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Abstract In this paper, we aim to study the structure choice of supply chains under
competitive environment with uncertain demand. We consider two competing supply
chains, each of which chooses to either vertically integrate or decentralize with coor-
dinating contracts. We first analyze firms’ strategic behavior under given supply chain
structures: two integrated chains (II), two decentralized chains (DD), and a mixed
structure with one decentralized chain and one integrated chain. We then compare
different supply chain structures and examine the equilibrium structure choice. We
find that the equilibrium structure depends on the product characteristics. For sub-
stitutable products, DD is the equilibrium supply chain structure choice, whereas for
complementary products, II is the equilibrium structure. Furthermore, a high demand
uncertainty strengthens these equilibrium choices.
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1 Introduction

In many industries, the competition between firms has become chain-to-chain or
channel-to-channel competition, in which an upstream or downstream firm in one
supply chain not only competes with its counterpart in the other chain but also inter-
acts with the entire other chain. Chain-to-chain competition is seen in a variety of
industries such as fast food, fashion clothing, automobiles, electronics, and telecom
industries. For these industries, how a supply chain is structured—vertically integrated
or decentralized—critically impacts the supply chain’s performance in the competi-
tion. This paper aims to analyze how the choice of supply chain structure affects firms’
strategic behaviors and what supply chain structure may emerge as an equilibrium
choice.

We consider the inventory competition between two competing supply chains. Each
chain has one manufacturer and two exclusive retailers. The two manufacturers pro-
duce differentiated products, which can be either substitutable or complementary. Each
retailer faces random demand and, before the demand is realized, the retail inventory
decision must be made by the retailer (if its supply chain is decentralized) or by the
entire integrated chain. A retailer’s inventory affects the probability distributions of
the demands at all retailers. For substitutable products, a retailer’s inventory stimu-
lates its own demand while having demand-stealing effect on all other retailers; for
complementary products, a retailer’s inventory stimulates (instead of stealing) the
competing chain’s demand. The two chains engage in inventory competition by mak-
ing newsvendor type of decisions. Our setting may be applied to capacity investment
competition, where a high service capacity has demand-stealing effect on other service
providers.

When a chain is integrated, the inventory decision is made by the entire chain;
when a chain is decentralized, each retailer makes its own inventory decision, but
all firms in the chain can coordinate their decisions via supply contracts. We examine
three possible supply chain structures: two integrated chains, two decentralized chains,
and the mixed structure with one integrated chain and one decentralized chain. These
structures are also compared with the first-best structure where one decision-maker
decides inventory for both chains. The key questions are: How do firms compete
under a given supply chain structure? Which structure outperforms other structures in
terms of supply chain profitability, and under what conditions?What is the equilibrium
supply chain structure choice?What is the impact of demand uncertainty on the supply
chain structure choice?

The chain-to-chain or channel-to-channel competition has been studied in the
analytical marketing literature. McGuire and Staelin [1] analyze various retail distrib-
ution structures in the context of two competing manufacturers, each selling products
through an independent retailer. They explain that a strategic reason for manufacturers
to use intermediaries is to shield themselves from possibly ruinous price competition.
Coughlan [2] extends this research to a more general demand function and applied it
to the electronic industry. Moorthy [3] links the value of decentralization to the con-
cept of strategic interaction. Zhao et al. [4] endogenize the product differentiation and
examine the supply chain structure under both price and service competition. There
are also models for the industry settings where retailers carry an assortment of prod-
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Chain-to-Chain Competition Under Demand Uncertainty 51

ucts from multiple manufacturers. Choi [5] considers two manufacturers selling their
products through a common retailer. Lee and Staelin [6] and Trivedi [7] generalize
the above work to a competitive environment with two manufacturers and two com-
mon retailers. We also analyze the competition among manufacturers and (exclusive)
retailers, but we focus on a setting where demands are uncertain and retail inventories
must be decided prior to the realization of the demands.

Supply chain contracts and industry structure choices under demand uncertainty
have been considered in the literature. Kranton and Minehart [8] compare vertical
integration versus networks. (Vertically integrated firms make their own inputs, while
firms in networks procure inputs from several suppliers who, in turn, sell to several
network firms.) They model demand uncertainty as incorporated in firms’ random
valuation of the supply, and there is no inventory decision in their framework. They
show that firms are likely to form networks when they experience large idiosyncratic
demand shocks. Ai et al. [9] examine a setting where manufacturers in two competing
supply chains may choose either a wholesale price contract in which the retailer’s
demand forecasting information is not shared, or a revenue-sharing contract in which
the retailer’s demand forecasting information is shared. They find that supply chain
contract choice depends on the degree of product substitution and demand uncertainty.

Competition among newsvendors has been studied in the literature. Parlar [10]
models a duopoly of two newsvendors selling substitutable products. When either
newsvendor experiences stockout, a fraction of the excess demand switches to the
other. Lippman and McCardle [11] start with aggregate industry demand and specify
a variety of rules to split the realized aggregate demand among firms.Mahajan and van
Ryzin [12] derive the demand from dynamic consumer choice. There are also simple
allocation rules that lead to more explicit solution. Cachon [13] considers proportional
demand allocation rule and reaches qualitatively consistent insights.

In a competitive environment, inventory has demand-stealing effect and demand-
stimulating effect. Cachon [13] finds that “Competition makes the retailers order
more inventory because of the demand-stealing effect: each retailer ignores the
fact that ordering more means the other retailers’ demands stochastically decrease.
· · ·Furthermore, if retailers sell complements, rather than substitutes, then the demand-
stealing effect is reversed: each retailer tends to understock because it ignores the
additional demand it creates for other retailers.” Dana and Petruzzi [14] point out that
consumers are more likely to purchase from stores that have fewer stockouts. They
provide a consumer choice model in which consumers maximize expected utility by
taking into account the inventory available at the firm. In this paper, we model the
demand distribution as a linear function of the inventory levels. This linear approxi-
mation allows us tomodel both demand-stealing and stimulating effects as well as both
substitutable and complementary products. Furthermore, the research efforts in the lit-
erature suggest the difficulty in obtaining explicit formulas for equilibrium analysis.
This paper aims to explicitly derive and compare equilibria under various supply chain
structures, and our demand model makes such analysis tractable.

In this paper, we do not consider price competition nor transshipment between
retailers. For models with both price and inventory competition, see [15], and for
models with transshipment after the realization of demand, see [16].
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2 The Model

We analyze two competing supply chains, indexed by i = 1, 2, with chain i sup-
plying product i . The two products can be either substitutable or complementary.
Chain i has one manufacturer, referred to as manufacturer i , and two exclusive retail-
ers, indexed by (i, j), j = 1, 2. As a convention, we use −i to refer to the other
chain/manufacturer/product, and use (i,− j) to refer to the other retailer of chain i .

We consider a single-period setting where both supply chains produce and stock
their products before the selling season starts. Let ci denote manufacturer i’s per-unit
production cost, and let vi denote the per-unit salvage value (if 0 < vi < ci ) or
disposal cost (if vi < 0) at the end of the selling season. The retail prices for the two
products, p1 and p2, are assumed to be exogenous.

2.1 Demand Model

The two chains compete by deciding inventory levels before the selling season. Let
qi j denote the inventory level at retailer (i, j) and let q = (q11, q12, q21, q22). Let
random variable ξi j represent retailer (i, j)’s natural demand, which is the demand
occurring at the retailer (i, j) when no retailer carries any inventory (q = 0). The
random variables ξi j ’s may be dependent. For analytical simplicity, we assume the
demands facing retailers in the same chain, ξi1 and ξi2, have the same probability
distribution, with cumulative distribution function denoted as Fi (x), i = 1, 2.

The probability distribution of the demand at any retailer is affected by the inventory
available at all retailers. To facilitate the analysis, we assume these effects have a linear
form. Specifically, the random demand facing retailer (i, j) is modeled as

Di j (q) = ξi j + αi qi j − βi qi,− j − 1

2
γ−i (q−i,1 + q−i,2), i, j = 1, 2, (2.1)

where

1 > αi � βi � 0, βi � γi , 1 > αi − βi − γi � 0,

for i = 1, 2, and γ1γ2 � 0. (2.2)

In model (2.1), inventory levels shift the natural demand in the following ways:

• The term αi qi j suggests that inventory availability stimulates retailer’s own
demand.

• The term −βi qi,− j reflects a within-chain demand-stealing effect: the availability
of product i at a retailer reduces the demand at the other retailer of the same chain.

• The last term − 1
2γ−i (q−i,1 + q−i,2) captures the between-chain demand-stealing

effect when γ1 > 0 and γ2 > 0 (i.e., substitutable products) or demand-stimulating
effect when γ1 < 0 and γ2 < 0 (i.e., complementary products).

The assumption of αi � βi in (2.2) indicates that raising inventory level qi j does
not reduce chain’s own demand. We refer to αi − βi as inventory’s net stimulating
effect on own chain’s demand.
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Because γ1 and γ2 have the same signs (assumption of γ1γ2 � 0), we use γ > 0 and
γ < 0 to indicate substitutable and complementary products, respectively, throughout
the paper. For substitutable products, βi � γi > 0 in (2.2) implies that the demand-
stealing effect is stronger within chains than between chains, because the retailers of
the same chain carry the same product.

The total effect of inventory qi j on all demands is αi − βi − γi , assumed to be in
[0, 1) in (2.2). That is, one unit of inventory does not reduce the total demand, nor
does it stimulate more than one unit of demand.

Weassumeqi j ∈ [0, qmax
i j ] and denote the strategy set as Q = {

q : qi j ∈ [0, qmax
i j ]}.

Throughout the paper, we assume Di j (q) � 0, for q ∈ Q and all equilibria are attained
within the interior of Q.

The assumption of linear effects of inventory on demand allows us to explicitly
analyze the competition between the two chains and derive useful insights.

2.2 Service Level and Inventory

Let Si j denote the service level of retailer (i, j). That is,

Si j = P
[
Di j (q) � qi j

]

= Fi
(
(1 − αi )qi j + βi qi,− j + 1

2
γ−i (q−i,1 + q−i,2)

)
, i, j = 1, 2. (2.3)

Assume Fi (x) is continuous and strictly increasing in x for Fi (x) ∈ (0, 1). Thus,
F−1
i (y) = inf

{
x : F(x) � y} is continuous and strictly increasing in y for y ∈ (0, 1).

Then, (2.3) leads to a system of linear equations for q:

(1 − αi )qi j + βi qi,− j + 1

2
γ−i (q−i,1 + q−i,2) = F−1

i (Si j ), i, j = 1, 2. (2.4)

For given retail service levels Si j ∈ (0, 1), i, j = 1, 2, the system of equations in
(2.4) uniquely determines the inventory level q. In particular, if the two retailers in
chain i achieve service level Si , i.e., Si1 = Si2 = Si , for i = 1, 2, then system in (2.4)
determines the corresponding inventory levels:

qi1 = qi2 = 1

η

[
(1 − α−i + β−i )F

−1
i (Si ) − γ−i F

−1
−i (S−i )

]
, i = 1, 2, (2.5)

where η = (1− α1 + β1)(1− α2 + β2) − γ1γ2. Note that the relations in (2.2) imply
that η > 0.

3 Supply Chain Structures and Strategic Interactions

This section analyzes the firms’ strategic behaviors under various supply chain
structures. Four structures are analyzed and illustrated in Fig. 1.
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  M = Manufacture,   R = Retailer 

(a) (b)

(c) (d)

M1 M2 

R11 R12 R21 R22 

M1 M2 

R11 R12 R21 R22 

M1 M2 

R11 R12 R21 R22 

M1 M2 

R11 R12 R21 R22 

Fig. 1 Industry structures (a) integrated industry; (b) two integrated chains (II); (c) two decentralized
chains (DD); (d) a decentralized chain and an integrated chain (DI)

(a) Integrated industry: The entire industry is integrated and decision-making is cen-
tralized.

(b) II: Each manufacturer is integrated with its own retailers.
(c) DD: Both chains are decentralized.
(d) DI: One chain is integrated and the other is decentralized.

3.1 Integrated Industry

We first consider a benchmark case where an integrated industry centrally decides
the stocking levels at all retailers to maximize the total expected profit. Throughout
the paper, we use

∑
i, j as an abbreviation for

∑2
i=1

∑2
j=1, use

∑
i for

∑2
i=1, and use∑

j for
∑2

j=1. The industry aims to maximize the expected total profit:

max
q

∑

i, j

{
(pi − ci )qi j − (pi − vi )E

[
(qi j − Di j (q))+

]}
. (3.1)

Note that (qi j − Di j (q))+ is jointly convex in q because Di j (q) is linear in q.
Hence, the objective in (3.1) is jointly concave in q.

Theorem 3.1 The industry optimal service levels and inventory levels are given by
Si j = S∗

i and qi j = q∗
i , for i, j = 1, 2, where
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S∗
i

def=
pi − ci − γi (p−i−c−i )

1−α−i+β−i

(pi − vi )
(
1 − αi + βi − γ1γ2

1−α−i+β−i

) , (3.2)

q∗
i

def= 1

η

[
(1 − α−i + β−i )F

−1
i (S∗

i ) − γ−i F
−1
−i (S∗−i )

]
. (3.3)

The resulting optimal profit of the industry is

π∗ =
∑

i

[
2(pi − ci )q

∗
i − 2(pi − vi )

∫ F−1
i (S∗

i )

0
Fi (u)du

]
. (3.4)

Furthermore, S∗
i and q∗

i increase in αi − βi and decrease (increase) in α−i − β−i if
γ > 0 (γ < 0). The total profit π∗ increases in αi − βi and decreases in γi .

Note that if αi = βi = γi = 0, then S∗
i = (pi − ci )/(pi − vi ), the standard

newsvendor’s service level.
The monotonicity properties of S∗

i and q
∗
i in Theorem 3.1 reveal that if inventory’s

net stimulating effect on own chain’s demand, αi − βi , increases for product i , the
industry should raise product i’s inventory and service level, and reduce (raise) the
substitutable (complementary) product’s inventory and service level.

The monotonicity properties of π∗ also justify our intuition that strong net demand-
stimulating effect (high αi − βi ) and weak product substitution or strong product
complementarity (low γ ) are favorable conditions for industry profitability.

3.2 Two Integrated Chains (II)

In this structure, each manufacturer vertically integrates with its exclusive retail-
ers. The two integrated chains engage in inventory competition. Given chain (−i)’s
inventory levels q−i,1 and q−i,2, chain i’s best response problem is

max
qi1,qi2

∑

j

{
(pi − ci )qi j − (pi − vi )E

[
(qi j − Di j (q))+

]}
. (3.5)

The first-order condition for (3.5) leads to chain i’s optimal service level, which
in turn determines the best response in terms of inventory levels. The equilibrium
inventory levels can then be found, which is also stated in Theorem 3.2.

Theorem 3.2 (II equilibrium) When each chain is vertically integrated, the equilib-
rium service levels and inventory levels are given by Si j = SIIi and qi j = qIIi , for
i, j = 1, 2, where

SIIi
def= pi − ci

(pi − vi )(1 − αi + βi )
, (3.6)

qIIi
def= 1

η

[
(1 − α−i + β−i )F

−1
i

(
SIIi

) − γ−i F
−1
−i

(
SII−i

)]
. (3.7)
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Chain i’s profit in the eqilibrium is

π II
i = 2(pi − ci )q

II
i − 2(pi − vi )

∫ F−1
i (SIIi )

0
Fi (u)du. (3.8)

Furthermore, SIIi , q
II
i , and π II

i increase in αi − βi ; qIIi and π II
i decrease (increase) in

α−i − β−i if γ > 0 (γ < 0).

Note that if the two products are independent (γ1 = γ2 = 0), the service level
SIIi in (3.6) is identical to S∗

i in (3.2). It can be shown that for substitutable products,
SIIi > S∗

i , whereas for complementary products, SIIi < S∗
i . (See Corollary 4.1 in

Sect. 4.1.) Intuitively, both chains focus on inventory’s net stimulating effect on own
chain’s demand and ignore the negative (positive) impact of its inventory on the sub-
stitutable (complementary) product, whereas the service level S∗

i in (3.2) internalizes
the inventory effect between chains.

From Theorem 3.2, an increases in the net stimulating effect αi − βi results in
a higher profit for chain i , while it reduces (improves) the profit of the substitutable
(complementary) product.

3.3 Two Decentralized Chains (DD)

Suppose that both chains are decentralized and, within each chain, themanufacturer
and its retailers are coordinated via supply contracts. As discussed in Sect. 1, the focus
of this paper is chain-to-chain competition, not competition between manufacturers.
Thus, we assume the manufacturer and retailers are coordinated to maximize their
chain’s own profit. For many channel-coordinating contracts, the contract parameters
can be adjusted to achieve various allocations of the supply chain profit between the
manufacturer and the retailers.

The chain-to-chain competition in DD structure involves two stages. In the first
stage, both chains decide their target service levels (via coordinating contracts). In the
second stage, the four retailers compete in inventories under the given contracts.

In the first stage, various forms of contracts can serve the purpose of setting target
service level. For example, under a buyback contract with wholesale price wi and
buyback rate bi , retailer (i, j)’s problem becomes

max
qi j�0

(pi − wi )qi j − (pi − bi )E
[
(qi j − Di j (q))+

]
. (3.9)

It can be verified that the above retailer’s problem leads to the following service
level:1

Sci = pi − wi

(pi − bi )(1 − αi )
.

1 The standard newsvendor under buyback contract would aim at service level (pi − wi )/(pi − bi ) in our
setting, the retailer takes into account inventory’s stimulating effect on its own demand, and thus the service
level becomes (pi − wi )/[(pi − bi )(1 − αi )].
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From this point onward, we do not assume any specific contract form. We let Sci
denote the target service level chosen by chain i in the first stage. Then, using (2.5),
the second-stage equilibrium inventory levels are

qi1 = qi2 = (1 − α−i + β−i )F
−1
i

(
Sci

) − γ−i F
−1
−i

(
Sc−i

)

η
. (3.10)

In the first-stage game, each chain anticipates the retailers’ equilibrium decisions
in (3.10) and chooses service levels simultaneously. Chain i’s problem can be written
as (using (3.10)):

max
Sci

2(pi − ci )
(1 − α−i + β−i )F

−1
i

(
Sci

) − γ−i F
−1
−i

(
Sc−i

)

η

− 2(pi − vi )

∫ F−1
i

(
Sci

)

0
Fi (u)du. (3.11)

The objective in (3.11) is generally not concave, but the proof of Theorem 3.3 shows
that this objective is quasi-concave in Sci . Hence, the optimal service level is determined
by the first-order condition:

2(pi − ci )(1 − α−i + β−i )

η

∂F−1
i

(
Sci

)

∂Sci
− 2(pi − vi )S

c
i

∂F−1
i

(
Sci

)

∂Sci
= 0, (3.12)

which leads to the optimal service level given in the following theorem.

Theorem 3.3 (DD equilibrium) When both chains are decentralized, the equilibrium
service levels and inventory levels are given by Si j = SDDi and qi j = qDDi , for
i, j = 1, 2, where

SDDi
def= pi − ci

(pi − vi )(1 − αi + βi − γ1γ2
1−α−i+β−i

)
, (3.13)

qDDi
def= 1

η

[
(1 − α−i + β−i )F

−1
i

(
SDDi

) − γ−i F
−1
−i

(
SDD−i

)]
. (3.14)

Chain i’s profit in the equilibrium is

πDD
i = 2(pi − ci )q

DD
i − 2(pi − vi )

∫ F−1
i (SDDi )

0
Fi (u)du. (3.15)

Furthermore, SDDi increases in αi − βi and α−i − β−i . If γ < 0, then qDDi and πDD
i

increase in αi − βi and α−i − β−i .

In Theorems 3.1 and 3.2, q∗
i and q

II
i increase inαi −βi , but in theDD structure when

γ > 0, qDDi does not necessarily increase in αi − βi . This is because the competing
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chain’s service level SDD−i increases in αi − βi , which may cause qDDi in (3.14) to
decrease, and πDD

i may decline as well. When γ < 0, as αi − βi increases, inventory
levels and profits of both chains increase.

It is important to note that the coordinated decentralized chains do not behave as
the integrated chains in the II structure. Integrated chains compete directly using
inventory levels: In the II equilibrium, chain i’s inventory levels are optimized given
by the other chain’s inventory decisions. However, decentralized chains do not decide
inventory directly, but decide service levels in the first stage. Both chains recognize
that their own service levels will influence the competing chain’s inventory levels in
the second stage, reflected by (2.5) and elaborated below:

• If the two products are substitutes, then a high chain’s own service level reduces the
competing chain’s inventory. This effect provides incentives for both decentralized
chains to raise their service levels above those in the II equilibrium.

• If the twoproducts are complements, then ahighownchain’s service level increases
the competing chain’s inventory, which in turn stimulate own chain’s demand. This
effect also provides incentives for both chains to raise their service levels above
those in the II equilibrium.

Summarizing the above discussion, the service level SDDi in (3.13) is higher than
SIIi in (3.6), regardless of the whether the products are substitutes or complements.
The only situation that SDDi = SIIi is when the two products are independent (γ = 0).

3.4 A Decentralized Chain Competing with an Integrated Chain (DI)

Suppose that chain 1 is decentralized and chain 2 is integrated. In the decentralized
chain, the manufacturer and the retailers are coordinated via contracts. Unlike the DD
structure where neither chain can decide inventory levels in the first-stage game, in
the DI structure, the integrated chain decides inventory levels, while the decentralized
chain decides its service level. In the second stage, the decentralized retailers decide
inventory levels.

We first discuss the intuitions on the equilibrium behavior, and then formally prove
these intuitions. Focus on the decentralized chain (chain 1) first. If the competing chain
(chain 2) is also decentralized, the analysis onDD structure shows that chain 1 chooses
service level to influence the chain 2’s inventory decisions in the second stage. If the
chain 2 is integrated, however, it commits inventory levels in the first stage, and thus,
the best response of chain 1 is to induce its retailers to choose the best inventory levels
in response to chain 2’s inventory, which coincides with the best response problem of
an integrated chain in the II structure. Therefore, chain 1’s behavior may be similar to
an integrated chain in the II structure even though it is decentralized.

We now turn to the integrated chain 2 in the DI structure. Chain 2 understands that
it makes inventory decisions earlier than chain 1’s retailers decide inventory. Chain 2
also recognizes that its service level influences chain 1’s inventory decision, reflected
by (2.5). Hence, chain 2’s problem is similar to that in the DD structure. Therefore,
chain 2’s behavior may be similar to a decentralized chain in the DD structure even
though it is integrated.
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We now formalize the above intuitions. In the first-stage game, chain 1 chooses
coordinating contract and chain 2 decides inventory. Consider chain 1’s best response
problem to chain 2’s inventory q21 and q22. Chain 1 aims to maximize its profit by
choosing a contract and its parameters. This contract should induce chain 1’s retailers
to choose the best inventory levels in response to chain 2’s inventory levels. From the
II structure in Theorem 3.2, we know that the service level that maximizes chain 1’s
profit is given by SII1 in (3.6). Hence, chain 1 will set a contract such that

S1 j = SII1 . (3.16)

This confirms our intuition that the behavior of the decentralized chain in the DI
structure is similar to an integrated chain in the II structure.

Using (2.3), we can write the condition (3.16) as

S1 j = F1
(
(1 − α1))q1 j + β1q1,− j + 1

2
γ2(q21 + q22)

)
= SII1 , j = 1, 2.

From the above equation, we can find chain 1’s inventory level as a best response to
chain 2’s inventory q21 + q22:

q11 + q12 = −γ2(q21 + q22) + 2F−1
1

(
SII1

)

1 − α1 + β1
. (3.17)

Clearly, for substitutable (complementary) products, inventories are also strategic sub-
stitutes (complements).

Next, we consider the integrated chain 2 making inventory decisions in anticipation
of chain 1’s response in (3.17). Using (3.17), chain 2’s problem can be written as

max
q21,q22

∑

j

{
(p2 − c2)q2 j − (p2 − v2)E

[(
q2 j − D2 j (q12, q22)

)+]}
, (3.18)

where

D2 j (q21, q22)

def= ξ2 j + α2q2 j − β2q2,− j + γ1γ2(q21 + q22)

2(1 − α1 + β1)
− γ1F

−1
1

(
SII1

)

1 − α1 + β1
. (3.19)

Because D2 j (q21, q22) is linear in q21 and q22, the objective function in (3.18) is
concave in q21 and q22.

Using (3.19), the objective in (3.18) can be written as

∑

j

[

(p2 − c2)q2 j − (p2 − v2)

∫ q2 j

0
F2

(

u − α2q2 j + β2q2,− j

− γ1γ2(q21 + q22)

2(1 − α1 + β1)
+ γ1F

−1
1 (SII1 )

1 − α1 + β1

)

du

]

.
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The first-order condition is

p2 − c2
p2 − v2

=
(
1 − α2 − γ1γ2

2(1 − α1 + β1)

)
S2 j

+
(
β2 − γ1γ2

2(1 − α1 + β1)

)
S2,− j , j = 1, 2.

The above optimality condition is equivalent to

S2 j = SDD2 , j = 1, 2,

where SDD2 is defined in (3.13). This proves our intuition that the behavior of the
integrated chain in the DI structure is similar to a decentralized chain in the DD
structure.

The above results are summarized in the following theorem.

Theorem 3.4 (DI structure) When chain 1 is decentralized and chain 2 is integrated,
the equilibrium service level and inventory level are given by Si j = SDIi and qi j = qDIi ,
for i, j = 1, 2, where

SDI1 = SII1 = p1 − c1
(p1 − v1)(1 − α1 + β1)

, (3.20)

SDI2 = SDD2 = p2 − c2

(p2 − v2)
(
1 − α2 + β2 − γ1γ2

1−α1+β1

) , (3.21)

qDIi
def= 1

η

[
(1 − α−i + β−i )F

−1
i

(
SDIi

) − γ−i F
−1
−i

(
SDI−i

)]
. (3.22)

Chain i’s profit in the equilibrium is

πDI
i = 2(pi − ci )q

DI
i − 2(pi − vi )

∫ F−1
i (SDIi )

0
Fi (u)du. (3.23)

Furthermore, SDI2 , qDI2 , and π II
2 increase in α2 − β2; qDI1 and πDI

1 decrease (increase)
in α2 − β2 if γ > 0 (γ < 0); SDI1 and SDI2 increase in α1 − β1; qDI1 and πDI

1 increase
in α1 − β1 if γ < 0.

The effects of integrated chain’s α2 −β2 on the DI equilibrium are qualitatively the
same as the II equilibrium in Theorem 3.2, because α2 − β2 affects the service levels
in the same way as in the II equilibrium. On the other hand, an increase in α1 − β1
raises both SDI1 and SDI2 , and thus, the effects of α1 − β1 on the DI equilibrium are
qualitatively the same as the DD equilibrium in Theorem 3.3.

4 Equilibrium Supply Chain Structures

The previous section analyzes the firms’ strategic interactions under any given
supply chain structure. In this section, we consider supply chain structure choice game,
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in which both chains simultaneously choose to be either integrated or decentralized.
We identify the equilibrium supply chain structure and further analyze the impact of
demand uncertainty on the equilibrium choice.

4.1 Comparison of Industry Structures

With the equilibria solved in Sects. 3.2–3.4, we compare the equilibrium service
levels, inventory levels, and profits in this section.

Corollary 4.1 If γ > 0, then S∗
i < SIIi < SDDi ; if γ < 0, then SIIi < SDDi < S∗

i .

The inequality SIIi < SDDi means that the decentralized chains raise service levels
to either reduce the demand-stealing effect of competing chain’s inventory or increase
the demand-stimulating effect of competing chain’s inventory. These are discussed in
detail after Theorem 3.3.

For substitutable products, chain-to-chain competition results in a higher service
levels than if the entire industry is integrated. For complementary products, each supply
chain enjoys the demand-stimulating effect from the other chain’s inventory and thus
offers lower service level than if the industry is integrated.

Next, we compare the total industry profit. Let X denote a supply chain structure,
X ∈ {∗, II,DD,DI}, where “∗” denotes the integrated industry structure. Let πX

denote the expected profit of the industry under structure X, which can be written as

πX = πX
1 + πX

2

=
∑

i

[
2(pi − ci )q

X
i − 2(pi − vi )

∫ F−1
i

(
SXi

)

0
Fi (u)du

]

=
∑

i

[
2(pi − ci )

η

[
(1 − α−i + β−i )F

−1
i

(
SXi

) − γ−i F
−1
−i

(
SX−i

)]

− 2(pi − vi )

∫ F−1
i

(
SXi

)

0
Fi (u)du

]

=
∑

i

{
2

η

[
(pi − ci )(1 − α−i + β−i ) − γi (p−i − c−i )

]
F−1
i (SXi )

− 2(pi − vi )

∫ F−1
i

(
SXi

)

0
Fi (u)du

}
.

Note that S∗
i in (3.2) can be written as

S∗
i = (pi − ci )(1 − α−i + β−i ) − γi (p−i − c−i )

(pi − vi )η
.
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Hence, we obtain an expression for the total industry profit:

πX =
∑

i

2(pi − vi ) gi
(
SXi

)
, (4.1)

where

gi (S)
def= S∗

i F
−1
i (S) −

∫ F−1
i (S)

0
Fi (u)du. (4.2)

The slope of gi (S) is

dgi (S)

dS
= (S∗

i − S)
dF−1

i (S)

dS
. (4.3)

Using Corollary 4.1 and (4.3), it can be seen that when γ > 0, gi (S) strictly
decreases in S for S ∈ [S∗

i , SDDi ], and thus, gi (SIIi ) > gi (SDDi ). Therefore, (4.1)
implies that πDD < πDI < π II. On the other hand, when γ < 0, gi (S) strictly
increases in S for S ∈ [SIIi , S∗

i ], and thus, gi (SIIi ) < gi (SDDi ). Therefore, (4.1) implies
that π II < πDI < πDD.

The above results are summarized in the following corollary.

Corollary 4.2 If γ > 0, then πDD < πDI < π II < π∗. If γ < 0, then π II < πDI <

πDD < π∗.

The order of profits in Corollary 4.2 is consistent with the order of service levels
in Corollary 4.1 in the following sense: The more the industry service level deviates
from the industry optimal service level, the lower the total industry profit is.

The above two corollaries compare the industry-wide service levels and profits.
Next, we compare supply chains’ inventory levels and profits.

Corollary 4.3 If two products are complements (γ < 0),

qIIi < qDIi < qDDi < q∗
i ,

π II
i < πDI

i < πDD
i < π∗

i .

If two products are substitutes (γ > 0),

qDI1 < min
{
qII1 , qDD1

}
, qDI2 > max

{
qII2 , qDD2

}
,

πDI
1 < min

{
π II
1 , πDD

1

}
, πDI

2 > max
{
π II
2 , πDD

2

}
.

When γ > 0, the comparison between qIIi , q
DD
i , and q∗

i depends on the demand

distribution. To see this dependence, note that qXi = 1

η

[
(1 − α−i + β−i )F

−1
i (SXi ) −

γ−i F
−1
−i (SX−i )

]
, for X ∈ {∗, II,DD}. Because γ > 0 and S∗

i < SIIi < SDDi , the order
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of qIIi , q
DD
i , and q∗

i depends on the shape of F−1
i (S) and F−1

−i (S) for S ∈ [S∗
i , SDDi ].

Similar indeterminacy occurs for ordering the profit under X ∈ {∗, II,DD}.
Corollary 4.3 reveals that, for complementary products, the individual chain’s

inventory and profit under various structures have the same order as the industry-
wide inventory and profit. However, for substitutable products, although the industry’s
profits are ordered as πDD < πDI < π II (see Corollary 4.2), individual supply chains’
profits do not have the same order. The integrated chain in the DI structure has the
highest inventory and profit, whereas the decentralized chain in the DI structure has
the lowest inventory and profit.

4.2 Equilibrium Supply Chain Structures

We now consider a supply chain structure game, in which both supply chains
simultaneously choose to be integrated or decentralized, in anticipation of the profits
given in the previous sections.

Consider substitutable products (γ > 0) first. Corollary 4.3 shows that π II
1 > πDI

1 ,
i.e., if chain 2 is integrated, then chain 1 prefers integration as well. By symmetry, if
chain 1 is integrated, then chain 2 also prefers integration. These together imply that
II structure is a Nash equilibrium supply chain structure.

When γ > 0, Corollary 4.3 also shows that πDD
2 < πDI

2 , i.e., if chain 1 is decen-
tralized, then chain 2 prefers integration, which asserts that integration is a dominant
strategy for each supply chain when the two products are substitutable.

Next, consider the case of complementary products (γ < 0). Corollary 4.3 shows
that πDI

i < πDD
i , i.e., if one chain is decentralized, then the other chain prefers to be

decentralized. Furthermore, π II
i < πDI

i implies that if one chain is integrated, then
the other chain still prefers decentralization. This reveals that decentralization is a
dominant strategy for each supply chain when the two products are complementary.

The above discussions are summarized in the following theorem.

Theorem 4.4 If two products are substitutable, II is the unique equilibrium supply
chain structure. If two products are complementary, DD is the unique equilibrium
supply chain structure.

Corollary 4.2 implies that for substitutable (complementary) products, the II (DD)
structure brings the industry the highest profit among all duopoly structures, and The-
orem 4.4 further confirms that the II (DD) structure is the industry’s only equilibrium
structure.

The reasons for II andDD to be the equilibria under different product characteristics
are explained below.

Note that when a chain is decentralized, its inventory decision is delayed compared
to an integrated chain, because the chain members need to negotiate on the contract
terms in the first stage. This is why in the DI structure, the decentralized retailers
choose their inventories after the integrated chain decides inventory levels. In fact, the
DI equilibrium coincides with the equilibrium of a Stakelberg game, in which one
chain chooses inventory first, and the other chain follows.
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For substitutable products (γ > 0), inventories are strategic substitutes (see equa-
tion (3.17)) and the first-mover advantage emerges. Therefore, both chains want to
be the leader by committing inventory levels as early as possible, and resulting in II
being the equilibrium industry structure. Neither chain has an incentive to decentral-
ize because a delayed inventory decision will bring disadvantage to the chain when
products are substituable.

For complementary products (γ < 0), inventories are strategic complements and
the first-mover advantage disappears. Both supply chains want to be the followers,
resulting in DD being the equilibrium. Neither chain has an incentive to integrate
because with two complementary products, early inventory decision only brings dis-
advantage to the integrated chain.

4.3 Impact of Demand Uncertainty

Finally, we explore the impact of demand uncertainty on supply chain’s profits. A
common definition of variability order can be found in [17]. Let X and Y be random
variables. X is said to be more variable than Y , denoted by X �v Y , if E[h(X)] �
E[h(X)], for all increasing convex h. If X and Y are non-negative random variables

with distributions F and G, respectively, then X �v Y if and only if
∫ ∞

a
(G(x) −

F(x))dx � 0, for all a � 0.
In this paper, we use a different stochastic ordering, which we call dispersion. For

simplicity, we focus on the case where distributions and inverse distributions are all
continuous functions.

Definition 4.5 Let X and Y be random variables with cumulative distributions F and
G, respectively, and suppose that F , G, F−1 and G−1 are continuous. X is said to be
more dispersed than Y , denoted by X �d Y or F �d G, if

F−1(b) − F−1(a) � G−1(b) − G−1(a), for all 0 < a < b < 1. (4.4)

If the inverse distributions are differentiable, then Definition 4.5 is equivalent to

dF−1(y)

dy
� dG−1(y)

dy
, for all y ∈ (0, 1). (4.5)

That is, X is more dispersed than Y if F−1 is steeper than G−1 (or F is flatter than G)
everywhere. It can be shown that �d is a complete order for most of commonly used
class of distributions, and that �d coupled with E[X ] � E[Y ] implies �v , as stated
below.

Lemma 4.6 If X �d Y , then

(a) If F (̂x) = G (̂x) = ŷ ∈ (0, 1) for some x̂, then F(x) � G(x) for all x � x̂
and F(x) � G(x) for all x � x̂ ; F−1(y) � G−1(y), for all 0 < y � ŷ, and
F−1(y) � G−1(y), for all ŷ � y < 1.
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(b) If X and Y are non-negative, and E[X ] � E[Y ], then X �v Y .

(c) For y ∈ (0, 1),
∫ F−1(y)

0
F(u)du �

∫ G−1(y)

0
G(u)du, and

∫ ∞

F−1(y)
(1 − F(u))du �

∫ ∞

G−1(y)
(1 − G(u))du.

To emphasize the dependence on demand uncertainty, we rewrite (4.1) and (4.2) as

πX(F1, F2) =
∑

i

2(pi − vi )gi
(
SXi ; Fi

)
,

gi (y; F) = S∗
i F

−1(y) −
∫ F−1(y)

0
F(u)du.

Now consider two demand systems of the form specified in (2.1). All parameters
are the same and the mean demands are also the same, except that one system is more
dispersed than the other.

Specifically, the two demand systems are labeled by superscript F and G; we
assume ξ F

i j ∼ Fi , ξGi j ∼ Gi , and that E[ξ F
i j ] = E[ξGi j ], for i, j = 1, 2.

The following theorem addresses the impact of demand dispersion on the expected
supply chain profit.

Theorem 4.7 If Fi �d Gi , i = 1, 2, then for any structure X, πX(F1, F2) �
πX(G1,G2). Furthermore, if Fi �d Gi and F−i = G−i , then for any structure
X, πX

i (F1, F2) � πX
i (G1,G2).

We essentially prove that gi (y, F) decreases when F becomes more dispersed, by
exploring the properties of dispersion order stated in Lemma 4.6. The theorem shows
that the expected industry profit is lower under larger demand dispersion (with mean
demand kept constant). The theorem also shows that a high own-demand dispersion
reduces own chain’s profit. However, the impact of the other chain’s demand dispersion
on own profit is ambiguous. It depends on how the dispersion is shaped.

Finally, we explore the impact of demand uncertainty on the relative profit when
comparing two different structures.

Theorem 4.8 If Fi �d Gi for i = 1, 2, then for any two structures X1 and X2,

∣
∣
∣πX1(F1, F2) − πX2(F1, F2)

∣
∣
∣ �

∣
∣
∣πX1(G1,G2) − πX2(G1,G2)

∣
∣
∣ . (4.6)

For individual supply chain, when γ > 0, F2 �d G2, and F1 = G1,

π II
1 (F1, F2) − πDI

1 (F1, F2) � π II
1 (G1,G2) − πDI

1 (G1,G2); (4.7)

and when γ < 0, F1 �d G1, and F2 = G2,

πDD
2 (F1, F2) − πDI

2 (F1, F2) � πDD
2 (G1,G2) − πDI

2 (G1,G2). (4.8)
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The first part of the theorem shows that the profit differences of different industry
structures are increasing as the demand becomes more uncertain.

Inequality (4.7) shows that for substitutable products, if the other chain is inte-
grated, the advantage of integration over decentralization to own chain increases as
the demand of the other chain becomes more dispersed. Inequality (4.8) shows that for
complementary products, if the other chain is decentralized, the advantage of decen-
tralization over integration to own chain increases as the demand of the other chain
becomes more uncertain.

In summary, a high demand uncertainty reinforces the equilibrium supply chain
structure stated in Theorem 4.4.

5 Conclusions

In this paper, we link the analytical marketing literature on channel structures to the
operations management literature on inventory decisions under demand uncertainty.
We examine the relations between supply chain structures, supply chain performance,
product substitutability/complementarity, and demand uncertainty.

We consider three duopoly structures: two integrated chains (II), two decentralized
chains (DD), and a mixed structure with one decentralized chain and one integrated
chain (DI). We derive firms’ equilibrium strategies in explicit forms, which allow us to
compare different supply chain structures and further analyze the equilibrium structure
choice.We assume fixed prices and focus on inventory competition, inwhich inventory
levels impact retailers’ demands through both stealing and stimulating effects.

We find that the DD structure always induces higher service levels than the II
structure, regardless whether the products are substitutes or complements. This is
because in the DD structure, committing to a higher service level in the first stage can
reduce (increase) the competing chain’s inventory of substitutable (complementary)
products in the second stage, which incentivizes both decentralized chains to raise
their service levels higher than in the II structure. In the DI structure, decentralization
delays a chain’s inventory decision, allowing the integrated chain to decide inventory
first. As a result, the decentralized chain’s best service level is the same as a follower
in the inventory competition.

In termsof supply chain profits,wefind that for substitutable products, the integrated
chain (leading in inventory decision) inDI structure earnsmore profit than itwould earn
in the II and DD structures, while the decentralized chain in the DI structure earns less
than in the other two structures. Therefore, integration is a dominant strategy for each
supply chainwhen the two products are substitutable. The equilibrium structure choice
is II,which is also themost profitable duopoly structure (the industry profits are ordered
as II>DI>DD). On the other hand, when the products are complements, the industry
profits are ordered as DD > DI > II, and the individual supply chain profit has the
same order. Hence, decentralization is a dominant strategy for each supply chain. The
equilibrium structure choice is DD,which is also themost profitable duopoly structure.

Finally, we find that when demands become more uncertain, the cost of deviat-
ing from the equilibrium supply chain structure is larger. Thus, demand uncertainty
reinforces the equilibrium supply chain structure.
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Appendix: Proofs

Proof of Theorem 3.1 The expected excess inventory at retailer (i, j) can be expressed
as

E[(qi j − Di j (q))+] =
∫ qi j

0
P[Di j (q) � u]du

=
∫ qi j

0
Fi

(
u − αi qi j + βi qi,− j + 1

2
γ−i (q−i,1 + q−i,2)

)
du

=
∫ F−1

i (Si j )

0
Fi (u)du. (A.1)

The industry’s profit function in (3.1) can be written as

∑

i, j

[
(pi − ci )qi j − (pi − vi )

∫ qi j

0
Fi

(
u − αi qi j + βi qi,− j + 1

2
γ−i (q−i,1 + q−i,2)

)
du

]
.

The discussion after (3.1) reveals the concavity of the objective function. Hence, the
optimal inventory levels are given by the first-order conditions:

pi − ci = (pi − vi )
(
(1 − αi )Si j + βi Si,− j

)

+ 1

2
(p−i − v−i )γi (S−i, j + S−i,− j ), i, j = 1, 2,

where we use the service level defined in (2.3). This system of equations determines
the optimal service levels in (3.2), which in turn determine the optimal inventory in
(3.3) by using the relation in (2.5). The optimal inventory and service level and the
expression in (A.1) lead to the profit in (3.4).

Next, we prove the monotonicity properties. The optimal service level in (3.2) can
be written as

S∗
i = (1 − α−i + β−i )(pi − ci ) − γi (p−i − c−i )

(pi − vi )((1 − α1 + β1)(1 − α2 + β2) − γ1γ2)

= (1 − α−i + β−i )(pi − ci ) − γi (p−i − c−i )

(pi − vi )η
.

We can derive

∂S∗
i

∂(αi − βi )
� 0,

∂S∗−i

∂(αi − βi )
= (p−i − c−i )γ1γ2 − (1 − α−i + β−i )γ−i (pi − ci )

(p−i − v−i )η2
= −γ−i (pi − vi )γi

(p−i − v−i )η
.
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Thus S∗−i decreases (increases) in αi −βi if γ > 0 (< 0). Consequently, γ−i F
−1
−i (S∗−i )

decreases in αi − βi .
Therefore, in Eq. (3.3), when αi − βi increases, the denominator decreases while

the numerator increases. Thus q∗
i increases in αi − βi .

To examine the relation between q∗
i and α−i − β−i , we derive

∂q∗
i

∂(α−i − β−i )

= −γ−i

η

[
q∗−i − 1 − α−i + β−i

γ−i

∂F−1
i

∂Si

∂S∗
i

∂(α−i − β−i )

+ ∂F−1
−i

∂S−i

∂S−i

∂(α−i − β−i )

]
. (A.2)

All three terms in the brackets are positive, and thus, the sign of the above derivative
only depends on the sign of γ in front of the brackets.

In equilibrium,

Di j (q∗) = ξi j + (αi − βi )q
∗
i − γ−i q

∗−i .

Supposeαi−βi increases or γi decreases, and suppose the industry keeps the inventory
levels q∗ unchanged. Then, the above relation suggests that demand Di j will increase,
and the industry’s profit increases. Therefore, if the industry optimally chooses inven-
tory levels in response to the changes in αi − βi and γi , π∗ will increase further.

Proof of Theorem 3.2 The problem in (3.5) can be written as

max
qi1,qi2

∑

j

[
(pi − ci )qi j − (pi − vi )

∫ qi j

0
Fi

(
u − αi qi j + βi qi,− j + 1

2
γ−i (q−i,1 + q−i,2)

)
du

]
.

The first-order condition is

pi − ci = (pi − vi )
(
(1 − αi )Si j + βi Si,− j

)
, j = 1, 2.

Solving the this system of equations, we obtain the optimal service level in (3.6).
Using (2.5), the equilibrium inventory levels are given by (3.7). The expression for

chain i’s profit in (3.8) can be derived in the same way as in the proof of Theorem 3.1.
We next prove the monotonicity. If αi − βi increases, then SIIi in (3.6) increases,

which also increases F−1
i (SIIi ) in (3.7). At the same time, a higher αi − βi reduces η.

Hence, qIIi increases in αi − βi .
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DifferentiatingqIIi with respect toα−i−β−i and after some algebraicmanipulations,
we obtain

∂qIIi
∂(α−i − β−i )

= −γ−i

η

[
∂F−1

−i

∂S−i

∂SII−i

∂(α−i − β−i )
+ qII−i

]
. (A.3)

All terms in the square bracket are positive, and therefore, if γ > 0 (γ < 0), qIIi
decreases (increases) in α−i − β−i .

From the profit expression in (3.8), we see that α−i − β−i affects π II
i only through

qIIi . Thus, if γ > 0 (γ < 0), π II
i decreases (increases) in α−i − β−i .

Finally, we prove the monotonicity of π II
i in αi − βi . Let αi − βi < α̃i − β̃i . Under

αi − βi , using (2.3), the equilibrium satisfies

Fi
((
1 − αi + βi

)
qIIi + γ−i q

II−i

) = SIIi .

Under α̃i − β̃i , denote the new equilibrium inventory as q̃ II
1 and q̃ II

2 . Suppose chain
−i choose the equilibrium inventory q̃ II−i , but chain i takes a suboptimal strategy qsi
to maintain its original service level under αi − βi . That is,

Fi
(
(1 − α̃i + β̃i )q

s
i + γ−i q̃

II−i

) = SIIi .

As we show by (A.3), if γ > 0 (γ < 0), qII−i decreases (increases) in αi − βi .
In either case, γ qII−i decreases in αi − βi . Hence, γ−i qII−i > γ−i q̃ II−i . Together with
1 − αi + βi > 1 − α̃i + β̃i > 0, we have

qsi > qIIi .

Under this suboptimal inventory level qsi , the profit of chain i is

πi = 2(pi − ci )q
s
i − 2(pi − vi )

∫ F−1
i (SIIi )

0
Fi (u)du

> 2(pi − ci )q
II
i − 2(pi − vi )

∫ F−1
i (SIIi )

0
Fi (u)du = π II

i .

Since a suboptimal inventory for chain i yields a higher profit, the optimal profit π II
i

in the equilibrium must be even higher. This proves π II
i increases in αi − βi .

Proof of Theorem 3.3 To show the quasi-concavity of the objective function in (3.11),
it suffices to show that the first-order derivative crosses zero value from above only
once. The first-order derivative with respect to Sci is

[
2(pi − ci )(1 − α−i + β−i )

η
− 2(pi − vi )S

c
i

]
∂F−1

i (Sci )

∂Sci
. (A.4)
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Because F−1
i (y) is assumed to be strictly increasing in y for y ∈ (0, 1), we have

∂F−1
i /∂Sci > 0. The term in the brackets is strictly decreasing in Sci . Hence, as Sci

increases, the derivative in (A.4) crosses zero value from above only once. Thus, the
objective function in (3.11) is quasi-concave.

Service level SDDi in (3.13) clearly increases in α1 − β1 and α2 − β2.
If γ < 0, then qDDi in (3.14) increases in αi − βi , because as αi − βi increases, η

decreases, F−1
i (SDDi ) increases, and −γ−i F

−1
−i (SDD−i ) increases.

Similar to (A.2), we can derive

∂qDDi

∂(α−i − β−i )
= −γ−i

η

[

qDD−i + ∂F−1
−i

∂S−i

∂S−i

∂(α−i − β−i )

]

+ 1 − α−i + β−i

η

∂F−1
i

∂Si

∂SDDi

∂(α−i − β−i )
.

Because γ < 0 and SDDi increases in α−i − β−i , the above derivative is positive, and
thus qDDi increases in α−i − β−i .

Finally,we prove themonotonicity ofπDD
i inαi−βi using the samemethod as in the

proof of themonotonicity ofπ II
i inαi−βi in Theorem3.2. Letαi−βi < α̃i−β̃i . Under

αi−βi , the equilibrium satisfies Fi
(
(1−αi+βi )qDDi +γ−i qDD−i

) = SDDi .Under α̃i−β̃i ,
suppose chain−i choose the equilibrium inventory q̃ DD−i , but chain i takes a suboptimal
strategy qsi tomaintain its original service level: Fi

(
(1−α̃i+β̃i )qsi +γ−i q̃ DD−i

) = SDDi .

As we have shown, if γ < 0, qDD−i increases in αi − βi . Hence, γ−i qDD−i > γ−i q̃ DD−i .
Together with 1 − αi + βi > 1 − α̃i + β̃i > 0, we have qsi > qDDi . Under this
suboptimal inventory level qsi , the profit of chain i is

πi = 2(pi − ci )q
s
i − 2(pi − vi )

∫ F−1
i (SDDi )

0
Fi (u)du

> 2(pi − ci )q
DD
i − 2(pi − vi )

∫ F−1
i (SDDi )

0
Fi (u)du = πDD

i .

Since a suboptimal inventory for chain i yields a higher profit, the optimal profit πDD
i

in the equilibrium must be even higher. This proves πDD
i increases in αi − βi when

γ < 0.
The monotonicity of πDD

i in α−i − β−i can be shown using the same approach as
above.

Proof of Theorem 3.4 The game dynamics is described and the equilibrium is proved
in the paper. Here, we show the monotonicity results.

The effects of α2 − β2 on the equilibrium follow the same lines of the proof as in
Theorem 3.2.

The effects of α1 − β1 on the equilibrium follow the same lines of the proof as in
Theorem 3.3.

123



Chain-to-Chain Competition Under Demand Uncertainty 71

Proof of Corollary 4.1 Comparing SIIi in (3.6) and SDDi in (3.13), and notingγ1γ2 > 0,
we have the relation SIIi < SDDi .

When γ < 0, comparing SDDi in (3.13) and S∗
i in (3.2), we obtain SDDi < S∗

i .
When γ > 0, we have

S∗
i − SIIi =

pi − ci − γi (p−i−c−i )
1−α−i+β−i

(pi − vi )
(
1 − αi + βi − γ1γ2

1−α−i+β−i

) − pi − ci
(pi − vi )(1 − αi + βi )

= (pi − ci )(1 − α−i + β−i ) − γi (p−i − c−i )

(pi − vi )η

− (pi − ci )(1 − α−i + β−i ) − γ1γ2
(pi−ci )

(1−αi+βi )

(pi − vi )η

= −
γi

[
(p−i − c−i ) − γ−i (pi−ci )

1−αi+βi

]

(pi − vi )η

= − γi S∗−i

1 − αi + βi
< 0.

This proves S∗
i < SIIi when γ > 0.

Proof of Corollary 4.3 The equilibrium inventory levels in (3.7), (3.14), and (3.22)
from Theorems 3.2–3.4 are listed below:

qIIi = 1

η

[
(1 − α−i + β−i )F

−1
i

(
SIIi

) − γ−i F
−1
−i

(
SII−i

)]
,

qDDi = 1

η

[
(1 − α−i + β−i )F

−1
i

(
SDDi

) − γ−i F
−1
−i

(
SDD−i

)]
,

qDI1 = 1

η

[
(1 − α2 + β2)F

−1
1

(
SII1

) − γ2F
−1
2

(
SDD2

)]
,

qDI2 = 1

η

[
(1 − α1 + β1)F

−1
2

(
SDD2

) − γ1F
−1
1

(
SII1

)]
.

When γ �= 0, we have SDDi > SIIi , i = 1, 2, which immediately leads to the order of
qIIi , q

DI
i , and qDDi in the theorem.

Next, we prove the order of profits. Theorems 3.2–3.4 imply that

π II
1 − πDI

1 = 2(p1 − c1)(q
II
1 − qDI1 ),

πDD
2 − πDI

2 = 2(p2 − c2)(q
DD
2 − qDI2 ).

Thus, the order of π II
1 and πDI

1 is the same as that of qII1 and qDI1 , and the order of πDD
2

and πDI
2 is the same as that of qDD2 and qDI2 .

123



72 O. Q. Wu, H. Chen

We next derive the order of πDI
2 and π II

2 . Define an auxiliary function,

ψ(x)
def= 2(p2 − c2)

−γ1F
−1
1

(
SII1

) + (1 − α1 + β1)x

η
− 2(p2 − v2)

∫ x

0
F2(u)du.

We have

dψ(x)

dx
= 2(p2 − c2)(1 − α1 + β1)

η
− 2(p2 − v2)F2(x), (A.5)

dψ(F−1
2 (SDD2 ))

dx
= 2(p2 − c2)(1 − α1 + β1)

(1 − α1 + β1)(1 − α2 + β2) − γ1γ2
− 2(p2 − c2)

(1 − α2 + β2) − γ1γ2
1−α1+β1

= 0. (A.6)

Equation (A.5) implies that dψ(x)/dx decreases in x , and it decreases to zero
value when x = F−1

2 (SDD2 ) in view of (A.6). Hence, dψ(x)/dx � 0 for all x ∈
[F−1

2 (SII2 ), F−1
2 (SDD2 )], and therefore, ψ(x) increases in x , which leads to

π II
2 = ψ

(
F−1
2

(
SII2

))
� ψ

(
F−1
2

(
SDD2

)) = πDI
2 .

The order of πDI
1 and πDD

1 can be derived in the same logic with an auxiliary
function:

φ(x)
def= 2(p1 − c1)

(1 − α2 + β2)x − γ2F
−1
2

(
SD
2

)

η
− 2(p1 − v1)

∫ x

0
F1(u)du.

We can show that φ(x) increases in x for ∈ [
F−1
1

(
SII1

)
, F−1

1

(
SDD1

)]
, and therefore,

πDI
1 = φ

(
F−1
1

(
SII1

))
� φ

(
F−1
1

(
SDD1

)) = πDD
1 .

Proof of Lemma 4.6 (a) For any x � x̂ , if G(x) = 0, then F(x) � G(x) is already
satisfied. If 0 < G(x) � G (̂x) = ŷ < 1, then by definition, we have F−1(ŷ) −
F−1(G(x)) � G−1(ŷ) − G−1(G(x)), or equivalently x̂ − F−1(G(x)) � x̂ − x , and
thus F−1(G(x)) � x or G(x) � F(x). Similarly, we can prove F(x) � G(x) for all
x � x̂ .

For y � ŷ, by definition, F−1(ŷ) − F−1(y) � G−1(ŷ) − G−1(y), which implies
F−1(y) � G−1(y). Similarly, for y � ŷ, F−1(y) � G−1(y).

(b) If there does not exist x̂ such that F (̂x) = G (̂x) ∈ (0, 1), then we have either
F(x) � G(x) or G(x) � F(x) for all x ∈ [0,∞). Since E[X ] � E[Y ], only the later
case stands. Thus

∫ ∞
a (G(x) − F(x))dx � 0, for all a � 0. Hence X �v Y .

If there exists x̂ , such that F (̂x) = G (̂x) ∈ (0, 1), then part (a) applies. We have
G(x) − F(x) � 0 for x � x̂ and G(x) − F(x) � 0 for x � x̂ . Thus the function

s(a)
def=

∫ ∞

−a
G(x) − F(x)dx, a ∈ (−∞, 0)
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is increasing and then decreasing in a. E[X ] � E[Y ] implies that s(0) = ∫ ∞
0 G(x) −

F(x)dx � 0. Together with s(−∞) = 0, we have s(a) � 0 for all a ∈ (−∞, 0). This
implies X �v Y .

(c) Integrating by parts, we have
∫ F−1(x)
0 F(u)du = xF−1(x) − ∫ x

0 F−1(u)du. Thus,

∫ F−1(x)

0
F(u)du −

∫ G−1(x)

0
G(u)du

=
∫ x

0

[
(F−1(x) − F−1(u)) − (G−1(x) − G−1(u))

]
du � 0,

where the last inequality is due to the fact that X �d Y so that the integrand is always
non-negative. Similarly, we can prove

∫ ∞

F−1(y)
(1 − F(u))du �

∫ ∞

G−1(y)
(1 − G(u))du.

Proof of Theorem 4.7 We only need to prove gi (y, Fi ) � gi (y,Gi ), for all y ∈ (0, 1).
Since E[ξ F

i j ] = E[ξGi j ], there must exist x̂ such that F (̂x) = G (̂x) = ŷ.

FromLemma4.6 (a) and (c),when y� ŷ, F−1
i (y)�G−1

i (y) and
∫ F−1

i (y)
0 Fi (u)du �

∫ G−1
i (y)

0 Gi (u)du. These together imply that

gi (y, Fi ) � gi (y,Gi ) for y � ŷ.

We note that E[ξ F
i j ] = E[ξGi j ] implies that

∫ ∞

0
(1 − Fi (u))du =

∫ ∞

0
(1 − Gi (u))du,

or equivalently,

gi (y, Fi ) + (1 − γi )F
−1
i (y) +

∫ ∞

F−1
i (y)

(1 − Fi (u))du

= gi (y,Gi ) + (1 − γi )G
−1
i (y) +

∫ ∞

G−1
i (y)

(1 − Gi (u))du.

When y � ŷ, from Lemmas 4.6 (a) and 4.6 (c), we have F−1(y) � G−1(y) and∫ ∞
F−1(y)(1 − Fi (u))du �

∫ ∞
G−1
i (y)(1 − Gi (u))du. Thus gi (y, Fi ) � gi (y,Gi ) for

y � ŷ.
Together, we have gi (y, Fi ) � gi (y,Gi ) for all y ∈ (0, 1). Hence,

πX(F1, F2) � πX(G1,G2).
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To prove the second part regarding to the individual supply chain profit, we express
supply chain’s profit as

πX
i (F1, F2) = 2(pi − vi )g̃i

(
SXi , Fi

) − 2(pi − ci )γ−i

η
F−1

−i

(
SX−i

)
,

where g̃i
(
SXi , Fi

) = SDDi F−1
i

(
SXi

) − ∫ F−1
i

(
SXi

)

0 Fi (u)du is similar to gi (y, Fi ) and is
also decreasing when F becomesmore dispersed while keepingmean constant. Hence
the result.

If F−i becomes more dispersed, the direction of the change of πX
i is unclear. It

depends on how the more dispersed distribution is shaped. In particular, it depends on
whether x̂ � SX−i .

Proof of Theorem 4.8

∣
∣
∣πX1(F1, F2) − πX2(F1, F2)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

∑

i

2(pi − vi )

∫ S
X1
i

S
X2
i

dgi (y; Fi )
dy

dy

∣
∣
∣
∣
∣
∣

=
∑

i

2(pi − vi )

∫ S
X1
i

S
X2
i

∣
∣
∣
∣
dgi (y; Fi )

dy

∣
∣
∣
∣ dy

=
∑

i

2(pi − vi )

∫ S
X1
i

S
X2
i

|γi − y| dF
−1
i (y)

dy
dy

�
∑

i

2(pi − vi )

∫ S
X1
i

S
X2
i

|γi − y| dG
−1
i (y)

dy
dy

=
∣
∣
∣πX1(G1,G2) − πX2(G1,G2)

∣
∣
∣ ,

where the second equality is due to the fact that
∫ S

X1
i

S
X2
i

dgi (y; Fi )
dy

dy are of the same

signs for i = 1, 2, and the inequality follows from (4.5).
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