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Abstract Support vector machine (SVM) is a widely used method for classification.
Proximal support vector machine (PSVM) is an extension of SVM and a promising
method to lead to a fast and simple algorithm for generating a classifier. Motivated by
the fast computational efforts of PSVM and the properties of sparse solution yielded
by �1-norm, in this paper, we first propose a PSVM with a cardinality constraint which
is eventually relaxed by �1-norm and leads to a trade-off �1 − �2 regularized sparse
PSVM. Next we convert this �1 − �2 regularized sparse PSVM into an equivalent
form of �1 regularized least squares (LS) and solve it by a specialized interior-point
method proposed by Kim et al. (J Sel Top Signal Process 12:1932–4553, 2007). Finally,
�1 − �2 regularized sparse PSVM is illustrated by means of a real-world dataset
taken from the University of California, Irvine Machine Learning Repository (UCI
Repository). Moreover, we compare the numerical results with the existing models
such as generalized eigenvalue proximal SVM (GEPSVM), PSVM, and SVM-Light.
The numerical results show that the �1−�2 regularized sparse PSVM achieves not only
better accuracy rate of classification than those of GEPSVM, PSVM, and SVM-Light,
but also a sparser classifier compared with the �1-PSVM.
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1 Introduction

In classification problems, we are given a set of training data {(x1, y1), · · · , (xl , yl)},
where xi ∈ R

n is input and yi ∈ {+1,−1} is binary output. We wish to find a classifier
to separate the training data into two sets, one is with the label “+1” and the other
with the label “−1”. Meanwhile, when given a new input x , the classifier can assign
a label y from {+1,−1} to it.

SVM has been proved to be a powerful tool in a wide range of areas to solve classi-
fication, pattern recognition, and regression problems. It has drawn much attention in
recent years. Both hard and soft margin SVM were first proposed by Vapnik [19,20]
based on the principle of structural risk minimization (SRM) principle. The SRM prin-
ciple was realized by maximizing the margin of two separating parallel hyperplanes.
To reduce the computational cost, several variants of SVM have been developed. For
example, Suykens et al. [16,17] proposed a least squares support vector machine (LS-
SVM), in which the objective function was modified by a least squares error term
and the constraints were replaced by equality constraints. Recent study indicates that
LS-SVM is efficient for feature selection, linear regression. Moreover, based on the
optimization theory, Fung [11] developed proximal SVM (PSVM) to solve classifica-
tion problem. By contrast, PSVM leads to a fast and simple algorithm for generating a
system of linear equations. The formulation of PSVM greatly simplifies the problem
with considerably faster computational time than SVM. Moreover, Chen et al. [7] used
l p-norm to replace l1-norm and presented an l p-norm proximal SVM and studied its
applications. Deng et al. [9] presented a detail study of SVM, including algorithms
and extensions. Recently, there are other directions to extend the supervised SVM
to semi-supervised SVM, in which the datasets contain two parts, the training set
and the test set. For instance, Bai et al. [1,2] developed conic optimization form for
semi-supervised SVM.

Furthermore, the idea of �1 regularization is still receiving a lot of interests nowa-
days. In signal processing, the idea of �1 regularization comes up in several contexts
including basis pursuit denoising [8] and signal recovery method from incomplete
measurements [4,6]. In statistics, the idea of �1 regularization is used in the well-
known Lasso algorithm [18] for feature selection.

We are inspired by the fast computational efforts of PSVM and the properties of
sparse solution yielded by �1-norm. In this paper, we first propose a PSVM with a
cardinality constraint which is eventually relaxed by �1-norm and leads to a trade-off
�1 − �2 regularized sparse PSVM. Next we convert this �1 − �2 regularized sparse
PSVM into an equivalent form of �1 regularized least squares (LSs) and solve it
by a specialized interior-point method proposed by Kim et al. [12]. Finally, �1 − �2
regularized sparse PSVM is illustrated by means of a real-world dataset taken from the
UCI Repository. Moreover, we compare the numerical results with the existing models
such as GEPSVM, PSVM and SVM-Light. The numerical results show that the �1−�2
regularized sparse PSVM achieves not only better accuracy rate of classification than
those of GEPSVM, PSVM and SVM-Light, but also a sparser classifier compared
with the �1-PSVM.
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Sparse Proximal Support Vector Machine 3

The paper is organized as follows. In Sect. 2, we briefly recall the basic concepts
of SVM and PSVM, respectively. In Sect. 3, we add the cardinality constraint to the
model of PSVM, then reformulate it as the �1−�2 regularized sparse PSVM. In Sect. 4,
we describe a specialized interior-point method which uses a preconditioned conjugate
gradient algorithm to compute the search direction. Section 5 gives the experimental
results on the datasets taken from UCI repository. Finally, conclusive remarks are
given in Sect. 6.

2 Preliminaries

In this section, we briefly review the concepts of SVM and PSVM, respectively.

2.1 SVM for Binary Classification

We start by recalling SVM, which is a learning system and uses a hypothesis
space of linear functions in a high dimensional feature space, trained with a learning
algorithm from optimization theory that implements a learning bias derived from
statistical learning theory [20]. Here, we consider the simplest case of linear binary
classification to show how an SVM works.

Given a training set {(x1, y1), · · · , (xl , yl)} ⊆ R
n × {−1,+1}, it is linearly sepa-

rable if there exists a hyperplane wTx + b = 0 such that

wTxi + b � 1, if yi = +1,

wTxi + b � −1, if yi = −1, ∀i ∈ {1, · · · , l}. (2.1)

As shown in Fig. 1, the margin or the distance between the two supporting hyperplane
is 2

‖w‖2
, the solid dots and hollow dots show the points of the “+1” class and “−1”
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Fig. 1 Hard Margin SVM
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class, respectively, while the solid line shows a separation hyperplane wTx + b = 0
between them.

The larger the margin is, the better the separation is. So the SVM aims to find
the separation hyperplane which results in the max-margin. This leads to a quadratic
programming problem as follows:

min
w,b

1

2
‖w‖2

2

s.t. yi

(
wTxi + b

)
� 1, i = 1, · · · , l.

(2.2)

When the set of points is not linearly separable, we generalize the method by
relaxing the separability constraints Eq. (2.1). This can be done by introducing positive
slack variables ξi , i = 1, · · · , l in the constraints, which then become

wTxi + b � 1 − ξi , if yi = +1,

wTxi + b � −1 + ξi , if yi = −1, ∀i ∈ {1, · · · , l}. (2.3)

As shown in Fig. 2, it means that the points may locate in the area between the
two dashed lines. But each exceeding point must be punished by a misclassification
penalty, i.e., an increase in the objective function of Eq. (2.4). Thus, it follows that

min
w,b,ξ

1

2
‖w‖2

2 + C

2

l∑
i=1

ξi

s.t. yi (w
Txi + b) � 1 − ξi ,

ξi � 0, i = 1, · · · , l.

(2.4)
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2.2 PSVM for Binary Classification

Suppose that a two-class problem of classifying l points in the n-dimensional real
space R

n is considered, the standard PSVM is expressed as follows:

min
w,b,ξ

1

2

(
‖w‖2

2 + b2
)

+ C

2

l∑
i=1

ξ2
i

s.t. yi

(
wTxi + b

)
= 1 − ξi , i = 1, · · · , l,

(2.5)

where C > 0, xi ∈ R
n , yi ∈ {−1, 1}, ξi ∈ R, w ∈ R

n , b ∈ R.
The geometric interpretation of Eq. (2.5) is shown in Fig. 3. Compared with

Eq. (2.4), this model not only adds advantages such as strong convexity of the objective
function, but also changes the nature of optimization problem significantly. The planes
wTxi +b = ±1 are not bounding planes any more, but can be thought as “proximal”
planes, around which points of the corresponding class are clustered and which are
pushed as far apart as possible.

3 �1 − �2 Regularized Sparse PSVM Model

To obtain a sparse classifier, we add the cardinality constraint ‖w‖0 � N to the orig-
inal PSVM model Eq. (2.5), where ‖ ·‖0 denotes the number of non-zero components,
N ∈ N

+. Then a new model is established as follows:
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min
w,b,ξ

1

2

(
‖w‖2

2 + b2
)

+ C

2

l∑
i=1

ξ2
i

s.t. yi

(
wTxi + b

)
= 1 − ξi , i = 1, · · · , l,

‖w‖0 � N ,

(3.1)

where C > 0, xi ∈ R
n , yi ∈ {−1, 1}, ξi ∈ R, w ∈ R

n , b ∈ R. After adding this
cardinality constraint, Eq. (3.1) becomes a combinatorial problem which is difficult
to solve.

In the following, we first transform the cardinality constraint into the objective
function with a parameter λ. Then we have:

min
w,b,ξ

λ‖w‖0 +
(
‖w‖2

2 + b2
)

+ C
l∑

i=1

ξ2
i

s.t. yi

(
wTxi + b

)
= 1 − ξi , i = 1, · · · , l,

(3.2)

where λ � 0, C > 0, xi ∈ R
n , yi ∈ {−1, 1}, ξi ∈ R, w ∈ R

n , b ∈ R. In the objective
function, the �0-norm is non-convex, and it is computationally difficult. Not surpris-
ingly, the above problem Eq. (3.2) is also computationally difficult. Furthermore, it is
known to be NP-hard.

As the ‖·‖1 is, in a certain natural sense, a convexification of the ‖·‖0, the following
model can be viewed as a convexification of Eq. (3.2), in this paper, we call it an �1−�2
regularized sparse PSVM:

min
w,b,ξ

λ‖w‖1 +
(
‖w‖2

2 + b2
)

+ C
l∑

i=1

ξ2
i

s.t. yi

(
wTxi + b

)
= 1 − ξi , i = 1, · · · , l,

(3.3)

where λ � 0, C > 0, xi ∈ R
n , yi ∈ {−1, 1}, ξi ∈ R, w ∈ R

n , b ∈ R. Readers can
refer to [5,10] for more details about the relation between �1-norm and �0-norm. The
objective function of Eq. (3.3) is a trade-off between �1-norm term and �2-norm term.
The �2-norm term is responsible for the good classification performance, while the
�1-norm term leads to sparser solutions. When the i th component of w is zero, the i th
component of the vector x is irrelevant in deciding the class of x using linear decision
function f (x) = sgn(wTx − b). The solution of model Eq. (3.3) differs with various
parameter λ.

Several solution methods can be used to solve the �1 −�2 regularized sparse PSVM
Eq. (3.3), for example, the alternating direction method of multipliers (ADMM).
Recently, Bai et al. [3] applied ADMM to solve �1 − �2 regularized sparse PSVM.
Our goal in this paper is to use another well-known solution method: interior-point
method to solve Eq. (3.3). Our approach is to convert the �1 − �2 regularized sparse
PSVM into an equivalent �1 regularized LS appeared in [12], which is solved by a
specialized interior-point method.
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Sparse Proximal Support Vector Machine 7

Considering the definition of l2-norm and the constraint ξi = 1 − yi (w
Txi + b) for

i = 1, · · · , l, we can rewrite the objective function as follows:

λ‖w‖1 +
(
‖w‖2

2 + b2
)

+ C
l∑

i=1

ξ2
i =

l∑
i=1

(√
Cξi

)2 +
n∑

i=1

(wi )
2 + b2 + λ‖w‖1

=
l∑

i=1

(√
C

(
yi xT

i w + yi b − 1
))2 +

n∑
i=1

wi
2 + b2 + λ‖w‖1

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C

(
y1xT

1 w + y1b − 1

)

...

√
C

(
yl xT

l w + ylb − 1

)

eT
1 w

...

eT
l w

b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ‖w‖1

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C y1xT

1

...√
C yl xT

l

eT
1

...

eT
n

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

w +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C y1

...√
C yl

0
...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

b −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C
...√
C

0
...

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ‖w‖1

= ‖Aw + A1b − d‖2
2 + λ‖w‖1,

where A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C y1xT

1
...√

C yl xT
l

eT
1
...

eT
n
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(l+n+1)×n,

A1=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C y1
...√
C yl

0
...

0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(l+n+1)×1,

d=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
C
...√
C

0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(l+n+1)×1,
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8 Y.-Q. Bai et al.

ei =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1(i)

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×1.
Therefore, we can convert Eq. (3.3) into an equivalent unconstrained optimization

problem with a simple form:

min
w,b

‖Aw + A1b − d‖2
2 + λ‖w‖1. (3.4)

Obviously, we obtain an equivalent expression of �1 −�2 regularized sparse PSVM.
Therefore, we use a specialized interior-point method to solve Eq. (3.4). The details
of the solving process will be described in next section.

4 A Specialized Interior-Point Method

4.1 A Specialized Interior-Point Method and PCG Algorithm

In this section, we use a specialized interior-point method to solve Eq. (3.4), which
is the equivalent model of �1 − �2 regularized sparse PSVM. We use the precondi-
tioned conjugate gradients (PCG) algorithm to calculate the search direction which is
similar to the method in [12]. The objective function of Eq. (3.4) is convex but not
differentiable, and we first reformulate it to a convex quadratic problem with linear
inequality constraints as follows:

min
w,b,u

‖Aw + A1b − d‖2
2 + λ

n∑
i=1

ui

s.t. − ui � wi � ui , i = 1, · · · , n,

(4.1)

where w = (w1 · · · wn ), b ∈ R, u ∈ R
n . We define the logarithmic barrier for the

bound constraints −ui � wi � ui ,

Φ(w, u) = −
n∑

i=1

log(ui + wi ) −
n∑

i=1

log(ui − wi ),

with domain

dom Φ = {(w, u) ∈ R
n × R

n | |wi | < ui , i = 1, · · · , n}.

We augment the weighted objective function by the logarithmic barrier and obtain the
following function:
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Sparse Proximal Support Vector Machine 9

Ψt (w, u, b) = t‖Aw + A1b − d‖2
2 + tλ

n∑
i=1

ui + Φ(w, u),

where the parameter t > 0. This function is smooth, strictly convex, and bounded
below. Newton’s method is used in minimizingΨt , i.e., the search direction is computed
as the exact solution to the Newton system,

H

⎡
⎣

�b
�w

�u

⎤
⎦ = −g, (4.2)

where H is the Hessian and g is the gradient of Ψt at the current iterate (b, w, u). The
Hessian can be written as

H = t �2 ‖Aw + A1b − d‖2
2 + �2Φ(w, u) =

⎛
⎝

2t AT
1 A1 2t AT

1 A 0

2t AT A1 2t AT A + D1 D2
0 D2 D1

⎞
⎠ ,

where

D1 = diag

(
2

(
u2

1 + w2
1

)
(
u2

1 − w2
1

)2 , · · · ,
2

(
u2

l + w2
l

)
(
u2

l − w2
l

)2

)
,

D2 = diag

(
−4u1w1(
u2

1 − w2
1

)2 , · · · ,
−4ulwl(

u2
l − w2

l

)2

)
.

Obviously, H is symmetric and positive definite. The gradient can be written as

g =
⎡
⎣

g1
g2
g3

⎤
⎦ ,

where

g1 = �bΨt (b, w, u) = 2t AT
1 (Aw + A1b − d),

g2 = �wΨt (b, w, u) = 2t AT(Aw + A1b − d) +
⎡
⎢⎣

2w1/(u2
1 − w2

1)
...

2wn/(u2
n − w2

n)

⎤
⎥⎦ ,

g3 = �uΨt (b, w, u) = tλ1 −
⎡
⎢⎣

2u1/(u2
1 − w2

1)
...

2un/(u2
n − w2

n)

⎤
⎥⎦ .

Solving Newton system Eq. (4.2) exactly may be not computationally practical, so
we apply the PCG algorithm to the Newton system to compute the search direction
approximately (readers can refer to [12] or Sect. 5 in [15] for more details). In this
paper, we choose the preconditioner P as follows:
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10 Y.-Q. Bai et al.

P = diag(t �2 ‖Aw + A1b − d‖2
2) + �2Φ(w, u)

=
⎛
⎝

2tdiag(AT
1 A1) 0 0

0 2tdiag(AT A) 0
0 0 0

⎞
⎠ +

⎛
⎝

0 0 0
0 D1 D2
0 D2 D1

⎞
⎠ ,

which is symmetric and positive definite.

4.2 Dual Gap and Stopping Criteria

To derive a Lagrange dual of the model Eq. (3.4), we first introduce a new variable
z ∈ R

l+n+1, as well as new equality constraints z = Aw + A1b − d, to obtain the
equivalent problem:

min
w,b,z

f (w, b, z) = ‖z‖2
2 + λ‖w‖1

s.t. z = Aw + A1b − d. (4.3)

Associating dual variables ν ∈ R
l+n+1 with the equality constraints z = Aw+A1b−d,

the Lagrangian is

L(w, b, z, ν) = ‖z‖2
2 + λ‖w‖1 + νT(Aw + A1b − d − z).

The objective function of Eq. (4.3) is convex but not differentiable, so we use a first-
order optimality condition based on subdifferential calculus, and obtain the dual func-
tion:

g(ν) = inf
w,b,z

L(w, b, z, ν) =
{

−(1/4)νTν − νT y, AT
1 ν = 0, |ATν|∞ � λ,

−∞, otherwise.

The Lagrange dual of Eq. (4.3) is therefore

max
ν

G(ν)

s.t. AT
1 ν = 0,

|ATν|∞ � λ,

(4.4)

where the dual objective G(ν) is

G(ν) = −(1/4)νTν − νT y.

First, we define b̄ = arg minb ‖Aw + A1b − d‖2
2, then for an arbitrary w, AT

1 (Aw+
A1b̄ − d) = 0. So (w, b̄, z̄) is primal feasible. Next, we define

ν̄ = 2s(Aw + A1b̄ − d),

s = min{λ/2‖Aw + A1b̄ − d‖∞, 1}. (4.5)
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Sparse Proximal Support Vector Machine 11

Evidently ν̄ is dual feasible and G(ν̄) is lower bound on p∗, which is the optimal value
of the model Eq. (3.4).

Here (w, b̄, z̄) is primal feasible and ν̄ is corresponding dual feasible. Assume that
εabs > 0 is a given absolute accuracy, then we have

f (w, b̄, z̄) − p∗ � f (w, b̄, z̄) − G(ν̄).

This guarantees that (w, b̄, z̄) is a suboptimal εabs if the stopping criterion f (w, b̄, z̄)−
G(ν̄) � εabs holds. The difference between the primal objective value of (w, b̄, z̄) and
the associated lower bound G(ν̄) is called the duality gap. We denote duality gap η

as:

η = f (w, b̄, z̄) − G(ν̄). (4.6)

We always have η � 0, and by the weak duality, the point (w, b̄, z̄) is no more than
η-suboptimal. At the optimal point, we have η = 0.

4.3 Algorithm

Algorithm: Specialized IPM for 1 − 2 Regularized Sparse PSVM

Given relative tolerance rel> 0.

Initialize t = 1/λ, w = 0, u = (1, . . . , 1) ∈ n, b = (AT
1 A1)−1AT

1 d − (AT
1 A1)−1AT

1 Aw.

Repeat

1. Compute the search direction (Δb,Δw,Δu) as an approximate solution to the Newton system

H(Δb,Δw,Δu)T = −g.

2. Compute the step size s = βk by the backtracking line search. Find the smallest integer k 0,

that satisfies

Φt(b + βkΔb,w + βkΔw, u + βkΔu) Φt(b, w, u) + αβk∇Φt(b, w, u)T (Δb,Δw,Δu)T .

3. Update the iterate by (b, w, u) = (b, w, u) + s(Δb,Δw,Δu).

4. Set b = b = arg minb Aw + A1b − d 2
2, the optimal value of the intercept.

5. Construct dual feasible point ν from (14).

6. Update t.

t =

⎧
⎪⎨

⎪⎩

max{μmin{2n/η, t}, t}, s smin,

s<s,t min.

.Quit if η/G(ν) rel

Remark The typical values for the line search parameters are α = 0.01, β = 0.5. The
update rule for t performs well with μ = 2 and smin = 0.5.
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5 Numerical Tests

In this section, we take six datasets (including Pima Indians, Heart, Australian,
Mushroom, Spambase, and Sonar) from the UCI repository [14] and one synthetic
dataset. Table 1 gives their characteristics. We first use the synthetic dataset, which
is generated by Gaussian distribution, to test the classification effectiveness of our
model. Then we compare the results of �1 − �2 regularized sparse PSVM with various
λ to demonstrate the properties of the trade-off between the �1-norm and �2-norm
terms. We also compare the numerical results of �1 − �2 regularized sparse PSVM
model with GEPSVM, PSVM, and SVM-Light which has been calculated in [13]. At
last, we try to figure out the effectiveness of our model in finding sparse solutions and
compare it with �1-PSVM [7]. The �1 − �2 regularized sparse PSVM is implemented
on a PC with an Intel Core i5, 2.50 GHz CPU, 2.00 GB RAM.

First, we perform our model on synthetic data to demonstrate the classification
effectiveness of our model. The results are shown in Fig. 4. The experimental results
verify the validity of our model and algorithm.

Table 1 One synthetic dataset
and six real-world datasets from
UCI Repository

Dataset Classes Attributes Instances

Synthetic dataset 2 2 1 000

Pima Indians 2 8 768

Heart 2 13 270

Australian 2 14 690

Mushroom 2 22 8 124

Spambase 2 57 4 601

Sonar 2 60 208
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Fig. 4 Performance of the �1 − �2 regularized sparse PSVM with synthetic dataset
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From the point view of the optimization problem, initially, C is a penalty parameter
which penalizes the constraint ξ > 0 into the objective function. In the point view of
classification, C is also a weight which is used to balance the maximum margin and the
minimum classification error. Numerically, we have compared the numerical results
of �1 − �2 regularized sparse PSVM with various parameter C ∈ {10, 1, 0.1, 0.01},
the results show that the model always obtains higher classification accuracy with
C = 0.1. So we fixed C = 0.1 in this section.

For each dataset from UCI repository, to compare the effectiveness of the trade-off
between �1-norm and �2-norm in �1 − �2 regularized sparse PSVM, we choose the
parameter λ ∈ {0, 1, 10} and C = 0.1. The classification accuracy and the execution
time are summarized in Tables 2 and 3, respectively.

From Table 2, we observe that for a given C , the classification accuracy of the
�1 − �2 regularized sparse PSVM performs better when λ = 0 (the model without �1-
norm term), while from Table 3, we can observe that the model succeeds in decreasing
the execution time when λ > 0 (�1-norm term is added). The numerical results verify
that the �2-norm term is responsible for the good classification performance while
�1-norm term plays an important role on decreasing the execution time.

To demonstrate the performance of our model, we compare the classification accu-
racy of the �1 − �2 regularized sparse PSVM with that of GEPSVM, PSVM and
SVM-Light [13].

The testing accuracy of �1 − �2 regularized sparse PSVM is evaluated with a 10-
fold cross-validation and the performance is the average misclassification error over
10 folds. In 10-fold cross-validation, the total dataset is divided into ten parts. Each
part is chosen once as the test set while the other nine parts form the training set.

Table 4 shows the comparison of classification accuracy. The numbers listed in
bold show the better classification accuracy for each dataset. We conclude that �1 −�2
regularized sparse PSVM is more efficient than other three SVMs.

Table 2 Classification accuracy
of �1 − �2 regularized sparse
PSVM with varying λ

Dataset λ = 0/% λ = 1/% λ = 10/%

Pima Indians 77.21 76.82 76.82

Heart 86.30 85.56 80.00

Australian 86.67 86.38 86.26

Mushroom 93.17 92.61 86.96

Spambase 88.83 88.70 87.96

Sonar 85.10 83.65 79.33

Table 3 Execution time (sec) of
�1 − �2 regularized sparse
PSVM with varying λ

Dataset λ = 0/s λ = 1/s λ = 10/s

Pima Indians 2.121 0.146 0.163

Heart 1.839 0.273 0.250

Australian 1.803 0.438 0.292

Mushroom 4.693 0.933 1.150

Spambase 7.230 1.588 2.500

Sonar 3.418 1.342 2.054
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Finally, we want to test the effect of �1 − �2 regularized sparse PSVM in finding
sparse solutions and compare it with �1-PSVM which has been calculated in [7].
Tuning parameter λ, keep the classification accuracy of �1 − �2 regularized sparse
PSVM approximately equals to the results of �1-PSVM in [7], then compare the
number of zero variables in w. Table 5 shows the numerical results, where � denotes
the number of zero variables in w.

From Table 5, we observe that �1 −�2 regularized sparse PSVM succeeds in finding
more sparse solutions with higher classification accuracy than �1-PSVM.

6 Conclusions

In this paper, we have proposed a PSVM with cardinality constraint and con-
verted it into an �1 − �2 regularized sparse PSVM, then we have solved the equiv-
alent model of the �1 − �2 regularized sparse PSVM by a specialized interior-point
method with PCG algorithm to compute the search direction. We have implemented
the �1 − �2 regularized sparse PSVM by a real-world dataset taken from the UCI
repository. The classification accuracy and execution time are tested by choosing dif-
ferent parameter λ. The numerical results show that the �1 − �2 regularized sparse
PSVM outperforms the others with more accuracy for classification. Moreover, it suc-
ceeds in finding sparse solutions with higher accuracy than or almost the same as
�1-PSVM.

We have only considered the binary linear classification problems in this paper. Our
future research will extend to the multi-class classification and nonlinear classification.
Moreover, compared with the performance in paper [3], our numerical results of the
execution time are slower than that in [3], where the ADMM was used. We will modify
the PCG so as to speed up the solution method.

Table 4 Comparison of classification accuracy

Dataset �1 − �2 PSVM/% GEPSVM/% PSVM/% SVM-Light/%

Pima Indians 76.82 (λ = 1) 73.6 75.9 75.7

Spambase 84.87 (λ = 1) 76.8 77.1 77.1

Mushroom 85.62 (λ = 1) 81.1 80.9 81.5

Table 5 Comparison of the
effectiveness in finding sparse
solutions

Dataset �1 − �2 PSVM/% �1-PSVM/%

Heart 80.00 (λ = 10, � = 5) 79.63 (� = 3)

Australian 86.67 (λ = 15, � = 6) 85.94 (� = 2)

Sonar 76.92 (λ = 16, � = 37) 75.62 (� = 36)
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