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1 Introduction

Sparsity constrainedoptimization (SCO) is tominimize a general nonlinear function
subject to sparsity constraint. It has wide applications in signal and image processing,
machine learning, pattern recognition and computer vision, and so on. Recent years
have witnessed a growing interest in the theory and algorithm for SCO, especially for
SCO caused by the sparse recovery from linear or nonlinear observations.

SCO is actually a combinatorial optimization problem and it is generally NP-hard
even for quadratic objective function [1]. So, usually continuous optimization the-
ory is unable to cope with SCO and the research on existence of solutions to SCO
is difficult. Negahban et al. [2] introduced the concept of restricted strong convexity
(RSC) in convex optimization problem, and showed it is a sufficient condition for
existence of unique solution for the convex program in a restricted region. Agarwal
et al. [3] modified RSC and introduced the notions of restricted strong smoothness
(RSS) that suffice to establish global linear convergence of a first-order method for
the above problem. Later, various variants of RSC and RSS were developed and used
in [4–7] to guarantee the existence of unique solution and corresponding error bound
holding for SCO. Bahmani et al. [8] proposed stable restricted Hessian (SRH) for
twice continuously differentiable objective functions and stable restricted lineariza-
tion (SRL) for nonsmooth objective functions, and obtained that they are sufficient
conditions to achieve the true unique solution to SCO in a finite number of iterations.
Here, we should point out that these conditions can be regarded as some extensions
or relaxations of restricted isometry property (RIP) by Candès and Tao [9] in com-
pressed sensing (CS) [9,10], where RIP suffices to guarantee that the l0-minimization
associated with CS from linear observations has a unique solution and is polynomi-
ally solvable. Recently, Beck and Eldar [11] introduced and analyzed three kinds of
first-order necessary optimality conditions for the existence of solutions to SCO: basic
feasibility, L-stationarity and coordinate-wise optimality. Basic feasibility is an exten-
sion of the necessary condition that gradient is zero for unconstrained optimization.
L-stationarity is based on the notion of fixed-point equation for convex constrained
problems and used to derive the iterative hard thresholding (IHT) algorithm for SCO.

In this paper, we try to investigate the existence of solutions of SCO by using the
concepts of tangent cone and normal cone, which are very useful in characterizing
feasible region and establishing optimality condition for constrained optimization
problems.We first give the expressions of the Bouligand and Clarke tangent cones and
normal cones of sparsity constraint. Then we establish the concepts of N-stationarity
and T-stationarity for SCO, and analyze the relationship and differences among basic
feasibility, L-stationarity, N-stationarity, and T-stationarity. Our analysis shows that
they play an important role in optimality theory and algorithm design for SCO. Further,
wegive the second-order necessary and sufficient optimality conditions under the sense
of Clarke tangent cone for the existence of local optimal solutions to SCO. Especially,
we conclude the existence theorems for global optimal solutions to SCO with least
squares objective function from sparse recovery of linear observations. At last, we
extend these results to SCO with nonnegative constraint.

This paper is organized as follows. Section 2 studies the first- and second-order
optimality conditions for sparsity constrained optimization. Section 3 extends the
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corresponding results in Sect. 2 to SCO with nonnegative constraint. The last section
gives some concluding remarks.

2 Optimality Conditions

In this section, we study the first- and second-order necessary optimality conditions
of the following SCO problem

min f (x), s.t. ‖x‖0 � s, (2.1)

where f (x) : R
n → R is a continuously differentiable or twice continuously differen-

tiable function. ‖x‖0 is the l0-norm of x ∈ R
n , which refers to the number of nonzero

elements in the vector x . s < n is a positive integer. Let S � {x ∈ R
n : ‖x‖0 � s} be

the feasible region of (2.1).
We first consider the projection on sparse set S, named support projection. For

Ω ⊂ R
n being nonempty and closed, we call the mapping PΩ : R

n → Ω the
projector onto Ω if

PΩ(x) := argminy∈Ω‖x − y‖.

It is well known that the support projection PS(x) sets all but s largest absolute value
components of x to zero. Carefully speaking, letting Is(x) := { j1, j2, · · · , js} ⊆
{1, 2, · · · , n} of indices of x with mini∈Is (x) |xi | � maxi /∈Is (x) |xi |, we have

PS(x) = {
y ∈ R

n : yi = xi , i ∈ Is(x); yi = 0, i /∈ Is(x)
}
.

As S is nonconvex, the support projection PS(x) is not single-valued. Letting Mi (x)
denote the i th largest element of x , we have

M1(x) � M2(x) � · · · � Mn(x).

Denote |x | = (|x1|, · · · , |xn|)T. If Ms(|x |) = 0 or Ms(|x |) > Ms+1(|x |), then PS(x)
is single-valued, in such case,

(PS(x))i =
{
xi , |xi | � Ms(|x |),
0, otherwise.

Otherwise,

(PS(x))i =
⎧
⎨

⎩

xi , |xi | > Ms(|x |),
xi or 0, |xi | = Ms(|x |),
0, otherwise.

If there are more than one xi such that |xi | = Ms(|x |), only one element can be
selected either randomly or according to some predefined ordering to be assigned
itself, while others are assigned zeros.

123



424 L.-L. Pan et al.

2.1 Tangent Cone and Normal Cone

Recalling that for any nonempty set Ω ⊆ R
n , its Bouligand tangent cone TB

Ω(x̄),
Clarke tangent cone TC

Ω(x̄) and corresponding Normal Cones NB
Ω(x̄) and NC

Ω(x̄) at
point x̄ ∈ Ω are defined as [12]:

TB
Ω(x̄) :=

⎧
⎨

⎩
d ∈ R

n :
∃ {xk} ⊂ Ω, lim

k→∞xk = x̄, λk � 0, k ∈ N such that

lim
k→∞λk(xk− x̄)=d

⎫
⎬

⎭
,

TC
Ω(x̄) :=

⎧
⎪⎪⎨

⎪⎪⎩
d ∈ R

n :
For ∀ {xk} ⊂ Ω, ∀ {λk} ⊂ R+ with lim

k→∞xk = x̄,

lim
k→∞λk = 0, ∃ {yk} such that

lim
k→∞yk = d and xk + λk yk ∈ Ω, k ∈ N

⎫
⎪⎪⎬

⎪⎪⎭
,

NB
Ω(x̄) :=

{
d ∈ R

n : 〈d, z〉 � 0, ∀ z ∈ TB
Ω(x̄)

}
,

NC
Ω(x̄) :=

{
d ∈ R

n : 〈d, z〉 � 0, ∀ z ∈ TC
Ω(x̄)

}
. (2.2)

The following two theorems give the expressions of Bouligand and Clarke tangent
cones and normal cones of sparse set S.

Theorem 2.1 For any x̄ ∈ S and letting Γ = supp(x̄), the Bouligand tangent cone
and corresponding normal cone of S at x̄ are respectively

TB
S (x̄) = { d ∈ R

n : ‖d‖0 � s, ‖x̄ + μd‖0 � s ,∀ μ ∈ R } (2.3)

=
⋃

Υ

span { ei , i ∈ Υ ⊇ Γ, |Υ | � s } , (2.4)

NB
S (x̄) =

{ { d ∈ R
n : di = 0, i ∈ Γ } = span { ei , i /∈ Γ } , if |Γ | = s,

{0}, if |Γ | < s,
(2.5)

where ei ∈ R
n is a vectorwhose i th component is one and others are zeros, span{ei , i ∈

Γ } denotes the subspace of R
n spanned by { ei : i ∈ Γ }, and

supp(x) = {i ∈ {1, · · · , n} : xi 
= 0}.

Proof Denote the set of the right hand of (2.3) as D. It is not difficult to verify that D
is equal to (2.4), and thus we only prove (2.3). First we prove TB

S (x̄) ⊆ D. For any d ∈
TB
S (x̄), there is limk→∞ xk = x̄, xk ∈ S, λk � 0 satisfies d = limk→∞ λk(xk − x̄).

Since limk→∞ xk = x̄ , there is k0 when k � k0, Γ ⊆ supp(xk). In addition, d =
limk→∞ λk(xk − x̄) derives supp(d) ⊆ supp(xk), which combining with ‖xk‖0 � s
when k � k0 and Γ ⊆ supp(xk) yields that ‖d‖0 � s and ‖x̄ + μd‖0 � s ,∀ μ ∈ R.
Next we prove TB

S (x̄) ⊇ D. For any ‖d‖0 � s, ‖x̄ + μd‖0 � s ,∀ μ ∈ R, we take
any sequence {λk} such that λk > 0 and λk → +∞. Then by defining {xk} with
xk = x̄ + d/λk , evidently xk ∈ S, limk→∞ xk = x̄ , and d = limk→∞ λk(xk − x̄),
which implies d ∈ TB

S (x̄).
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For (2.5), by the definition of NB
S (x̄), we obtain

NB
S (x̄) = { d ∈ R

n : 〈d, z〉 � 0, ∀ z ∈ TB
S (x̄) }

= { d ∈ R
n : 〈d, z〉 � 0, ‖z‖0 � s, ‖x̄ + μz‖0 � s ,∀ μ ∈ R }. (2.6)

If |Γ | = s, it yields supp(z) ⊆ Γ for any z ∈ TB
S (x̄). Then

d ∈ NB
S (x̄) ⇐⇒ 〈d, z〉 � 0, ∀ supp(z) ⊆ Γ ⇐⇒ di

{= 0, i ∈ Γ,

∈ R, i /∈ Γ.

⇐⇒ d ∈ span { ei , i /∈ Γ } .

If |Γ | < s, we will prove NB
S (x̄) = {0}. Assuming d ∈ NB

S (x̄), we take z =
di0ei0 , ∀ i0 ∈ {1, 2, · · · , n}, then z ∈ TB

S (x̄) because of |Γ | < s. By 〈d, z〉 = d2i0 � 0,

we can obtain di0 = 0. The arbitrariness of i0 yields that d = 0, henceforth NB
S (x̄) =

{0}.
Theorem 2.2 For any x̄ ∈ S and letting Γ = supp(x̄), the Clarke tangent cone and
corresponding normal cone of S at x̄ are, respectively,

TC
S (x̄) = { d ∈ R

n : supp(d) ⊆ Γ } = span { ei , i ∈ Γ } , (2.7)

NC
S (x̄) = span { ei , i /∈ Γ } . (2.8)

Proof Obviously, span { ei , i ∈ Γ } = { d ∈ R
n : supp(d) ⊆ Γ }.

We first prove TC
S (x̄) ⊆ { d ∈ R

n : supp(d) ⊆ Γ }. For any d ∈ TC
S (x̄), we

have ∀ {xk} ⊂ S, ∀ {λk} ⊂ R+ with limk→∞ xk = x̄, limk→∞ λk = 0, there is a
sequence {yk} such that limk→∞ yk = d and xk + λk yk ∈ S, k = 1, 2, · · · . Assume
that supp(d) � Γ , namely there is an i0 ∈ supp(d) but i0 /∈ Γ . Since limk→∞ yk = d,
it must have yki0 → di0 which requires yki0 
= 0 when k � k0. By the arbitrariness

of {xk}, we take {xk} ⊂ S such that limk→∞ xk = x̄ , supp(xk) = Γ ∪ Γk with
|Γ ∪ Γk | = s, where Γk ⊂ {1, 2, · · · , n}\Γ , and i0 /∈ Γk . Because {yk} is fixed and
the arbitrariness of {λk}, we can take {λk} such that

λk = min
i∈Γ ∪Γk

|xki |
|yki | + k

.

Then λk( 
= 0) → 0 as k → ∞. And thus ∀i ∈ Γ ∪ Γk , it follows

|xki + λk y
k
i | � |xki | − λk |yki | = |xki | − |yki | min

i∈Γ ∪Γk

|xki |
|yki | + k

> 0.

Moreover, from i0 /∈ Γ ∪ Γk deriving xki0 = 0, yki0 
= 0, we must have ‖xk +
λ′
k y

k‖0 � s + 1 for k � k0, which is contradicted to xk + λ′
k y

k ∈ S for any k =
1, 2, · · · . Therefore supp(d) ⊆ Γ .
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Next we prove TC
S (x̄) ⊇ { d ∈ R

n : supp(d) ⊆ Γ }. For any d ∈ R
n such that

supp(d) ⊆ Γ and ∀ {xk} ⊂ S, ∀ {λk} ⊂ R+ with limk→∞ xk = x̄, limk→∞ λk = 0,
we have supp(d) ⊆ Γ ⊆ supp(xk) for any k � k0. Let

yk = 0, k = 1, 2, · · · , k0,
yk = xk − x̄ + d, k = k0 + 1, k0 + 2, · · · ,

which brings out xk + λk yk ∈ S for k = 1, 2, · · · due to xk ∈ S. In addition,
limk→∞ yk = limk→∞ xk − x̄ + d = d. Hence d ∈ TC

S (x̄).
Finally (2.8) holding is obvious. Then the whole proof is completed.

Remark 2.3 Clearly for any x̄ ∈ S, Bouligand tangent cone TB
S (x̄) is closed but

nonconvex, while Clarke tangent cone TC
S (x̄) is closed and convex. In addition,

TC
S (x̄) ⊆ TB

S (x̄).

To end this subsection, we give a plot to illustrate the Bouligand and Clarke tangent
cones in three dimensional space (Fig. 1). One can easily verify TB

S (x ′) = TC
S (x ′) =

{x ∈ R
3| x1 = 0}, TB

S (x ′′) = {x ∈ R
3| x1 = 0} ∪ {x ∈ R

3| x3 = 0} and TC
S (x ′′) =

{x ∈ R
3| x1 = x3 = 0}.

2.2 First-Order Optimality Conditions

When f (x) is continuously differentiable on R
n , we give the definitions of N-

stationarity and T-stationarity of problem (2.1) based on the expressions of tangent
cone and normal cone.

Definition 2.4 A vector x∗ ∈ S is called an N�-stationary point and T�-stationary
point of (2.1) if it respectively satisfies the relation

N�-stationary point : 0 ∈ ∇ f (x∗) + N�
S(x

∗), (2.9)

T�-stationary point : 0 = ‖∇�
S f (x

∗)‖, (2.10)

Fig. 1 Bouligand tangent cone and Clarke tangent cone in three dimensional space, where S = {x ∈
R
3| ‖x‖0 � 2} and x ′ = (0, 1, 1)T, x ′′ = (0, 1, 0)T
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where ∇�
S f (x

∗) = argmin{ ‖d + ∇ f (x∗)‖ : d ∈ T�
S(x

∗) }, � ∈ {B,C} stands for the
sense of Bouligand tangent cone or Clarke tangent cone.

Note that N�-stationary point is called the critical point of nonconvex optimization
problem by Attouch et al. [13], T�-stationary point is the zero point of projection
gradient of objective function introduced by Calamai and Mor̀e in [14]. Recall that
x∗ ∈ S is defined in [11] as an L-stationary point of (2.1) if

x∗ ∈ PS(x
∗ − ∇ f (x∗)/L), ∀ L > 0. (2.11)

L-stationary point with L = 1 is called a fixed point in [15].
It is well known that L-stationarity, N�-stationarity and T�-stationarity are equiva-

lent in convex constrained optimization problems. But for SCO problem, it is not the
case observed from the following theorem.

Theorem 2.5 Under the concept of Bouligand tangent cone, we consider problem
(2.1). For L > 0, if the vector x∗ ∈ S satisfies ‖x∗‖0 = s, then

L-stationary point �⇒ NB-stationary point ⇐⇒ TB-stationary point;

if the vector x∗ ∈ S satisfies ‖x∗‖0 < s, then

L-stationary point ⇐⇒ NB-stationary point ⇐⇒ TB-stationary point

⇐⇒ ∇ f (x∗) = 0.

Proof Denote Γ ∗ = supp(x∗). If x∗ is an L-stationary point of problem (2.1), then
from Lemma 2.2 in [11], it holds for any L > 0,

x∗ ∈ PS(x
∗ − ∇ f (x∗)/L) ⇐⇒ ∣

∣(∇ f (x∗))i
∣
∣

{= 0, i ∈ Γ ∗,
� LMs(|x∗|), i /∈ Γ ∗. (2.12)

Case 1 First we consider the case ‖x∗‖0 = s. Under such circumstance, if x∗ is an
NB-stationary point of problem (2.1), then by (2.5) in Theorem 2.1, we have

− ∇ f (x∗) ∈ NB
S (x∗) ⇐⇒ (∇ f (x∗))i

{= 0, i ∈ Γ ∗,
∈ R, i /∈ Γ ∗. (2.13)

Moreover, ‖x∗‖0 = s produces

∇B
S f (x∗) = argmin{ ‖d + ∇ f (x∗)‖ : d ∈ TB

S (x∗) }
= argmin{ ‖d + ∇ f (x∗)‖ : ‖d‖0 � s, ‖x∗ + μd‖0 � s ,∀ μ ∈ R }
= argmin{ ‖d + ∇ f (x∗)‖ : supp(d) ⊆ Γ ∗ }, (2.14)

where the third equality holds due to ‖x∗‖0 = s. (2.14) is equivalent to

(∇B
S f (x∗))i =

{−(∇ f (x∗))i , i ∈ Γ ∗,
0, i /∈ Γ ∗.
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Therefore, if x∗ is a TB-stationary point of problem (2.1), then from above

∇B
S f (x∗) = 0 ⇐⇒ (∇ f (x∗)

)
i

{= 0, i ∈ Γ ∗,
∈ R, i /∈ Γ ∗. (2.15)

Henceforth, from (2.12), (2.13) and (2.15), one can easily check that when ‖x∗‖0 = s,

L-stationary point �⇒ NB-stationary point ⇐⇒ TB-stationary point.

Case 2Nowweconsider the case ‖x∗‖0 < s. Under such circumstance,Ms(|x∗|) =
0, and thus if x∗ is an L-stationary point of problem (2.1), then from (2.12), it holds

x∗ ∈ PS(x
∗ − ∇ f (x∗)/L) ⇐⇒ ∇ f (x∗) = 0. (2.16)

Then when ‖x∗‖0 < s, NB
S (x∗) = {0} from (2.5), which implies ∇ f (x∗) = 0.

Therefore, if x∗ is an NB-stationary point of problem (2.1), then

0 ∈ ∇ f (x∗) + NB
S (x∗) ⇐⇒ ∇ f (x∗) = 0. (2.17)

Finally, we prove ∇ f (x∗) = 0 ⇐⇒ ∇B
S f (x∗) = 0 when ‖x∗‖0 < s. On the one

hand, if ∇ f (x∗) = 0, then

∇B
S f (x∗) = argmin{ ‖d + ∇ f (x∗)‖ : ‖d‖0 � s, ‖x∗ + μd‖0 � s ,∀ μ ∈ R }

= argmin{ ‖d‖ : ‖d‖0 � s, ‖x∗ + μd‖0 � s ,∀ μ ∈ R } = 0.

On the other hand, if ∇B
S f (x∗) = 0, then

0 = ∇B
S f (x∗) = argmin{ ‖d + ∇ f (x∗)‖ : ‖d‖0 � s, ‖x∗ + μd‖0 � s ,∀ μ ∈ R }

leads to ‖∇ f (x∗)‖ � ‖d + ∇ f (x∗)‖ for any ‖d‖0 � s, ‖x∗ + μd‖0 � s ,∀ μ ∈ R.
Particularly, for any i0 ∈ {1, 2, · · · , n}, we take d with supp(d) = {i0}. Apparently,
‖x∗ +μd‖0 � s ,∀ μ ∈ R owing to ‖x∗‖0 < s. Then by valuing di0 = −(∇ f (x∗))i0
and di = 0, i 
= i0, we immediately get (∇ f (x∗))i0 = 0 because of ‖∇ f (x∗)‖ �
‖∇ f (x∗) − (∇ f (x∗))i0‖. Then by the arbitrariness of i0, it holds ∇ f (x∗) = 0.
Therefore, if x∗ is a TB-stationary point of problem (2.1), then

∇B
S f (x∗) = 0 ⇐⇒ ∇ f (x∗) = 0. (2.18)

Henceforth, from (2.16), (2.17) and (2.18), one can easily check that when
‖x∗‖0 < s

L-stationary point ⇐⇒ NB-stationary point ⇐⇒ TB-stationary point

⇐⇒ ∇ f (x∗) = 0.

Overall, the whole proof is finished.
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Based on the proof of Theorem 2.5, we use Table 1 to illustrate the relationship
among these three stationary points under the concept of Bouligand tangent cone.

Theorem 2.6 Under the concept of Clarke tangent cone, we consider problem (2.1).
For L > 0, if x∗ ∈ S then

L-stationary point �⇒ NC-stationary point ⇐⇒ TC-stationary point.

Proof Denote Γ ∗ = supp(x∗). If x∗ is an L-stationary point of problem (2.1), for any
L > 0, we have (2.12).

If x∗ is an NC -stationary point of problem (2.1), then by (2.8), we have

− ∇ f (x∗) ∈ NC
S (x∗) ⇐⇒ (∇ f

(
x∗))

i

{= 0, i ∈ Γ ∗,
∈ R, i /∈ Γ ∗. (2.19)

Moreover, by (2.7), it follows

∇C
S f (x∗) = argmin{ ‖d + ∇ f (x∗)‖ : d ∈ TC

S (x∗) }
= argmin{ ‖d + ∇ f (x∗)‖ : supp(d) ⊆ Γ ∗ },

which is equivalent to

(
∇C
S f

(
x∗))

i
=

{−(∇ f (x∗))i , i ∈ Γ ∗,
0, i /∈ Γ ∗.

Therefore, if x∗ is a TC -stationary point of problem (2.1), then from above

∇C
S f (x∗) = 0 ⇐⇒ (∇ f

(
x∗))

i

{= 0, i ∈ Γ ∗,
∈ R, i /∈ Γ ∗. (2.20)

Henceforth, from (2.12), (2.19) and (2.20), one can easily check

L-stationary point �⇒ NC -stationary point ⇐⇒ TC -stationary point.

Overall, the whole proof is finished.

Based on the proof of Theorem 2.6, we use Table 2 to illustrate the relationship
among these three stationary points under the concept of Clarke tangent cone.

FromTables 1 and 2, we can see that NC -stationarity and TC -stationarity areweaker
thanNB-stationarity andTB-stationarity.WhileNB- andTB-stationarity coincidewith
basic feasibility property in [11] for problem (2.1), that is ∇ f (x∗) = 0 if ‖x∗‖0 < s,
∇i f (x∗) = 0 for i ∈ supp(x∗) if ‖x∗‖0 = s. The following theorem shows that they
are all the necessary optimality conditions for SCO under some assumptions.
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430 L.-L. Pan et al.

Table 1 The relationship of the stationary points for (2.1) under Bouligand tangent cone

‖x∗‖0 = s ‖x∗‖0 < s

L-stationary point
∣
∣(∇ f

(
x∗))

i

∣
∣

{ = 0, i ∈ Γ ∗
� LMs (|x∗|) i /∈ Γ ∗ ∇ f (x∗) = 0

NB -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗ ∇ f (x∗) = 0

TB -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗ ∇ f (x∗) = 0

Table 2 The relationship of the stationary points for (2.1) under Clarke tangent cone

‖x∗‖0 = s ‖x∗‖0 < s

L-stationary point
∣
∣(∇ f

(
x∗))

i

∣
∣
{ = 0, i ∈ Γ ∗

� LMs (|x∗|), i /∈ Γ ∗ ∇ f (x∗) = 0

NC -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

TC -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

Assumption 2.7 The gradient of the objective function f (x) is Lipschitz with con-
stant L f over R

n :

‖∇ f (x) − ∇ f (y)‖ � L f ‖x − y‖, ∀ x, y ∈ R
n . (2.21)

Theorem 2.8 If x∗ be an optimal solution of (2.1), then x∗ is an NB-stationary point
and hence NC-stationary point. Further, if Assumption 2.7 holds and L > L f , then
x∗ is an L-stationary point of (2.1).

Proof The first conclusion comes from the equivalence of NB-stationarity and basic
feasibility and Theorem 2.1 in [11]. The second conclusion is also proven in Theorem
2.2 in [11], and here we give a short proof. Suppose to the contrary that there exists a
vector

y ∈ PS(x
∗ − ∇ f (x∗)/L).

It follows that
‖y − x∗ + ∇ f (x∗)/L‖2 � ‖x∗ − x∗ + ∇ f (x∗)/L‖2,

which yields that
〈∇ f (x∗), y − x∗〉 � −(L/2)‖y − x∗‖2.

By Lipschitz continuity property of ∇ f and L > L f , we have
f (y) � f (x∗) + 〈∇ f (x∗), y − x∗〉 + (L f /2)‖y − x∗‖2

� f (x∗) + (L f /2 − L/2)‖y − x∗‖2
< f (x∗),

contradicting the optimality of x∗. This completes the proof.

123



On Solutions of Sparsity Constrained Optimization 431

This theorem indicates that L > L f is sufficient to guarantee the optimal solution
being an L-stationary point. Next example shows that it is not necessary for the case
of ‖x∗‖0 = s, where x∗ denotes a solution to SCO.

Example 2.9 Consider the problem

min f (x) = 1.5x21 + 3x22 + 4x1x2 − 0.5x1 − 12x2
s.t. ‖x‖0 � 1. (2.22)

The gradient of the objective function is Lipschitz with constant L f =
λmax

(
3 4
4 6

)
= 8. Obviously the optimal solution of the problem is x∗ = (0, 2)T.

By (2.12), x∗ is an L-stationary point if and only if L � |∇1 f (x∗)|
M1(|x∗|) = 15

4 . Therefore,
the condition L > L f is sufficient but not necessary to guarantee the optimal solution
being an L-stationary point.

2.3 Second-Order Optimality Conditions

In this subsection, we will study the second-order necessary and sufficient optimal-
ity conditions of problem (2.1).

Theorem 2.10 (Second-Order Necessary Optimality) Assume f (x) is twice continu-
ously differentiable on R

n. If x∗ ∈ S is the optimal solution of (2.1), we have

dT∇2 f (x∗)d � 0, ∀ d ∈ TC
S (x∗), (2.23)

where ∇2 f (x∗) is the Hessian matrix of f at x∗.
Proof If x∗ ∈ S is the optimal solution of (2.1), it is also an NC -stationary point from
Theorem 2.8. From (2.7) and Table 2, one can easily verify that

dT∇ f (x∗) = 0, ∀ d ∈ TC
S (x∗).

Moreover, for any τ > 0 and d ∈ TC
S (x∗), by the optimality of x∗ and the equality

above, we have

0 � f (x∗ + τd) − f (x∗)

= f (x∗) + τdT∇ f (x∗) + τ 2

2
dT∇2 f (x∗)d + o(‖τd‖2) − f (x∗)

= τ 2

2
dT∇2 f (x∗)d + o(‖τd‖2),

which implies that

dT∇2 f (x∗)d � 0, ∀ d ∈ TC
S (x∗).

The desired result is acquired.
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Theorem 2.11 (Second-Order-Sufficient Optimality) If x∗ ∈ S with Γ ∗ = supp(x∗)
is an NC-stationary point of (2.1) and ∇2 f (x∗) is restricted positive definite, that is

dT∇2 f (x∗)d > 0, ∀ d ∈ TC
S (x∗), d 
= 0, (2.24)

then x∗ is the strictly locally optimal solution of (2.1) restricted on the subspace R
n
Γ ∗ ,

where R
n
Γ ∗ := span{ei , i ∈ Γ ∗}. Moreover, there are η > 0 and δ > 0, for any

x ∈ B(x∗, δ) ∩ R
n
Γ ∗ such that

f (x) � f (x∗) + η‖x − x∗‖2. (2.25)

Proof We only prove the second conclusion because it can yield the first one. From
Table 2, one can easily check

dT∇ f (x∗) = 0, ∀ d ∈ TC
S (x∗). (2.26)

Suppose the conclusion does not hold. Theremust be a sequence {xk} ∈ B(x∗, δ)∩R
n
Γ ∗

with

lim
k→∞ xk = x∗ and supp(xk) = supp(x∗)

such that

f (xk) − f (x∗) � 1

k
‖xk − x∗‖2. (2.27)

Denote dk = xk−x∗
‖xk−x∗‖ . Due to ‖dk‖ = 1, there exists a convergent subsequence,

without loss of generality, assuming dk → d̄. Then dk ∈ R
n
Γ ∗ and d̄ ∈ R

n
Γ ∗ by

supp(xk) = supp(x∗). From (2.26) and TC
S (x∗) = R

n
Γ ∗ , we get dkT∇ f (x∗) = 0. It

follows from (2.27) that

1

k
� 1

‖xk − x∗‖2
(
f
(
xk

) − f
(
x∗))

= 1

‖xk − x∗‖2
(

(
xk − x∗)T∇ f (x∗) + 1

2

(
xk − x∗)T

×∇2 f
(
x∗)(xk − x∗) + o

(‖xk − x∗‖2)
)

= 1

2
dkT∇2 f (x∗)dk + 1

‖xk − x∗‖d
kT∇ f

(
x∗) + o(1)

= 1

2
dkT∇2 f

(
x∗)dk + o(1).

Then by taking the limit of both sides of the above inequality, we obtain

0 = lim
k→∞

1

k
� lim

k→∞

(
1

2
dkT∇2 f (x∗)dk + o(1)

)
= 1

2
d̄T∇2 f (x∗)d̄ > 0, d̄ ∈ R

n
Γ ∗ ,
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which is contradicted. Therefore the conclusion does hold.

We next give an example to show that for problem (2.1), under the condition (2.24),
the NC -stationary point may not be the local minimizer of f on S.

Example 2.12 Consider the problem

min f (x) = 1

2

((
x1 + 1

)2 + (
x2 − 1

)2 + (
x3 − 1

)2)

s.t. ‖x‖0 � 2.

The gradient and Hessian matrix of f are ∇ f (x) = (x1 + 1, x2 − 1, x3 − 1)T and
∇2 f (x) = I respectively. From Table 2, x̄ = (0, 0, 1)T with ∇ f (x̄) = (1,−1, 0)T

is an NC -stationary point of the above problem, but not the local minimizer because
f ((0, ε, 1)T) < f (x̄), 0 < ε � 1.

In the end of this section, we will give more details about the special case of
f (x) ≡ 1

2‖Ax − b‖2, where A ∈ R
m×n , b ∈ R

m , L f = λmax(ATA) is the largest
eigenvalue of ATA. From Theorem 2.11, we easily derive the following result.

Corollary 2.13 Let f (x) ≡ 1
2‖Ax − b‖2. If x∗ ∈ S with Γ ∗ = supp(x∗) is an

NC-stationary point of (2.1) and

dTATAd > 0, ∀ d ∈ TC
S (x∗), d 
= 0, (2.28)

then x∗ is the globally optimal solution of (2.1) restricted on R
n
Γ ∗ .

Note that condition (2.28) is weaker than s-regularity of matrix A in [11], which
means that every s column of A is linearly independent. Using the s-regularity of
matrix A, we can obtain the global uniqueness of solution of problem (2.1).

Corollary 2.14 Let f (x) ≡ 1
2‖Ax − b‖2. If matrix A is s-regular, the number of

NC-stationary points is finite, and any NC-stationary point, say x∗ ∈ S with Γ ∗ =
supp(x∗), is uniquely global minimizer of problem (2.1) on R

n
Γ ∗ .

Proof Since x∗ is anNC -stationary point of (2.1) andΓ ∗ = supp(x∗), we denote x∗ =
(x∗T

Γ ∗ , 0)T and let AΓ ∗ be the submatrix of Amade up of the columns corresponding to
the setΓ ∗. ByTables 1 and 2,we have 0 = (∇ f (x))i = (AT(Ax−b))i = 0,∀ i ∈ Γ ∗,
namely,

AT
Γ ∗ AΓ ∗x∗

Γ ∗ = AT
Γ ∗b.

The s-regularity of A yields that x∗
Γ ∗ = (AT

Γ ∗ AΓ ∗)−1AT
Γ ∗b is unique. Since the

number of subsets Γ ∗ of {1, 2, · · · , n} with |Γ ∗| � s is finite, the number of NC -
stationary points is finite.

The s-regularity of A implies that f (x) is strongly convex on subspace R
n
Γ ∗ . By

Corollary 2.13, every stationary point is uniquely globalminimizer of (2.1) on subspace
R
n
Γ ∗ . This completes the proof.
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Furthermore, we obtain the result on globally unique solution to SCO with f (x) ≡
1
2‖Ax − b‖2.

Theorem 2.15 Let f (x) ≡ 1
2‖Ax − b‖2. If matrix A is s-regular, and both A and b

guarantee a unique solution to

Γ0 � argmin
|Γ |�s

‖ΠΓ b‖, (2.29)

where ΠΓ b = AΓ (AT
Γ AΓ )−1AT

Γ b, then problem (2.1) has a unique solution.

Proof Wewill prove it by contradiction. Let x and y be two different solutions of (2.1)
with Γ1 = supp(x) and Γ2 = supp(y). Denote x = (xTΓ1

, 0)T and y = (yTΓ2
, 0)T. We

easily verify that (2.1) is equivalent to

min
|Γ |�s

min
xΓ

‖AΓ xΓ − b‖2.

Since A is s-regular, we have Γ1 
= Γ2 provided x 
= y. It is easy to see that xΓ1 =
(AT

Γ1
AΓ1)

−1AT
Γ1
b, yΓ2 = (AT

Γ2
AΓ2)

−1AT
Γ2
b. From ‖Ax −b‖2 = ‖Ay−b‖2, we have

‖AΓ1(A
T
Γ1
AΓ1)

−1AT
Γ1
b − b‖2 = ‖AΓ2(A

T
Γ2
AΓ2)

−1AT
Γ2
b − b‖2,

that is

‖ΠΓ1b − b‖2 = ‖ΠΓ2b − b‖2.

Because ‖Ax − b‖2 = ‖Ay − b‖2 is the optimal value of (2.29) and ΠT
Γ = ΠΓ and

Π2
Γ = ΠΓ , the above equation means

‖ΠΓ1b‖ = ‖ΠΓ2b‖ = min
|Γ |�s

‖ΠΓ b‖.

Hence it violates the assumption.

3 Extensions

In this section, we mainly aim at specifying the results in Sect. 2 for SCO with
nonnegative constraint:

min f (x), s.t. ‖x‖0 � s, x � 0. (3.1)

First, we give the explicit expression of the projection on S ∩ R
n+, which is named

the nonnegative support projection.

Proposition 3.1 PS∩Rn+(x) = PS · PRn+(x).
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Proof Denote I+(x) = {i : xi > 0}, I0(x) = {i : xi = 0}, I−(x) = {i : xi < 0},
and let y ∈ PS∩Rn+(x). For i ∈ I0(x) ∪ I−(x), it is easy to see yi = 0. There are two
cases: Case 1, |I+(x)| � s, then y = PRn+(x) = PS · PRn+(x). Case 2, |I+(x)| > s,
we should choose no more than s coordinates from I+(x) to minimize ‖x − y‖. For
i, j ∈ I+(x) and xi > x j ,

(xi − xi )
2 + (x j − x j )

2 < (xi − xi )
2 + (x j − 0)2

< (xi − 0)2 + (x j − x j )
2 < (xi − 0)2 + (x j − 0)2.

Then the projection on S∩R
n+ sets all but s largest elements of PRn+(x) to zero, which

is PS · PRn+(x).

Notice that the order of the nonnegative support projection on S ∩ R
n+ can not be

changed. For example x = (−2, 1)T, s = 1. PS∩R2+(x) = PS · P
R
2+(x) = (0, 1)T,

while P
R
2+ · PS(x) = (0, 0)T.

The direct result of Theorems 2.1 and 2.2 is the following theorem.

Theorem 3.2 For any x̄ ∈ S ∩ R
n+, by denoting R

n+(x̄) := { d ∈ R
n : di � 0, i /∈

supp(x̄) }, it follows

TB
S∩Rn+(x̄) = TB

S (x̄) ∩ R
n+(x̄), NB

S∩Rn+(x̄) = NB
S (x̄) ∪ (−R

n+(x̄)), (3.2)

TC
S∩Rn+(x̄) = TC

S (x̄), NC
S∩Rn+(x̄) = NC

S (x̄). (3.3)

Clearly, one can check that

TB
S∩Rn+

(x̄)=TB
S (x̄), NB

S∩Rn+
(x̄)=NB

S (x̄), if ‖x̄‖0 = s and x̄ � 0,

TB
S∩Rn+

(x̄)=TB
S (x̄) ∩ R

n+(x̄), NB
S∩Rn+

(x̄) = −R
n+(x̄), if ‖x̄‖0 < s and x̄ � 0.

For problem (3.1), the corresponding definitions of L-stationary point, N�-
stationary point and T�-stationary point can be obtained from Definition 2.3 in [11]
and Definition 2.4, just by substituting S ∩ R

n+ for S.

L-stationary point : x∗ ∈ PS∩Rn+(x∗ − ∇ f (x∗)/L), (3.4)

N�-stationary point : 0 ∈ ∇ f (x∗) + N�

S∩Rn+
(x∗), (3.5)

T�-stationary point : 0 = ‖∇�

S∩Rn+
f (x∗)‖. (3.6)

In order to facilitate the discussion next, we describe a more explicit representation
of L-stationary point for (3.1).

Theorem 3.3 For L > 0, a vector x∗ ∈ S ∩ R
n+ is L-stationary point of (3.1) if

and only if

(∇ f (x∗))i
{= 0, if i ∈ supp(x∗),

∈ [−LMs(x∗),+∞), if i /∈ supp(x∗). (3.7)
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Proof Suppose x∗ ∈ S ∩ R
n+ is an L-stationary point, namely, satisfying (3.4). For

simplicity, we write ∇i f (x∗) = (∇ f (x∗))i . Note that the component of PS∩Rn+(x∗ −
∇ f (x∗)/L) is either zero or itself. If i ∈ supp(x∗), then x∗

i = x∗
i − ∇i f (x∗)/L , so

that ∇i f (x∗) = 0; If i /∈ supp(x∗), there are two cases: either x∗
i − ∇i f (x∗)/L � 0,

that is ∇i f (x∗) � x∗
i = 0, or 0 � x∗

i − ∇i f (x∗)/L � Ms(x∗), that is −LMs(x∗) �
∇i f (x∗) � 0.

On the contrary, assume (3.7) holds. If ‖x∗‖0 < s, we get Ms(x∗) = 0, then
for i ∈ supp(x∗), ∇i f (x∗) = 0, then x∗ − ∇i f (x∗)/L = x∗

i or for i /∈ supp(x∗),
x∗
i − ∇i f (x∗)/L � 0, therefore, (3.4) holds. If ‖x∗‖0 = s, that is Ms(x∗) > 0. By
(3.7), for i ∈ supp(x∗), ∇i f (x∗)/L = 0; for i /∈ supp(x∗), x∗ − ∇i f (x∗)/L � 0 or
0 � x∗

i − ∇i f (x∗)/L � Ms(x∗), so that (3.4) holds as well.

The following theorem is derived by Theorems 2.5, 2.6 and 3.3 directly.

Theorem 3.4 For the problem (3.1) and L > 0, the following assertions hold.

(i) Under the concept of Bouligand tangent cone, if ‖x∗‖0 = s, x∗ � 0, then

L-stationary point �⇒ NB-stationary point ⇐⇒ TB-stationary point.

If ‖x∗‖0 < s, x∗ � 0, then

L-stationary point ⇐⇒ NB-stationary point ⇐⇒ TB-stationary point.

(ii) Under the concept of Clarke tangent cone, if ‖x∗‖0 � s, x∗ � 0, then

L-stationary point �⇒ NC-stationary point ⇐⇒ TC-stationary point.

Combining Theorems 3.3 and 3.4, we have the following table to illustrate the
relationship among the three stationary points for (3.1) under the concepts ofBouligand
and Clarke tangent cones (Table 3).

Combining Theorems 2.10 and 2.11, we derive the following second-order opti-
mality result.

Table 3 The relationship of the stationary points for (3.1) under Bouligand and Clarke tangent cones

‖x∗‖0 = s, x∗ � 0 ‖x∗‖0 < s, x∗ � 0

L-stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
� −LMs (x∗), i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R+, i /∈ Γ ∗

NB -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R+, i /∈ Γ ∗

NC -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

TB -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R+, i /∈ Γ ∗

TC -stationary point
(∇ f

(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗

(∇ f
(
x∗))

i

{ = 0, i ∈ Γ ∗
∈ R, i /∈ Γ ∗
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Theorem 3.5 (Second-Order Optimality) Let f (x) be twice differentiable. If x∗ ∈
S ∩ R

n+ with Γ ∗ = supp(x∗) is the optimal solution of (3.1), then (i) x∗ is an NB-
stationary point of (3.1) and hence an NC-stationary point; (ii) x∗ is also an L-
stationary point of (3.1) provided that Assumption 2.7 holds and L > L f ; and (iii)

dT∇2 f (x∗)d � 0, ∀ d ∈ TC
S∩Rn+(x∗). (3.8)

Conversely, if x∗ ∈ S ∩ R
n+ is an NC-stationary point of (3.1) and satisfies

dT∇2 f (x∗)d > 0, ∀ d ∈ TC
S∩Rn+(x∗), d 
= 0, (3.9)

then x∗ is the strictly locally optimal solution of (3.1) restricted onR
n
Γ ∗∩R

n+.Moreover,
there are γ > 0 and δ > 0, for any x ∈ B(x∗, δ) ∩ R

n
Γ ∗ ∩ R

n+, it holds

f (x) � f (x∗) + γ ‖x − x∗‖2. (3.10)

In the same way, Corollaries 2.13 and 2.14 and Theorem 2.15 can be extended to
the problem of (3.1) with the case of f (x) ≡ 1

2‖Ax − b‖2.
Theorem 3.6 Let f (x) ≡ 1

2‖Ax − b‖2. We have the following conclusions.

(i) If x∗ ∈ S with Γ ∗ = supp(x∗) is anNC- stationary point of (3.1) and dTATAd >

0, ∀ d ∈ TC
S∩Rn+

(x∗), d 
= 0, then x∗ is the strictly globally optimal solution of

(3.1) on R
n
Γ ∗ ∩ R

n+.
(ii) If matrix A is s-regular, then the number of NC-stationary points of (3.1) is

finite, and every NC-stationary point, say x∗ with Γ ∗ = supp(x∗), is uniquely
global minimizer of problem (3.1) on R

n
Γ ∗ ∩ R

n+. Furthermore, if both A and
b guarantee a unique solution of Γ0 � argmin|Γ |�s ‖ΠΓ b‖, where ΠΓ b =
AΓ (AT

Γ AΓ )−1AT
Γ b, then problem (3.1) has a unique solution.

4 Conclusions

In this paper, we have established the first- and second-order optimality conditions
for sparsity constrained optimization with the help of tangent cone and normal cone.
Furthermore, we extended the results to sparsity constrained optimization with non-
negative constraint. However, there are many practical problems with both sparsity
constraint and other additional constraints, such as [16–19]. In the future, we will use
the tangent cone and normal cone to consider the optimality conditions for this kind
of problems and derive algorithms using the conditions.

This paper is based on the technical report [20] uploaded on http://arxiv.org/abs/
1406.7178 on 27th Jun 2014. Over the past year, some results on optimality con-
ditions for sparsity constrained optimization were found. Bauschke et al. [21] gave
the expressions of proximal and Mordukhovich normal cones and Bouligand tangent
cone to sparse set S. While in [20], we showed explicitly the Bouligand and Clarke
tangent cones and normal cones to sparse set S by the definitions. Lu and Zhang [22]
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gave the first-order necessary optimality condition of a more general form of sparsity
constrained optimization. If there is only the sparsity constraint, this condition turns
out to be an NM -stability in the sense of Mordukhovich normal cone. For x∗ ∈ S
satisfying ‖x∗‖0 = s, NM -stability is equivalent to NB- and NC - stability for spar-
sity constrained optimization. Beck and Hallak extended the results in [11] to the
optimization problem over sparse symmetric sets and gave three types of optimality
conditions and the hierarchy between the optimality conditions using the orthogonal
projection operator. And then they presented and analyzed algorithms satisfying the
various optimality conditions.

Acknowledgments The authors are grateful to Dr. Cai-Hua Chen in Nanjing University for his helpful
advice and to the anonymous referees who have contributed to improve the quality of the paper.
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