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Abstract In this paper, we investigate two new transportation models with breaka-
bility and restriction on transportation. Sometime in transportation process the items
which are transported, have got damaged due to bad conditions of the road and vehicle.
Here we consider the problem that there are so many plants and customers and the
goods are transported in n-stages. We formulate two transportation models under crisp
and fuzzy environment where we consider the transportation parameters are crisp and
fuzzy in nature, respectively. We also consider the breakability (takes the deterministic
value for the respective models) at each stages. For the fuzzy model, generalized trian-
gular fuzzy number and mean of α-cut method are considered. Numerical illustration
is provided to illustrate the developed models.
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54 A. Baidya et al.

1 Introduction

Hitchcock [9] originally proposed the classical transportation problem in 1941. The
transportation processes may not be operated always directly between the suppliers
and customers. It may happened in multiple stages using different warehouses at
different stages. Geoffrion and Graves [6] were the pioneers who studied the two-
stage distribution problem.

There are some literature listed in [1,4,5,7,8,10,13,14,16–19] to solve such trans-
portation problems (TPs). Mahapatra et al. [11] applied fuzzy multi-objective math-
ematical programming technique to a reliability optimization model. Sreenivas and
Srinivas [15] formulated and studied the probabilistic TPs. Recently, Ojha et al. [12]
solved a multi-item TP using fuzzy tolerance and Baidya et al. [2,3] solved two prob-
lems using safety factors and uncertainties in transportation of units.

In spite of the above progresses, there are some gaps in the formulation and solution
of multi-item multi-stage TPs. Some researchers [5,8,9] have solved the two-stage
TPs, but none has investigated the multi-stage TPs. In the literature, no TP model is
formulated taking breakability for n-stages. Here the proposed multi-stage models are
formulated as a constrained linear programming problem and solved using gradient-
based non-linear optimization technique. The formulation of the respective models is
new in this research area of TPs. Very few TP models are formulated and solved in
different environments such as crisp and fuzzy.

After observing the above gaps, we formulated and solved two new transportation
models with breakability as deterministic. Here we consider the units are first trans-
ported from plants to destination centers (DCs) and then DCs to customers. Sometime
all the transportation parameters are not known to us precisely and for these reason we
formulate the model by considering the transportation parameters as fuzzy in nature.
Generalized triangular fuzzy number (GTFN) and Mean of α-cut (MC) method are
used to develop the fuzzy model. The numerical examples are provided to illustrate
the models and solved using the LINGO.13 optimization software. The optimal results
are also obtained with some restriction at each DC.

2 Preliminaries

Definition 2.1 (Generalized fuzzy numbers) A fuzzy subset of the real line R with
membership function f Ã is defined as Ã = (a, b, c, d;w), which is called generalized
fuzzy number with the following properties:

(a) f Ã is a continuous mapping from R to the closed interval [0, w], 0 � w � 1; (b)
f Ã (x) = 0 for all x ∈ (−∞, a]; (c) f Ã is strictly increasing on [a, b]; (d) f Ã (x) = w

for all x ∈ [b, c], where w is a constant and 0 < w � 1; (e) f Ã is strictly decreasing
on [c, d]; (f) f Ã (x) = 0 for all x ∈ [d,+∞); where 0 < w � 1, a, b, c, and d are real
numbers.

Especially, a generalized trapezoidal fuzzy number can be defined as Ã =
(a, b, c, d;w), where a � b � c � d, 0 � w � 1, its membership function is
defined by
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f Ã (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x < a,
(x−a)
(b−a)

, a � x � b,

w, b � x � c,
(x−c)
(d−c) , c � x � d,

0, x > d.

If w = 1, then the generalized fuzzy number Ã is called normal trapezoidal fuzzy num-
ber and is denoted by A = (a, b, c, d). If a = b and c = d, then Ã is called a crisp inter-
val. If b = c, then Ã is called a generalized triangular fuzzy number. If a = b = c = d,
then Ã is called real number. Figure 1 shows two different generalized trapezoidal fuzzy
number Ã = (0.1, 0.2, 0.3, 0.4; 1.0) and B̃ = (0.1, 0.2, 0.3, 0.4; 0.8). Compared
with normal fuzzy number, the generalized fuzzy numbers can deal with uncertain
information in a more flexible manner. For example, in decision-making situation, the
values w1 and w2 represent the degree of confidence of the opinions of the decision
makers’ Ã and B̃, respectively, where w1 = 1 and w2 = 0.8.

Property 2.2 (a) If GTFN Ã = (a, b, c;w) and Y = k A (wi th k > 0) then Ỹ =
k Ã is a GTFN (ka, kb, kc;w).

(b) If Y = k A (wi th k < 0) then Ỹ = k Ã is a GTFN (kc, kb, ka;w), where k is a
constant.

Property 2.3 If Ã1 = (a1, b1, c1;w1) and Ã1 = (a2, b2, c2;w2) , then Ã1 ⊕ Ã2 is
a fuzzy number (a1 + a2, b1 + b2, c1 + c2; min (w1, w2)).

2.1 Method for Defuzzification of Fuzzy Numbers (MC Method)

Defuzzification is the transformation of the fuzzy number to deterministic number.
Lots of methods exist in the literature to translate the fuzzy number into a deterministic
value. Here we discuss the defuzzification method proposed by Yager [17]. Let Ã be
a fuzzy number, then the defuzzification of Ã is given by Ã = ∫ αmax

0 m[aL
α , aR

α ]dα

Fig. 1 Two generalized trapezoidal fuzzy number Ã and B̃
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where αmax is the height of Ã, Aα = [aL
α , aR

α ] is an α-cut, α ∈ [0, 1] and
[
aL
α , aR

α

]
is

the mean value of the elements of that α-cut, m
[
aL
α , aR

α

] = aL
α + aR

α

2 where aL
α and aR

α

are the left and right limits of the α-cut of the fuzzy number Ã.
Defuzzification of ÃGTFN = (a1, a2, a3;w) by MC method Ã = w( a1 + 2a2 + a3

4 ).
Here aL

α = a1 + α
w

(a2 − a1) and aR
α = a3 − α

w
(a3 − a2).

3 Multi-item Multi-stage Transportation Model

3.1 Assumptions and Notations

The following assumptions and notations are used throughout the model.

(i) q: number of items, q = 1, 2, · · · , Q.
(ii) M : number of plant in TP for stage-1.

(iii) Nl : number of DCs in TP for stage-l, l = 1, 2, · · · n.
(iv) C1

i jq , C2
jkq , · · ·, Cm

stq , Cn
tpq : crisp unit transportation cost to transport the com-

modities from i th plant to j th DC of qth item for stage-1, j th plant to kth DC
of qth item for stage-2,· · · , sth plant to t th DC of qth item for stage-m, t th plant
to pth DC of qth item for stage-n, respectively.

(v) C̃1
i jq , C̃2

jkq , · · · , C̃m
stq , C̃n

tpq : fuzzy unit transportation cost to transport the com-
modities from i th plant to j th DC of qth item for stage-1, j th plant to kth DC
of qth item for stage-2,· · · , sth plant to tth DC of qth item for stage-m, tth plant
to pth DC of qth item for stage-n, respectively.

(vi) x1
i jq , x2

jkq , · · · , xm
stq , xn

tpq : the amount which is transported from i th plant to
j th DC of qth item for stage-1, jth plant to kth DC of qth item for stage-2,· · · ,
sth plant to tth DC of qth item for stage-m, tth plant to pth DC of qth item for
stage-n, respectively.

(vii) a1
iq , ã1

iq : crisp and fuzzy capacity for ith plant at stage-1 of qth item, respectively.

(viii) a2
kq , ã2

kq : crisp and fuzzy capacity for kth DC at stage-2 of qth item, respectively.

(ix) b1
jq , b̃1

jq : crisp and fuzzy capacity of jth DC at stage-1 for qth item, respectively.
(x) epq , ẽpq : crisp and fuzzy, random and fuzzy-random requirement of pth cus-

tomer for qth item.
(xi) αi jq , β jkq , · · · γtpq : rate of breaking of the units due to transportation from

ith plant to jth DC of qth item at stage-1, jth plant to kth DC of qth item at
stage-2,· · · , tth DC to pth customer of qth item at stage-n, respectively.

3.2 Formulation of Transportation Models

Here we formulate two breakable multi-item multi-stage TP under crisp and fuzzy
environments. The transportation parameters should be fuzzy in nature due to deficient
evidence. For this reason, we formulate a transportation model with fuzzy transporta-
tion parameters.
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Model-1 Formulation of breakable multi-item multi-stage transportation problem
under crisp environment

min Z =
Q∑

q=1

M∑

i=1

N 1
∑

j=1

C1
i jq x1

i jq +
Q∑

q=1

N 1
∑

j=1

N 2
∑

k=1

C2
jkq x2

jkq

+ · · · +
Q∑

q=1

N (m−1)
∑

s=1

N m
∑

t=1

Cm
stq xm

stq

+
Q∑

q=1

N m
∑

t=1

N n
∑

p=1

Cn
tpq xn

tpq (3.1)

Subject to the constraints,

N 1
∑

j=1

x1
i jq � a1

iq , (Supply constraint for stage-1)

M∑

i=1

x1
i jq

(
1 − αi jq

)
� b1

jq , (Demand constraint for stage-1) (3.2)

N 2
∑

k=1

x2
jkq �

M∑

i=1

x1
i jq

(
1 − αi jq

)
, (Supply constraint for stage-2)

N 1
∑

j=1

x2
jkq

(
1 − β jkq

)
� a2

kq , (Demand constraint for stage-2) (3.3)

· · ·
N n
∑

p=1

xn
tpq �

N (m−1)
∑

s=1

xm
stq

(
1 − γstq

)
, (Supply constraint for stage-n)

N m
∑

t=1

xn
tpq � epq , (Demand constraint for stage-n) (3.4)

⎛

⎝
Q∑

q=1

M∑

i=1

N 1
∑

j=1

x1
i jq

⎞

⎠
(
1 − αi jq

)

=
⎛

⎝
Q∑

q=1

N 1
∑

j=1

N 2
∑

k=1

x2
jkq

⎞

⎠
(
1 − βi jq

)
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= · · · =
⎛

⎝
Q∑

q=1

N (m−1)
∑

s=1

N m
∑

t=1

xm
stq

⎞

⎠
(
1 − γi jq

)

=
Q∑

q=1

N m
∑

t=1

N n
∑

p=1

xn
tpq

x1
i jq � 0, x2

jkq � 0, · · · , xm
stq � 0, xn

tpq � 0, for all i = 1, 2, · · · , M,

j = 1, 2, · · · , N 1, k = 1, 2, · · · , N 2, t = 1, 2, · · · , N m,

p = 1, 2, · · · , N n, q = 1, 2, · · · , Q.

Model-2 Formulation of Multi-item Multi-stage Transportation Problem with Fuzzy
Penalties, Supplies, Demands, and Crisp Breakability

Sometime the transportation parameters are not known to us precisely but some
insufficient or past data are known from past record. For this reason, we consider the
unit transportation costs, availabilities at plants, and demands at destination centers or
customers are fuzzy in nature.

min Z =
Q∑

q=1

M∑

i=1

N 1
∑

j=1

C̃1
i jq x1

i jq +
Q∑

q=1

N 1
∑

j=1

N 2
∑

k=1

C̃2
jkq x2

jkq

+ · · · +
Q∑

q=1

N (m−1)
∑

s=1

N m
∑

t=1

C̃m
stq xm

stq

+
Q∑

q=1

N m
∑

t=1

N n
∑

p=1

C̃n
tpq xn

tpq (3.5)

Subject to the constraints,

N 1
∑

j=1

x1
i jq � ã1

iq , (Supply constraint for stage-1)

M∑

i=1

x1
i jq

(
1 − αi jq

)
� b̃1

jq , (Demand constraint for stage-1) (3.6)

N 2
∑

k=1

x2
jkq �

M∑

i=1

x1
i jq

(
1 − αi jq

)
, (Supply constraint for stage-2)

N 1
∑

j=1

x2
jkq

(
1 − β jkq

)
� ã2

kq , (Demand constraint for stage-2) (3.7)

· · ·

123



Multi-stage Transportation Problem 59

N n
∑

p=1

xn
tpq �

N (m−1)
∑

s=1

xm
stq

(
1 − γstq

)
, (Supply constraint for stage-n)

N m
∑

t=1

xn
tpq � ẽpq , (Demand constraint for stage-n) (3.8)

⎛

⎝
Q∑

q=1

M∑

i=1

N 1
∑

j=1

x1
i jq

⎞

⎠
(
1 − αi jq

)

=
⎛

⎝
Q∑

q=1

N 1
∑

j=1

N 2
∑

k=1

x2
jkq

⎞

⎠
(
1 − βi jq

)

= · · · =
⎛

⎝
Q∑

q=1

N (m−1)
∑

s=1

N m
∑

t=1

xm
stq

⎞

⎠
(
1 − γi jq

)

=
Q∑

q=1

N m
∑

t=1

N n
∑

p=1

xn
tpq

x1
i jq � 0, x2

jkq � 0, · · · , xm
stq � 0, xn

tpq � 0, for all i = 1, 2, · · · , M,

j = 1, 2, · · · , N 1, k = 1, 2, · · · , N 2, t = 1, 2, · · · , N m,

p = 1, 2, · · · , N n, q = 1, 2, · · · , Q.

4 Numerical Example

Let a company produces three items as products-I1 and I2 at three origins-O1, O2,
O3, which is supplied to three customers-C1, C2, C3 via DCs-DC-1, DC-2, and DC-3.
Assuming that to transport the items from origins to DCs and DCs to customers the
percentage of breaking units are 4 and 3, respectively. Here we consider two cases
depending on the availability of DCs. Case-1: All DCs as DC-1, DC-2, and DC-3
are open; Case-2: DC-1 and DC-2 are open but DC-3 is not available due to some
problems.

The capacities of origins, DCs, requirements of the customers, and unit transporta-
tion cost (in $) to transport the items from origin to DC and also DC to customer are
as follows:

Crisp unit transportation costs

C1
111 = 1, C1

121 = 1.8, C1
131 = 2, C1

211 = 1.5, C1
221 = 1.3, C1

231 = 2.4,

C1
311 = 1.1, C1

321 = 1.9, C1
331 = 1.1, C1

112 = 1.4, C1
122 = 1.8, C1

132 = 2.3,

C1
212 = 1.5, C1

222 = 1.3, C1
232 = 1.4, C1

312 = 1, C1
322 = 2.1, C1

332 = 2.2,

C1
113 = 2.4, C1

123 = 1.8, C1
133 = 1.7, C1

213 = 2.5, C1
223 = 1.3, C1

233 = 1.4,

C1
313 = 1.1, C1

323 = 2.3, C1
333 = 2.8, C2

111 = 1.1, C2
121 = 1.9, C2

131 = 2,

C2
211 = 1.2, C2

221 = 1, C2
231 = 2.4, C2

311 = 1.3, C2
321 = 1.9, C2

331 = 2.1,
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C2
112 = 3.4, C2

122 = 2.1, C2
132 = 2.3, C2

212 = 1.5, C2
222 = 1.2, C2

232 = 2.4,

C2
312 = 2, C2

322 = 2.1, C2
332 = 3.2, C2

113 = 1.4, C2
123 = 1.8, C2

133 = 2.7,

C2
213 = 2.5, C2

223 = 1.3, C2
233 = 2.4, C2

313 = 2.1, C2
323 = 2.3, C2

333 = 3.8.

Crisp capacities of plants, DC, and demands of the customers

a1
11 = 42, a1

21 = 43, a1
31 = 47, a1

12 = 48, a1
22 = 54, a1

32 = 40, a1
13 = 50,

a1
23 = 56, a1

33 = 51,

b1
11 = 46, b1

21 = 44, b1
31 = 41, b1

12 = 50, b1
22 = 42, b1

32 = 29, b1
13 = 51,

b1
23 = 40, b1

33 = 25,

e1
11 = 25, e1

21 = 28, e1
31 = 31, e1

12 = 25, e1
22 = 26, e1

32 = 29, e1
13 = 30,

e1
23 = 28, e1

33 = 29.

Fuzzy unit transportation costs

C̃1
111 = (0.5, 1.0, 1.19; 0.98) , C̃1

121 = (1.3, 1.8, 1.9; 0.90) ,

C̃1
131 = (1.7, 2.0, 2.20; 0.96) ,

C̃1
211 = (1.2, 1.5, 1.9; 0.92) , C̃1

221 = (1.1, 1.3, 1.7; 0.96) ,

C̃1
231 = (2.1, 2.4, 2.5; 0.87) ,

C̃1
311 = (1, 1.1, 1.4; 0.99) , C̃1

321 = (1.2, 1.9, 2.0; 0.97) ,

C̃1
331 = (0.90, 1.1, 1.18; 0.97) ,

C̃1
112 = (1.1, 1.4, 1.8; 0.9) , C̃1

122 = (1.2, 1.8, 2.0; 0.87) ,

C̃1
132 = (2.0, 2.3, 2.6; 0.95) ,

C̃1
212 = (1.2, 1.5, 1.9; 0.89) , C̃1

222 = (1.1, 1.3, 1.5; 0.94) ,

C̃1
232 = (1.1, 1.4, 1.9; 0.99) ,

C̃1
312 = (0.9, 1.0, 1.4; 0.89) , C̃1

322 = (1.5, 2.1, 2.6; 1) ,

C̃1
332 = (2.0, 2.2, 2.7; 0.99) ,

C̃1
113 = (2.22, 2.4, 2.45; 0.87) , C̃1

123 = (1.2, 1.8, 1.9; 0.88) ,

C̃1
133 = (1.3, 1.7, 1.9; 0.97) ,

C̃1
213 = (2.1, 2.5, 2.9; 0.85) , C̃1

223 = (1.0, 1.3, 1.8; 0.98) ,

C̃1
233 = (1.1, 1.4, 1.7; 0.94) ,

C̃1
313 = (1.0, 1.1, 1.7; 0.96) , C̃1

323 = (2.1, 2.3, 2.8; 0.97) ,

C̃1
333 = (2.1, 2.8, 3.0; 0.88) ,

C̃2
111 = (1.0, 1.1, 1.5; 0.96) , C̃2

121 = (1.3, 1.9, 2.3; 0.88) ,

C̃2
131 = (1.88, 2.0, 2.33; 0.92) ,

C̃2
211 = (0.90, 1.2, 1.60; 0.91) , C̃2

221 = (0.95, 1.0, 1.29; 0.99) ,

C̃2
231 = (2.1, 2.4, 2.5; 0.95) ,
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C̃2
311 = (1.11, 1.3, 1.32; 1) , C̃2

321 = (1.3, 1.9, 2.8; 0.92) ,

C̃2
331 = (1.85, 2.1, 2.34; 0.94) ,

C̃2
112 = (3.2, 3.4, 3.6; 0.98) , C̃2

122 = (1.78, 2.1, 2.39; 0.97) ,

C̃2
132 = (2.13, 2.3, 2.82; 0.82) ,

C̃2
212 = (1.2, 1.5, 1.6; 0.91) , C̃2

222 = (0.92, 1.2, 1.34; 0.95) ,

C̃2
232 = (2.1, 2.4, 2.7; 0.94) ,

C̃2
312 = (1.87, 2.0, 2.18; 0.99) , C̃2

322 = (1.9, 2.1, 2.4; 0.96) ,

C̃2
332 = (2.76, 3.2, 3.7; 0.98) ,

C̃2
113 = (1.1, 1.4, 1.46; 0.92) , C̃2

123 = (1.55, 1.8, 1.85; 0.87) ,

C̃2
133 = (2.3, 2.7, 3; 0.88) ,

C̃2
213 = (1.9, 2.5, 2.8; 0.96) , C̃2

223 = (1.99, 2.4, 2.5; 0.93) ,

C̃2
233 = (1.0, 1.3, 1.5; 0.85) ,

C̃2
313 = (1.87, 2.1, 2.23; 0.94) , C̃2

323 = (1.84, 2.3, 2.9; 1) ,

C̃2
333=(3.1, 3.8, 4; 0.90) .

Fuzzy capacities of plants, DC, and demands of the customers

ã1
11 = (40, 42, 43; 1) , ã1

21 = (42, 43, 45; 0.92) , ã1
31 = (45, 47, 48; 0.93) ,

ã1
12 = (45, 48, 50; 0.90) , ã1

22 = (51, 54, 55; 0.88) , ã1
32 = (38, 40, 41; 0.90) ,

ã1
13 = (47, 50, 52; 0.95) , ã1

23 = (55, 56, 58; 0.80) , ã1
33 = (49, 51, 53; 0.94) ,

b̃1
11 = (45, 46, 47; 0.96) , b̃1

21 = (42, 44, 46; 0.97) , b̃1
31 = (40, 41, 43; 0.94) ,

b̃1
12 = (47, 50, 51; 0.97) , b̃1

22 = (41, 42, 44; 0.95) , b̃1
32 = (27, 29, 30; 0.97) ,

b̃1
13 = (50, 51, 53; 1) , b̃1

23 = (38, 40, 42; 0.94) , b̃1
33 = (23, 25, 26; 0.99) ,

ẽ1
11 = (23, 25, 26; 0.85) , ẽ1

21 = (26, 28, 29; 0.88) , ẽ1
31 = (27, 31, 32; 0.91) ,

ẽ1
12 = (23, 25, 27; 0.94) , ẽ1

22 = (25, 26, 28; 0.99) , ẽ1
32 = (27, 29, 31; 0.91) ,

ẽ1
13 = (28, 30, 31; 0.93) , ẽ1

23 = (25, 28, 30; 0.94) , ẽ1
33 = (26, 29, 30; 0.97).

5 Optimal Results

The problems defined above are solved by the gradient-based non-linear optimiza-
tion technique generalized reduced gradient and the optimal results are presented in
Table 1.
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Table 1 Optimal result of different models

Case-1 Case-2

Model-1

x1
111 = 42, x1

311 = 5.92, x1
221 = 30.07, x1

111 = 42, x1
311 = 5.92, x1

221 = 42.29,

x1
331 = 12.22, x1

312 = 40, x1
222 = 43.75, x1

112 = 2.16, x1
312 = 40, x1

222 = 43.75,

x1
232 = 2.16, x1

313 = 51, x1
223 = 41.66, x1

113 = 0.76, x1
313 = 51, x1

223 = 41.67,

x1
233 = 0.76, x2

111 = 25.77, x2
221 = 28.86, x2

111 = 14.04, x2
211 = 11.73, x2

221 = 28.87,

x2
131 = 20.22, x2

331 = 11.73, x2
212 = 23.69, x2

131 = 31.95, x2
212 = 25.77, x2

122 = 10.58,

x2
312 = 2.07, x2

122 = 8.50, x2
222 = 18.30, x2

222 = 16.23, x2
132 = 29.9, x2

113 = 30.93,

x2
132 = 29.89, x2

113 = 30.93, x2
223 = 28.13, x2

223 = 28.87, x2
133 = 18.76, x2

233 = 11.13,

x2
323 = 0.73, x2

133 = 18.03, x2
233 = 11.86, min Z = 745.1

min Z = 741.57

Model-2

x1
111 = 41.75, x1

221 = 26.22, x1
331 = 13.32, x1

111 = 41.75, x1
311 = 4.25, x1

221 = 35.29,

x1
312 = 35.77, x1

221 = 41.81, x1
232 = 3.9, x1

112 = 3.9, x1
312 = 35.77, x1

222 = 41.81,

x1
313 = 47.94, x1

223 = 39.16, x1
233 = 0.30, x1

113 = 0.30, x1
313 = 47.94, x1

223 = 39.17,

x2
111 = 21.68, x2

221 = 25.17, x2
131 = 18.4, x2

111 = 21.68, x2
221 = 25.17, x2

131 = 22.48,

x2
331 = 12.78, x2

212 = 20.48, x2
312 = 3.74, x2

231 = 8.7, x2
212 = 24.23, x2

122 = 10.88,

x2
122 = 7.13, x2

222 = 19.66, x2
132 = 27.21, x2

222 = 15.91, x2
132 = 27.20, x2

113 = 19.42,

x2
113 = 19.13, x2

213 = 9.1, x2
313 = 0.29, x2

213 = 9.1, x2
123 = 26.89, x2

233 = 28.5,

x2
123 = 26.89, x2

233 = 28.5, min Z = 628.32 min Z = 629.21

6 Sensitivity Analysis for Model-1

Here we present the sensitivity analysis for model-1 which is presented by Tables 2
and 3. Here in stage-1, the % of breakability taken as constants and the % of breakabil-
ity at stage-2 are varied from 0 to 4 and total transportation costs as well as total loss
at customer position are presented here. Interestingly, we notice that if we increase
the % of breakability of stage-2, then the total transportation cost also increased
because due to breakability, the customer order more quantity to satisfy the requirement
(Figs. 2 and 3).
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Table 2 Sensitivity analysis of
total cost and total loss at
customer for model-1 (case-1)

% of breakability Total transportation
cost

Total loss at
customer

Stage-1 Stage-2

0 0 705.20 0

1 712.71 7.51

2 720.37 15.17

3 728.18 22.98

4 736.17 30.97

1 0 708.17 2.97

1 715.70 10.5

2 723.40 18.2

3 731.25 26.05

4 739.40 34.2

2 0 711.20 6

1 718.77 13.57

2 726.49 21.29

3 734.37 29.17

4 743.07 37.87

3 0 714.30 9.1

1 721.89 16.69

2 729.65 24.45

3 737.79 32.59

4 746.82 41.62

4 0 717.46 12.26

1 725.09 19.89

2 732.88 27.68

3 741.57 36.36

4 750.64 45.44
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Table 3 Sensitivity analysis of
total cost and total loss at
customer for model-1 (case-2)

% of breakability Total transportation
cost

Total loss at
customer

Stage-1 Stage-2

0 0 707.20 0

1 714.82 7.62

2 722.59 15.39

3 730.72 23.52

4 739.17 31.97

1 0 710.19 2.99

1 717.84 10.64

2 725.66 18.64

3 733.97 26.77

4 742.62 35.42

2 0 713.25 6.05

1 720.92 13.72

2 728.94 21.74

3 737.27 30.07

4 746.65 39.45

3 0 716.36 9.16

1 724.08 16.88

2 732.28 25.08

3 740.95 33.75

4 750.75 43.55

4 0 719.55 12.35

1 727.46 20.26

2 735.70 28.50

3 745.10 37.90

4 755.08 47.88

123



Multi-stage Transportation Problem 65

Fig. 2 Pictorial representation of sensitivity analysis of total cost and total loss at customer for model-1
(case-1)

Fig. 3 Pictorial representation of sensitivity analysis of total cost and total loss at customer for model-1
(case-2)

7 Discussion

Here we develop two classical transportation problems with breakability and illus-
trate numerically by taking a two-stage three-item classical transportation problem.
Here we solve two models where model-1 is formulated with crisp environment but
model-2 with fuzzy environment. Also we represent a sensitivity analysis of the model-
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1 with the geometrical representation. After careful investigation, we see that the
transportation cost is increased if we increase the percentage of breakability for both
stage-1 and stage-2. The decision maker always transports the quantity through the
route where the transportation cost is minimum. But in case-2, when we close the
DC-3, the decision maker is bound to transport the items through the route where
the transportation cost is higher. For this reason, the minimum transportation costs
for case-2 of all models are greater than the minimum transportation costs of case-1.
However, the transportation cost for case-1 is more than that of case-2, which is as per
our expectation.

8 Conclusion

In this manuscript, we show the solution of multi-item multi-stage transportation
problem with breakability. Here we impose two models in transportation and in view
of all the distribution centers are open and not all distribution centers are open, we
discuss two cases. Sometimes the transportation parameters are vague in nature; so
introducing the concept of generalized triangular fuzzy number, we solve the model-2
in two cases. Impreciseness is proceed in transportation problem, so we introduce
these concepts in our model-2. The transportation cost in our result of all three models
in case-I is less than the cost of the other three models in case-II which is as per our
expectation. MC Method is used to convert the model-2 into its crisp equivalent, and
LINGO.13 software is used to solve this reduced model. Since transportation problem
plays an important role in our daily life, so our technique is highly fruitful.
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