have the
relaxed system

Ax = b, x ∈ K,

A∗y + s = c, s ∈ K, y ∈ R
m,

x ◦ s = μe. (3.2)

Primal-dual path-following interior-point algorithms follow the solutions of the
relaxed system (3.2) as μ goes to zero. The relaxed system have unique solutions
for all μ > 0, and these solutions form the so-called central trajectory (central path).
Moreover, the limit of the trajectory as μ goes to 0 yields optimal solution for (P) and
(D).

In the classical IPMs, the iterates are allowed tomove in a wide neighborhood of the
central path. The so-called negative infinity neighborhood that is a wide neighborhood,
is defined as

N−∞(1 − γ ) := {(x, y, s) ∈ intK × R
m × intK : λmin(Qx1/2s) � γμ},

where γ ∈ (0, 1) and μ = 〈x, s〉/r is the normalized duality gap. Ai [26], Ai and
Zhang [15] introduced a new class of wide neighborhoods of the central path. Later,
Li and Terlaky [16] extended the algorithm in [15] to SDP problems. And then, Liu
et al. [22,27] extended the algorithm in [15,26] to SCP problems. Analogously, Yang
et al. [24] defined the wide neighborhood based one-norm as

N1(τ, β) := {(x, y, s) ∈ intK × R
m × intK : ‖(τμe − Qx1/2s)

+‖1 � βτμ},
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where τ, β ∈ (0, 1). This neighborhood is a wide neighborhood since one can verify
that

N−∞(1 − τ) ⊆ N1(τ, β) ⊆ N−∞(1 − (1 − β)τ), ∀ 0 < τ, β < 1. (3.3)

Most classic primal-dual path-following algorithms take Newton steps toward
points on the central path defined by system (3.2) for μ > 0, rather than pure Newton
steps for the optimality system (3.1), sometimes known as the affine-scaling direction.
Since these steps are biased toward the interior of K, it usually is possible to take
longer steps along them than along the pure Newton steps for (3.1) before violating
the positive definite condition. To move from the current point (x, y, s) toward the
target on the central path corresponds to τμ, which leads us to the linear system

A�x = b − Ax,

A∗�y + �s = c − s − A∗y,
�x ◦ s + x ◦ �s = τμe − x ◦ s, (3.4)

where (�x,�y,�s) ∈ J × R
m × J is the search direction, τ ∈ [0, 1] is called

centering parameter.
The following lemma motivates different, but equivalent, ways of forming the

perturbed complementarity condition x ◦ s = μe, thus leading to different Newton
systems.

Lemma 3.1 [8, Lemma 28]. Let x, s, and p be in some Euclidean Jordan J , x, s ∈
intK, and p invertible. Then x ◦ s = μe if and only if Q px ◦ Qp−1s = μe.

Denote by C(x, s) the set of all elements so that the scaled elements operator
commute, i.e.,

C(x, s) := {p : p ∈ intK such that Qpx and Qp−1s operator commute}.

This is a subclass of the Monteiro-Zhang family of search directions called the com-
mutative class. In particular, choosing p = s1/2 and p = x−1/2 we get the xs and sx
search directions, respectively. For the choice of

p = [
Qx1/2(Qx1/2s)

−1/2]−1/2 = [
Qs−1/2(Qs1/2x)

1/2]−1/2
, (3.5)

we obtain the NT search direction. In this paper, we restrict the scaling p ∈ C(x, s).
In the following we denote by Ã = AQp−1 , c̃ = Qp−1c, x̃ = Qpx , and s̃ = Qp−1s.
With this notation, the Newton system (3.4) becomes

Ã�x̃ = b − Ãx̃,

Ã∗�y + �s̃ = c̃ − Ã∗y − s̃,

�x̃ ◦ s̃ + x̃ ◦ �s̃ = τμe − x̃ ◦ s̃. (3.6)
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In our new algorithm, we decompose the Newton system (3.6) into the following two
systems:

Ã�x̃− = b − Ãx̃,

Ã∗�y− + �s̃− = c̃ − Ã∗y − s̃,

�x̃− ◦ s̃ + x̃ ◦ �s̃− = (τμe − x̃ ◦ s̃)−, (3.7)

and

Ã�x̃+ = 0,

Ã∗�y+ + �s̃+ = 0,

�x̃+ ◦ s̃ + x̃ ◦ �s̃+ = (τμe − x̃ ◦ s̃)+. (3.8)

As pointed in [15,16], the negative part (τμe− x̃ ◦ s̃)− is responsible for reducing the
duality gap, and the positive part (τμe − x̃ ◦ s̃)+ is used to control the centrality. So,
we treat the negative part and the positive part separately and equip the two directions
with different step sizes. Let α := (α1, α2) ∈ R

2+ be the step sizes taken along
(�x̃−,�y−,�s̃−) and (�x̃+,�y+,�s̃+), respectively. The new iterate is

(x̃(α), y(α), s̃(α)) := (x̃, y, s̃) + α1(�x̃−,�y−,�s̃−) + α2(�x̃+,�y+,�s̃+).

We denote by w̃ = Qx̃1/2 s̃. By part (ii) of Proposition 2.5, w and w̃ have the same
eigenvalues. In addition, μ̃ = 〈x̃, s̃〉/r = 〈Qpx, Qp−1s〉/r = 〈x, s〉/r = μ. Hence
the neighborhoodN1(τ, β) is scaling invariant, that is (x, y, s) is in the neighborhood
if and only if (x̃, y, s̃) is.

Having introduced the key elements for the new algorithm, we state the generic
framework of our algorithm.

Algorithm 3.2 Input parameters: ε > 0, 0 < τ, β < 1, and an initial point
(x0, y0, s0) ∈ N1(τ, β). Set μ0 = 〈x0, s0〉/r, k := 0.

Step 1 If μk � εμ0, then stop.
Step 2 Choose a scaling element p ∈ C(xk, sk) and compute (x̃ k, s̃k).
Step 3 Compute the directions (�x̃ k−,�yk−,�s̃k−) and (�x̃ k+,�yk+,�s̃k+) by solving

the scaled Newton systems (3.7) and (3.8), respectively.
Step 4 Choose step size vector αk = (αk

1, α
k
2) > 0, such that the new iterates

(x̃ k+1, yk+1, s̃k+1) := (x̃ k, yk, s̃k) + αk
1(�x̃ k−,�yk−,�s̃k−)

+αk
2(�x̃ k+,�yk+,�s̃k+),

remain in N1(τ, β).
Step 5 Let

(
xk+1, yk+1, sk+1

) = (Qp−1 x̃ k+1, yk+1, Qps̃k+1) and μk+1 = 〈xk+1,

sk+1〉/r . Set k := k + 1 and go to Step 1.

We note that we will specify our choice for αk in next section, and present the con-
vergency and iteration complexity of Algorithm 3.2. Our choice is based on several
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factors, including keeping the centrality, improvement of the infeasibility, and decreas-
ing the duality gap. First, using (3.7) and (3.8) the following proposition is readily
verified.

Proposition 3.3 Let {(x̃ k, yk, s̃k)} be generated by Algorithm 3.2. Then for k � 0,
one has Ãx̃k+1−b = νk+1( Ãx̃0−b), and Ã∗yk+1+ s̃k+1− c̃ = νk+1( Ã∗y0+ s̃0− c̃),
where ν0 = 1 and

νk+1 = (1 − αk
1)ν

k =
k∏

i=0

(
1 − αi

1

) ∈ [0, 1]. (3.9)

Then, we have νk = ‖ Ãx̃k−b‖F
‖ Ãx̃0−b‖F = ‖ Ã∗yk+s̃k−c̃‖F

‖ Ã∗y0+s̃0−c̃‖F , which implies νk represents the

relative infeasibility at (x̃ k, yk, s̃k). Hence at every iterate, we maintain the condition:

〈x̃ k, s̃k〉 � νk〈x̃0, s̃0〉, (3.10)

which ensures that the infeasibility approaches to zero as the complementarity 〈x, s〉
approaches to zero.

We now specify a particular starting point for Algorithm 3.2. This choice was first
proposed by [28] for LCP, and then was extended by [18] to symmetric cones.

Let u0 and (r0, v0) be the minimum-norm solutions to the linear systems Ax = b
and A∗y + s = c, respectively. That is

u0 = argmin{‖u‖F : Au = b}, (r0, v0) = argmin{‖v‖F : A∗r + v = c}. (3.11)

We choose (x0, y0, s0) such that

x0 = s0 = ρ0e, ρ0 � max{‖u0‖2, ‖v0‖2}. (3.12)

This implies that x0, s0 ∈ intK, x0 − u0 ∈ K, and s0 − v0 ∈ K.
Let

ρ∗ = min{max(‖x∗‖2, ‖s∗‖2) : x∗ ∈ P∗, (y∗, s∗) ∈ D∗}, (3.13)

and in addition, we assume that for some constant Ψ > 0, it has ρ0 � ρ∗/Ψ . Note
that we can always increase ρ0.

For a given sequence of iterates {(xk, yk, sk)} we define
(
uk+1, rk+1, vk+1)

= (
xk+1, yk+1, sk+1) − (

1 − αk
1

)(
xk − uk, yk − rk, sk − vk

)
. (3.14)

The auxiliary sequence will be used in our analysis of complexity and need not be
actually computed in Algorithm 3.2. The following lemma gives useful properties of
the auxiliary sequence {(uk, rk, vk)}.
Lemma 3.4 Let {(xk, yk, sk)} be generated by Algorithm 3.2, {(uk, rk, vk)} be given
by (3.14), and {νk} be given by (3.9). Then for k � 0,
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(1) Auk = b and A∗rk + vk = c;
(2) xk − uk = νk

(
x0 − u0

) ∈ K and sk − vk = νk
(
s0 − v0

) ∈ K.

Proof The proof follows from direct substitution.

4 Analysis of Complexity for Algorithm 3.2

In this section, we first give the strategy of choice for step size αk . Then we develop
several technical lemmas. At the end of this section, we present our main result of
polynomial convergence. For simplicity, from now on we will suppress the superscript
k, except for k = 0 whenever no confusion arises. However, we will denote αk by α̂

while using α as a free variable.
Our choice of α̂ is based on several considerations. We require that the step size

vector α̂ = (α̂1, α̂2) satisfies the following three conditions:

(x̃(α), y(α), s̃(α)) ∈ N1(τ, β), (4.1)

〈x̃(α), s̃(α)〉 � (1 − α1)ν〈x̃0, s̃0〉, (4.2)

and
〈x̃(α), s̃(α)〉 � (1 − �α1)〈x̃, s̃〉, (4.3)

where ν = νk is defined in (3.9), and � ∈ (0, 1) is a constant independent of r .
Condition (4.1) is a centrality condition that prevents iterates from prematurely getting
too close to the boundary of the symmetric coneK. Condition (4.2), as we see in (3.10),
ensures that the infeasibility approaches to zero as the complementarity approaches
to zero. Condition (4.3) is needed in order to make a comparable progress in the
complementarity. From this point on, by Algorithm 3.2 we mean that the step size α̂

satisfies (4.1) ,(4.2), and (4.3).

4.1 Technical Lemmas

We will use the notation:

(�x̃(α),�y(α),�s̃(α)) = α1(�x̃−,�y−,�s̃−) + α2(�x̃+,�y+,�s̃+),

χ(α) = x̃ ◦ s̃ + α1(τμe − x̃ ◦ s̃)− + α2(τμe − x̃ ◦ s̃)+.

It can be easily verified that 〈�x̃+,�s̃+〉 = 0, x̃(α) ◦ s̃(α) = χ(α)+�x̃(α) ◦�s̃(α),
and

�x̃(α) ◦ �s̃(α)

= α2
1�x̃− ◦ �s̃− + α1α2(�x̃− ◦ �s̃+ + �s̃− ◦ �x̃+) + α2

2�x̃+ ◦ �s̃+, (4.4)

〈x̃(α), s̃(α)〉
= tr (χ(α)) + α2

1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉). (4.5)
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By using tr ((τμe− x̃ ◦ s̃)−)+ tr ((τμe− x̃ ◦ s̃)+) = tr (τμe− x̃ ◦ s̃) = −(1− τ)rμ,
we have

tr ((τμe − x̃ ◦ s̃)−) � −(1 − τ)rμ. (4.6)

When (x̃, y, s̃) ∈ N1(τ, β), we have

tr ((τμe − x̃ ◦ s̃)+) = ‖(τμe − x̃ ◦ s̃)+‖1 � βτμ. (4.7)

The following lemma will be used frequently during the analysis.

Lemma 4.1 [8, Lemma 33]. Let p, q ∈ J , and G a positive definite matrix which is
symmetric with respect to the inner product 〈·, ·〉. Then

‖p‖F‖q‖F �
√
cond (G)‖G−1/2 p‖F‖G1/2q‖F

� 1

2

√
cond (G)

(
‖G−1/2 p‖2F + ‖G1/2q‖2F

)
,

where cond (G) = λmax (G)/λmin(G).

We note that, for x, s ∈ intK, and p ∈ C, G := L−1
s̃ L x̃ is a positive definite matrix

and is symmetric with respect to the inner product 〈·, ·〉. We can see that the mapping
defined by ‖(u, v)‖G = (‖G−1/2u‖2F +‖G1/2v‖2F )1/2, u, v ∈ J is a norm onJ ×J .

Lemma 4.2 Let x, s ∈ intK, p ∈ C, and G = L−1
s̃ L x̃ . If β � 1/2, then

‖(�x̃+,�s̃+)‖2G � βτμ.

Proof Since x̃ and s̃ operator commute, there is a Jordan frame c1, · · · , cr such that
x̃ = ∑r

i=1 λi ci and s̃ = ∑r
i=1 μi ci . Then, x̃ ◦ s̃ = ∑r

i=1 λiμi ci and Lx̃ Ls̃ci =
x̃ ◦ (s̃ ◦ ci ) = λiμi ci , i = 1, · · · , r, which implies

(Lx̃ Ls̃)
−1ci = ci/(λiμi ). (4.8)

Multiplying the last equation of (3.8) by (Lx̃ Ls̃)
−1/2, we obtain

G−1/2�x̃+ + G1/2�s̃+ = (Lx̃ Ls̃)
−1/2(τμe − x̃ ◦ s̃)+.

Taking norm-squared on both sides, we have

‖G−1/2�x̃+‖2F + ‖G1/2�s̃+‖2F
= ‖(Lx̃ Ls̃)

−1/2(τμe − x̃ ◦ s̃)+‖2F
=

〈
(Lx̃ Ls̃)

−1/2(τμe − x̃ ◦ s̃)+, (Lx̃ Ls̃)
−1/2(τμe − x̃ ◦ s̃)+

〉

=
〈
(τμe − x̃ ◦ s̃)+, (Lx̃ Ls̃)

−1(τμe − x̃ ◦ s̃)+
〉

=
〈∑

(τμ − λiμi )
+ci , (Lx̃ Ls̃)

−1
∑

(τμ − λiμi )
+ci

〉

=
〈∑

(τμ − λiμi )
+ci ,

∑
(τμ − λiμi )

+ci/(λiμi )
〉

123



A New Infeasible-Interior-Point Algorithm Based... 157

=
∑ [

(τμ − λiμi )
+]2

/(λiμi )

�
[∑

(τμ − λiμi )
+]2

/(λiμi )

� (βτμ)2/(1 − β)τμ

� βτμ.

Here, the fifth equality follows from (4.8), the second inequality follows from w̃ = x̃◦s̃
and (x̃, y, s̃) ∈ N1(τ, β), and the last inequality holds due to β � 1/2.

Lemma 4.3 Let G = L−1
s̃ L x̃ . Then ‖(�x̃−,�s̃−)‖G � √

rμ + (1 + √
2)ξ, where

ξ := min{‖(ū, v̄)‖G : Ãū = b − Ãx̃, Ã∗r̄ + v̄ = c̃ − Ã∗y − s̃}.
Proof Let (ū, r̄ , v̄) ∈ J ×R

m ×J satisfy the equations Ãū = b− Ãx̃ and Ã∗r̄ + v̄ =
c̃ − Ã∗y − s̃, then by system (3.7) we have

Ã(�x̃− − ū) = 0,

Ã∗(�y− − r̄) + (�s̃− − v̄) = 0,

Ls̃(�x̃− − ū) + Lx̃ (�s̃− − v̄) = (τμe − x̃ ◦ s̃)− − (Ls̃ ū + Lx̃ v̄).

Multiplying the last equation by (Lx̃ Ls̃)
−1/2, we obtain

G−1/2(�x̃− − ū) + G1/2(�s̃− − v̄)

= (Lx̃ Ls̃)
−1/2(τμe − x̃ ◦ s̃)− − (G−1/2ū + G1/2v̄).

Therefore

‖(�x̃−,�s̃−)‖G
� ‖(�x̃− − ū,�s̃− − v̄)‖G + ‖(ū, v̄)‖G
= ‖G−1/2(�x̃− − ū) + G1/2(�s̃− − v̄)‖F + ‖(ū, v̄)‖G
= ‖(Lx̃ Ls̃)

−1/2(τμe − x̃ ◦ s̃)− − (
G−1/2ū + G1/2v̄

)‖F + ‖(ū, v̄)‖G
� ‖(Lx̃ Ls̃)

−1/2(τμe − x̃ ◦ s̃)−‖F + ‖G−1/2ū‖F + ‖G1/2v̄‖F + ‖(ū, v̄)‖G,

where the first equality holds due to the definition of ‖·‖G and 〈�x̃−−ū,�s̃−−v̄〉 = 0.
Similar to the proof of Lemma 4.2,

‖(Lx̃ Ls̃)
−1/2(τμe − x̃ ◦ s̃)−‖2F =

r∑

i=1

[
(τμ − λiμi )

−]2/
(λiμi ) �

r∑

i=1

λiμi = rμ.

By the definition of ‖ · ‖G , we have ‖G−1/2ū‖F +‖G1/2v̄‖F �
√
2‖(ū, v̄)‖G . Hence

the required result follows.

Lemma 4.4 Let (u0, r0, v0) and (x0, y0, s0) satisfy (3.11) and (3.12), respectively.
Then ξ � (5 + 4Ψ )r

√
μ/

√
(1 − β)τ .
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Proof Let ũ = Qpu and ṽ = Qp−1v. Then by Lemma 3.4 and Proposition 2.4we have

Ãũ = b, Ã∗r+ ṽ = c̃, x̃− ũ ∈ K and s̃− ṽ ∈ K. Let (ū, r̄ , v̄) := (x̃− ũ, y−r, s̃− ṽ),

then, we have Ã(−ū) = b − Ãx̃, Ã∗(−r̄) + (−v̄) = c̃ − Ã∗y − s̃. Hence,

ξ � ‖(−ū,−v̄)‖G � ‖G−1/2ū‖F + ‖G1/2v̄‖F .

Since x̃ and s̃ operator commute, then G = L−1
s̃ L x̃ and Qx̃ commute, and we have

‖G1/2v̄‖2F = 〈v̄,Gv̄〉 = 〈Q1/2
x̃ v̄, Q−1

x̃ GQ1/2
x̃ v̄〉 � λmax(Q

−1
x̃ G)‖Q1/2

x̃ v̄‖2F .

Then, by using [18, Lemma 4.1] we have

‖G1/2v̄‖2F � 〈x̃, v̄〉2
λmin(w̃)

= 〈x̃, ṽ − s̃〉2
λmin(w̃)

� 〈x̃, ṽ − s̃〉2
(1 − β)τμ

= 〈x, v − s〉2
(1 − β)τμ

.

Similarly it can be shown that ‖G−1/2ū‖2F � 〈s,u−x〉2
(1−β)τμ

. Therefore,

ξ � 〈x, s − v〉 + 〈x − u, s〉√
(1 − β)τμ

. (4.9)

For x∗ ∈ P∗, and (y∗, s∗) ∈ D∗, we have A(x∗−u) = 0 and A∗(y∗−r)+(s∗−v) = 0
by using part one of Lemma 3.4. Hence,

0 =〈x∗ − u, s∗ − v〉 = 〈x∗ − x + x − u, s∗ − s + s − v〉
=〈x∗, s∗〉 + 〈x, s〉 + 〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉

− 〈x∗, s〉 − 〈x, s∗〉 − 〈x, s − v〉 − 〈x − u, s〉.

It follows that

〈x, s − v〉 + 〈x − u, s〉
= 〈x∗, s∗〉 + 〈x, s〉 + 〈x∗, s − v〉

+〈x − u, s∗〉 + 〈x − u, s − v〉 − 〈x∗, s〉 − 〈x, s∗〉
� 〈x, s〉 + 〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉
=

(
1 + 〈x∗, s − v〉 + 〈x − u, s∗〉 + 〈x − u, s − v〉

〈x, s〉
)

〈x, s〉

=
(
1 + ν〈x∗, s0 − v0〉 + ν〈x0 − u0, s∗〉 + ν2〈x0 − u0, s0 − v0〉

〈x, s〉
)
rμ

�
(
1 + 〈x∗, s0 − v0〉 + 〈x0 − u0, s∗〉 + 〈x0 − u0, s0 − v0〉

〈x0, s0〉
)
rμ, (4.10)

where the third equation follows from part two of Lemma 3.4, and the last inequality
follows from (3.10), (3.12), and 0 < ν < 1. For the initial points choice as in Sect. 3, it
holds that 〈x0, s0〉 = r(ρ0)2 and max{‖x∗‖2, ‖s∗‖2} � ρ∗. Using Cauchy–Schwarz
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and the fact ‖ · ‖F � √
r‖ · ‖2, we have that 〈p, q〉 � ‖p‖F‖q‖F � r‖p‖2‖q‖2.

Therefore,

〈x∗, s0 − v0〉 + 〈x0 − u0, s∗〉 + 〈x0 − u0, s0 − v0〉
〈x0, s0〉

� 2rρ∗ρ0 + 2rρ∗ρ0 + 4r(ρ0)2

r(ρ0)2

= 4 + 4ρ∗/ρ0

� 4 + 4Ψ. (4.11)

By substituting (4.11) and (4.10) into (4.9), we obtain the required result.

Lemma 4.5 Let G = L−1
s̃ L x̃ . Then ‖(�x̃−,�s̃−)‖2G � ω2r2μ, where

ω =
(
1 + (1 + √

2)(5 + 4Ψ )
) /√

(1 − β)τ � 13.

By Lemma 4.2 and Lemma 4.5, we have the following corollary.

Corollary 4.6 Let β � 1/2, then

(1) |〈�x̃−,�s̃−〉| � ω2r2μ/2;
(2) |〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉| � 2

√
βτωrμ;

Proof By Lemma 4.5, we have

|〈�x̃−,�s̃−〉| = |〈G−1/2�x̃−,G1/2�s̃−〉|
� ‖G−1/2�x̃−‖F‖G1/2�s̃−‖F
� 1

2

(‖G−1/2�x̃−‖2F + ‖G1/2�s̃−‖2F
)

= 1

2
ω2r2μ.

To show (2), we note that from the definition of ‖ · ‖G ,

|〈�x̃−,�s̃+〉| = |〈G−1/2�x̃−,G1/2�s̃+〉|
� ‖G−1/2�x̃−‖F‖G1/2�s̃+‖F
� ‖(�x̃−,�s̃−)‖G‖(�x̃+,�s̃+)‖G
� ωr

√
μ

√
βτμ

= √
βτωrμ. (4.12)

Similarly, we have

|〈�s̃−,�x̃+〉| �
√

βτωrμ.

Hence the required result follows.
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Corollary 4.7 Let G = L−1
s̃ L x̃ . If β � 1/2, then

(1) ‖�x̃+‖F‖�s̃+‖F �
√
cond (G)βτμ/2;

(2) ‖�x̃−‖F‖�s̃−‖F �
√
cond (G)ω2r2μ/2;

(3) ‖�x̃−‖F‖�s̃+‖F + ‖�s̃−‖F‖�x̃+‖F � 2
√
cond (G)

√
βτωrμ;

where cond(G) = λmax (G)/λmin(G).

Proof ByLemma4.1, (1) and (2) follow fromLemma4.2 andLemma4.5, respectively.
From the first inequality in Lemma 4.1 and (4.12), we have

‖�x̃−‖F‖�s̃+‖F �
√
cond (G)‖G−1/2�x̃−‖F‖G1/2�s̃+‖F

�
√
cond (G)

√
βτωrμ.

Similarly,

‖�s̃−‖F‖�x̃+‖F �
√
cond (G)

√
βτωrμ.

This proves the corollary.

Lemma 4.8 If (x̃, y, s̃) ∈ N1(τ, β) and μ(α) � μ, then

‖(τμ(α)e − χ(α))+‖1 � (1 − α2)βτμ(α).

Proof Let x̃ ◦ s̃ = λ1c1 + · · · + λr cr , where {c1, · · · , cr } is a Jordan frame and the
spectral eigenvalues satisfy

τμ − λ1 � τμ − λ2 � · · · � τμ − λk � 0 � τμ − λk+1 � · · · � τμ − λr .

Then, we have (τμe − x̃ ◦ s̃)+ = (τμ − λk+1)ck+1 + · · · + (τμ − λr )cr , and

χ(α) =
r∑

i=1

λi ci + α1

k∑

i=1

(τμ − λi )ci + α2

r∑

i=k+1

(τμ − λi )ci

=
k∑

i=1

((1 − α1)λi + α1τμ)ci +
r∑

i=k+1

((1 − α2)λi + α2τμ)ci , (4.13)

which implies λi (χ(α)) � 0, i = 1, · · · , r . Using (4.13), we have

‖(τμ(α)e − χ(α))+‖1 =
∑

[τμ(α) − λi (χ(α))]+

�
∑ [

τμ(α) − μ(α)

μ
λi (χ(α))

]+

= μ(α)

μ

∑
[τμ − λi (χ(α))]+
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= (1 − α2)
μ(α)

μ

r∑

i=k+1

[τμ − λi ]+

�(1 − α2)
μ(α)

μ
βτμ

= (1 − α2)βτμ(α),

where the first inequality holds due to 0 < μ(α) � μ and χ(α) 	 0.

Lemma 4.9 Let τ � 1/4, β � 1/2, and (x̃, y, s̃) ∈ N1(τ, β). If α1 = α2
√

βτ/r and
α2 � √

τ/(
√
cond (G)ω2), then we have ‖�x̃(α) ◦ �s̃(α)‖1 � α2βτμ(α).

Proof By (4.4), Lemma 2.3 and Corollary 4.7, we have

‖�x̃(α) ◦ �s̃(α)‖1 �α2
1‖�x̃− ◦ �s̃−‖1 + α1α2(‖�x̃− ◦ �s̃+‖1

+ ‖�s̃− ◦ �x̃+‖1) + α2
2‖�x̃+ ◦ �s̃+‖1

�α2
1‖�x̃−‖F‖�s̃−‖F + α1α2(‖�x̃−‖F‖�s̃+‖F

+ ‖�s̃−‖F‖�x̃+‖F ) + α2
2‖�x̃+‖F‖�s̃+‖F

�
√
cond (G)μ(α2

1ω
2r2/2 + 2α1α2

√
βτωr + α2

2βτ/2)

= √
cond (G)μ(α2

2βτω2/2 + 2α2
2βτω + α2

2βτ/2)

= α2
2

√
cond (G)ω2βτμ(1/2 + 2/ω + 1/2ω2)

� 5α2βτμ/13.

Here, the last inequality follows from α2 � √
τ/(

√
cond (G)ω2), τ � 1/4, and ω �

13.
On the other hand, by using α1 � α2, we have

tr (χ(α)) = tr (x̃ ◦ s̃) + α1tr (τμe − x̃ ◦ s̃) + (α2 − α1)tr ((τμe − x̃ ◦ s̃)+)

� rμ − α1(1 − τ)rμ

� rμ − α1rμ. (4.14)

Then, using Corollary 4.6, we have

〈x̃(α), s̃(α)〉 = tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉)

� rμ − α1rμ − α2
1ω

2r2μ/2 − 2α1α2
√

βτωrμ

= rμ − α2
√

βτμ − α2
2βτω2μ/2 − 2α2

2βτωμ

� rμ − √
βτμ/ω2 − βτ 2μ/2ω2 − 2βτ 2μ/ω3

� rμ − μ/13.

Here, the second inequality follows fromα2 � √
τ/(

√
cond (G)ω2), the last inequality

follows from the fact that τ � 1/4, β � 1/2, and ω � 13.
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A straightforward calculation shows that

‖�x̃(α) ◦ �s̃(α)‖1 − α2βτμ(α)

� 8α2βτμ/13 − α2βτμ(1 − 1/13r)

= α2βτμ(5/13 − 1 + 1/13r)

� 0.

Lemma 4.10 Let τ � 1/4, β � 1/2 and (x̃, y, s̃) ∈ N1(τ, β). If α1 = α2
√

βτ/r
and α2 � √

τ/ω2, then we have

μ(α) �
(
1 − 3α1

16

)
μ.

Proof By using (4.6), (4.7), and Corollary 4.6, we have

〈x̃(α), s̃(α)〉 = tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉)

� rμ − α1(1 − τ)rμ + α2βτμ + α2
1ω

2r2μ/2 + 2α1α2
√

βτωrμ

= rμ − α2(1 − τ)
√

βτμ + α2βτμ + α2
2ω

2βτμ/2 + 2α2
2ωβτμ

� rμ − α2(1 − τ)
√

βτμ + α2βτμ + α2βτ 3/2μ/2 + 2α2βτ 3/2μ/ω

=
[
1 − α2

√
βτ/r

(
1 − τ − √

βτ − √
βτ/2 − 2

√
βτ/ω

)]
rμ

�
(
1 − 3α2

√
βτ/16r

)
rμ,

= (1 − 3α1/16) rμ,

where the last inequality follows from the fact τ � 1/4, β � 1/2, and ω � 13. Then,
by using μ(α) = 〈x̃(α), s̃(α)〉/r , we obtain the required result.

The following lemma gives a sufficient condition which guarantees all the iterates in
the neighborhood N1(τ, β).

Lemma 4.11 Let τ � 1/4, β � 1/2 and (x̃, y, s̃) ∈ N1(τ, β). If α1 = α2
√

βτ/r
and α2 � √

τ/(
√
cond (G)ω2), then (x̃(α), y(α), s̃(α)) ∈ N1(τ, β).

Proof By Lemma 4.10, it holds that μ(α) � μ. Furthermore, by using Lemma 4.8,
and Lemma 4.9, we have

‖(τμ(α)e − x̃(α) ◦ s̃(α))+‖1
= ‖(τμ(α)e − χ(α) − �x̃(α) ◦ �s̃(α))+‖1
� ‖(τμ(α)e − χ(α))+‖1 + ‖(−�x̃(α) ◦ �s̃(α))+‖1
� ‖(τμ(α)e − χ(α))+‖1 + ‖�x̃(α) ◦ �s̃(α)‖1
� (1 − α2)βτμ(α) + α2βτμ(α)

= βτμ(α),
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where the first inequality follows from [24, Lemma 3.1]. From (3.3), we have λ(x̃(α)◦
s̃(α)) � (1 − β)τμ(α) > 0. Thus, by Lemma 2.2 we have det(x̃(α)) �= 0 and
det(s̃(α)) �= 0. Then, since x̃, s̃ 
 0, by continuity it follows that x̃(α) 
 0 and
s̃(α) 
 0. Moreover, by [24, Theorem 3.3], we have

‖(τμ(α)e − w̃(α))+‖1 � ‖(τμ(α)e − x̃(α) ◦ s̃(α))+‖1 � βτμ(α),

where w̃(α) = Qx̃(α)1/2 s̃(α). Consequently, we have (x̃(α), y(α), s̃(α)) ∈ N1(τ, β).

For the feasibility condition (4.2) we have the following lemma:

Lemma 4.12 Let (x̃, y, s̃) ∈ N1(τ, β). If α1 = α2
√

βτ/r and α2 � √
τ/ω2, then

〈x̃(α), s̃(α)〉 � (1 − α1)ν〈x̃0, s̃0〉.

Proof Firstly, by using (4.14) and Corollary 4.6, we have

〈x̃(α), s̃(α)〉 = tr (χ(α)) + α2
1〈�x̃−,�s̃−〉 + α1α2(〈�x̃−,�s̃+〉 + 〈�s̃−,�x̃+〉)

� rμ − α1(1 − τ)rμ − α2
1ω

2r2μ/2 − 2α1α2
√

βτωrμ

= (1 − α1)rμ + α1rμ
(
τ − α2

√
βτω2/2 − 2α2

√
βτω

)

� (1 − α1)rμ + α1τrμ
(
1 − √

β/2 − 2
√

β/ω
)

� (1 − α1)ν〈x̃0, s̃0〉,

where in the last inequality we used (3.10) and ω � 13.

4.2 Polynomial Convergence

In view of Lemma 4.11, Lemma 4.12 and Lemma 4.10, we may find step size
in the following way. First, set α2 = √

τ/(
√
cond (G)ω2). Second, find the greatest

α1 ∈ [0, 1] such that conditions (4.1), (4.2), and (4.3) hold. Lemma 4.11, Lemma 4.12,
and Lemma 4.10 guarantee that α1 � α2

√
βτ/r . Therefore, if we let τ � 1/4, β �

1/2,� � 3/16, and replace Step 4 in Algorithm 3.2 by the following Step 4’, then
the algorithm is well defined.

Step 4’ Set αk
2 = √

τ/(
√
cond (G)ω2) and find the largest αk

1 on the closed interval
[αk

2
√

βτ/r, 1], such that (4.1), (4.2), and (4.3) hold. Let

(
x̃ k+1, yk+1, s̃k+1) := (

x̃ k, yk, s̃k
) + αk

1

(
�x̃ k−,�yk−,�s̃k−

) + αk
2

(
�x̃ k+,�yk+,�s̃k+

)
.

The following theorem gives an upper bound for the number of iterations in which
Algorithm 3.2 stops with an ε-approximate solution.
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Theorem 4.13 Suppose that
√
cond (G) � κ < ∞ for all iterations. Then Algorithm

3.2 terminates in at most O(κr log ε−1) iterations.

Proof At each iteration, by using Lemma 4.10 we have

μ(α) �
(
1 − 3α1

16

)
μ �

(
1 − 3α2

√
βτ

16r

)
μ �

(
1 − 3

√
βτ

16ω2κr

)
μ,

from which the statement of the theorem follows.

By (3.3) and [8, Lemma 36], we have cond (G) = 1 for the NT direction, and
cond (G) � r/(1−β)τ for the xs and sx directions. Therefore, we give the complexity
bounds of Algorithm 3.2.

Theorem 4.14 If the NT search direction is used, the iteration complexity of Algo-
rithm 3.2 is O(r log ε−1). If the xs and sx search directions are used, the iteration
complexities of Algorithm 3.2 are O(r1.5 log ε−1).

5 Conclusions

We have established complexity bound of an infeasible-interior-point algorithm
based on a new wide neighborhood for SCP. We summarize the obtained com-
plexity results in Table 1, where r is the rank of the associated Euclidean Jordan
algebra and ε > 0 is the required precision. For comparison, we also include
the complexity bounds for the infeasible IPM in [18] and the infeasible IPM in
[22]. To our knowledge, when the NT search direction is used, the complexity
bounds obtained here are so far the best available for infeasible IPMs using wide
neighborhood.

Table 1 Summary of
complexity bounds xs/sx NT

New algorithm O(
r1.5 log ε−1) O(

r log ε−1)

Liu [22] O(
r2 log ε−1) O(

r1.5 log ε−1)

Rangarajan [18] O(
r2.5 log ε−1) O(

r2 log ε−1)
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