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Abstract Classification problem is the central problem in machine learning.

Support vector machines (SVMs) are supervised learning models with associated

learning algorithms and are used for classification in machine learning. In this paper,

we establish two consensus proximal support vector machines (PSVMs) models,

based on methods for binary classification. The first one is to separate the objective

functions into individual convex functions by using the number of the sample points

of the training set. The constraints contain two types of the equations with global

variables and local variables corresponding to the consensus points and sample

points, respectively. To get more sparse solutions, the second one is l1–l2 consensus

PSVMs in which the objective function contains an ‘1-norm term and an ‘2-norm

term which is responsible for the good classification performance while ‘1-norm

term plays an important role in finding the sparse solutions. Two consensus PSVMs

are solved by the alternating direction method of multipliers. Furthermore, they are

implemented by the real-world data taken from the University of California, Irvine

Machine Learning Repository (UCI Repository) and are compared with the existed

models such as ‘1-PSVM, ‘p-PSVM, GEPSVM, PSVM, and SVM-light. Numerical

results show that our models outperform others with the classification accuracy and

the sparse solutions.
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1 Introduction

In machine learning and statistics, classification is the problem of identifying which

of a set of categories (sub-populations) a new observation belongs to on the basis of

a training set of data containing observations (or instances) whose category

membership is known. The classification problems have practical applications in

many areas of life, such as pattern recognition, regression forecasting, data

processing, protein classification problem, meteorology, etc., [5, 6, 8, 26]. There are

many methods for solving the classification problems, such as decision trees, neural

networks, clustering algorithm, expectation-maximization (EM), support vector

machine (SVM), etc., [3, 12]. Recently, a lot of attention has been paid to

establishing the models and the algorithms which give a good trade-off of the better

classification correctness versus the less computational efforts. Moreover, the more

attention focuses on the simpler structure of models and the more sparse the solution

for the classification problems is. The reader may be referred to the papers [17],

Proximal SVM (PSVM) [11], etc.

SVM plays a key role in the classification problems and is used to transform the

classification problems into an optimization problem. SVM has been widely used in

many real-world problems such as pattern recognition, regression forecasting, data

processing, etc., [1, 15, 16, 19, 20]. It is also an important achievement of machine

learning theory in recent years. In 1995, Cortes and Vapnik formally proposed SVM

based on statistical learning theory [9]. Vapnik first proposed the C-SVM and then

gave the C-SVM with secondary relaxation variable [9, 27], where C is a

regularization parameter to control the balance between the size of margin and the

misclassification error. Then Schölkopf put forward the m-SVM [23] to simplify the

parameters adjustment of SVM, where m is the upper bound of misclassification

errors of the training samples, and simultaneously the lower bound of support

vectors. From then on, there were a lot of extended SVMs, including one-class SVM

[22, 25], Reduced SVM (RSVM) [18], Weighted SVM (WSVM) [8], LS-SVM

(least squares SVM) [24], TSVM (Twin SVM) [17], PSVM [11], etc.

There are several standard methods for solving SVM such as modified gradient

projection algorithm and interior-point methods, at least for small and medium size

problems [4]. The alternating direction method of multipliers (ADMM) is mainly

used in optimization problems with high dimension, and its initial point does not

need to be feasible [2, 13, 14]. It is applicable in many cases, such as statistical

learning, image processing, sensor networks, etc [4, 10, 13].

The original consensus problem is to deal with the optimization problem min

f(x) =
P

i=1
N fi(x) with the additive objective function such as

P
i=1
N fi(x). Here x 2 R

n is

called the global variable. Consensus can be viewed as a simple technique for turning

the additive objective into separable objective which splits easily by introducing

the local variables xi, i = 1, ���, N, that is, min f(x) =
P

i=1
N fi(xi) subject to xi - z =

0, i = 1, ���, N. Boyd et al. pointed out that consensus problems have a long history,
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especially in conjunction with ADMM, (see, Boyd et al. [4]). Consensus models are

usually used in the parallel optimization problems and require agreement among a

number of processes for the same value. For a useful recent discussion of consensus

algorithms, readers may refer to [23] and the references therein.

Motivated by recent attention in the context of consensus problems and algorithms,

we note that the objective function in PSVM is kwk2
2 ¼

P
w2

i , and it can be handled by

its own coordinate wi corresponding to the element xi in the train set. In this paper, we

convert the original PSVM to the unconstrained form and also add 2l equality

constraints to the model, where l is the number of the sample points. Then, we establish

two consensus proximal support vector machines (PSVMs) models. The first one is to

separate the objective functions into individual convex functions by using the number

of the sample points of the training set. The constraints contain two types of the

equations with global variables and local variables corresponding to the consensus

points and sample points, respectively. To get more sparse solutions, the second one is

consensus l1-l2 PSVM in which a sum of absolute values of global variables are added

to the objective function. Consensus least squares SVM was proposed before [19]. The

difference between our consensus PSVM and consensus LSSVM is that our

formulation leads to the strong convex objective functions, and thus we add more

l equality constraints to the model, where l means the number of sample points. While

consensus l1-l2 PSVM aims to find a trade-off between classification performance and

sparse solutions. These two consensus PSVMs are solved by the ADMM. As we

mentioned above, consensus problem is to solve the problem in which a single global

variable can be split into l parts. Therefore, ADMM can be derived either directly from

the augmented Lagrangian or simply as a special case of the constrained optimization

problem. Furthermore, they are implemented by the real-world data taken from the

University of California, Irvine machine learning repository (UCI repository) and are

compared with the existed models such as ‘1-PSVM, ‘p-PSVM, GEPSVM, PSVM,

and SVM-light. Numerical results show that our models outperform to others with the

classification accuracy and the sparse solutions.

The paper is organized as follows. In Sect. 2, we briefly recall the basic concepts

of SVM and PSVM for binary classification problems. In Sect. 3, we present two

consensus PSVMs that are consensus PSVM and consensus ‘1-‘2 PSVM. The

second model contains an ‘1-norm term and an ‘2-norm term. The ‘2-norm term is

responsible for the good classification performance, while ‘1-norm term plays an

important role on finding sparse solutions. Section 4 investigates the performance of

the two models via ADMM and compares them with other five SVMs by the

numerical examples of the real-world data taking from the UCI Repository. Finally,

we conclude the paper and briefly give the goal of the future research in Sect. 5.

Notation R
n stands for the set of n-dimensional real vectors. k � k1 and k � k2

denote the ‘1-norm and ‘2-norm, respectively. The soft thresholding operator S is the

proximity operator of ‘1-norm. The penalty parameter q[ 0 is used as the step size,

and in this paper, we set q = 1. eprimal
i and edual

i ; i ¼ 1; 2 means feasibility tolerances

for the primal conditions and the dual ones. In the numerical experiments, we set

eprimal
i ¼ 10�4 and edual

i ¼ 10�3; i ¼ 1; 2, respectively.

Consensus Proximal Support Vector Machine 59

123



2 Standard SVM and PSVM

In this section, we briefly recall some preliminaries of SVM and PSVM for binary

classification problems. We will not go into the details of the SVM and PSVM, and

readers may refer to [9, 11, 27].

First, we recall the linear separated case of a binary classification. Given a

training set fðx1; y1Þ; � � � ; ðxl; ylÞg � R
n � f�1;þ1g, it is linearly separable if there

exists a hyperplane wTx ? b = 1 such that

wTxi þ b > 1 if yi ¼ þ1 i ¼ 1; � � � ; l
wTxi þ b 6 �1 if yi ¼ �1 i ¼ 1; � � � ; l

Thus, the hard-margin SVM [9] can be formulated as follows:

min
w;b

1

2
wk k2

2

s.t. yiðwTxi þ bÞ > 1 i ¼ 1; � � � ; l
ð2:1Þ

where xi 2 R
n; yi 2 f�1; 1g; i ¼ 1; � � � ; l;w 2 R

n; b 2 R. Geometrically the hard-

margin SVM is illustrated in Fig. 1. When there exist wild points, the case is the

nonlinear separated case. Introducing a slack variables ni; i ¼ 1; � � � ; l and a fixed

penalty parameter C [ 0 to the objective function of the hard-margin SVM, it can

be converted to the soft-margin SVM [9] as follows:

min
w;b;n

1

2
wk k2

2þC
Xl

i¼1

ni

s:t: yiðwTxi þ bÞ > 1� ni i ¼ 1; � � � ; l
ni > 0 i ¼ 1; � � � ; l

ð2:2Þ

where xi 2 R
n; yi 2 f�1; 1g; ni 2 R; i ¼ 1; � � � ; l;w 2 R

n, and b 2 R. Figure 2

shows the geometric interpretation of the soft-margin SVM. The PSVM formulation

is as good as the soft-margin SVM formulation with the advantage such as strong

convexity of the objective function. It can give the explicit exact solution, whereas it

is impossible to do that in the soft-margin SVM formulation. The formulation of

PSVM [11] is as following.

min
w;b;n

1

2
wk k2

2þb2
� �

þ C

2

Xl

i¼1

n2
i

s.t. yi wTxi þ b
� �

¼ 1� ni; i ¼ 1; � � � ; l
ð2:3Þ

where xi 2 R
n; yi 2 f�1; 1g; gi 2 R; i ¼ 1; � � � ; l;w 2 R

n; and b 2 R. From Fig. 3,

we can see that PSVM also aims to find the largest distance between two dashed

lines, i.e., the bounding planes wTx ? b = 1 and wTx ? b = -1. Here minimizing

C
2

Pl

i¼1

n2
i means that the bounding planes are located as far as possible in the middle of

positive points and negative points, respectively.
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3 Two Consensus PSVM and Their Training Approaches

In this section, we start by reformulating the first consensus PSVM model. Then we

consider the sparse solutions of the consensus PSVM and present the second one
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hard−margin SVM

x1

x2

Fig. 1 The points of the circle class (the negative samples) and the plus symbol class (the positive
samples) with a full line showing a separation hyperplane wTx ? b = 0 between them

−5 −4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3
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Fig. 2 The points of the circle class (the negative samples) and the plus symbol class (the positive
samples) with a full line showing a separation hyperplane wTx ? b = 0 between them
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called the l1-l2 consensus PSVMs in which the objective function contains an ‘1-

norm term and an ‘2-norm term. The ‘2-norm term is responsible for the good

classification performance, while ‘1-norm term plays an important role on finding

sparse solutions. The idea of consensus is based on parallel computing in which

computational efforts can be shorted for solving large or complex problems. The

consensus models are usually used in the parallel optimization.

3.1 Consensus PSVM

By introducing two types of the variables, the local variables wi 2 R
n; bi 2 R; i ¼

1; � � � ; l and global variables z 2 R
n; d 2 R. The original PSVM (2.3) can be

converted to the consensus PSVM as follows:

min
w;b;z;d

k zk k2
2þkd2 þ 1

l

Xl

i¼1

1� yi wT
i xi þ bi

� �� �2

s.t. wi ¼ z; i ¼ 1; � � � ; l;
bi ¼ d; i ¼ 1; � � � ; l;

ð3:1Þ

where k[ 0; xi 2 R
n; yi 2 f�1; 1g;wi 2 R

n; bi 2 R; i ¼ 1; � � � ; l; z 2 R
n; d 2 R.

Obviously, the objective function is separable in (3.1). The splitting technique

can be used to convert the implicit expression into the explicit one, and thus, the

model contains more information. Moreover, (3.1) is called the global consensus

model since all the local variables should be equal. We expect that the model would

produce higher classification accuracy and computational efficiency than single

model strategies.
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x 2
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1
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Fig. 3 The points of the circle class (the negative samples) and the plus symbol class (the positive
samples) with a full line showing a separation hyperplane wTx ? b = 0 between them
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The abbreviated form of consensus PSVM can be expressed as

min
w;b;z;d

Xl

i¼1

fi wi; bið Þ þ g z; dð Þ

s:t:wi � z ¼ 0; i ¼ 1; � � � ; l;
bi � d ¼ 0; i ¼ 1; � � � ; l;

ð3:2Þ

where
Pl

i¼1

fi wi; bið Þ ¼ 1
l

Pl

i¼1

1� yi wT
i xi þ bi

� �� �2
; g z; dð Þ ¼ k zk k2

2þkd2:

Let a and b be the Lagrangian multipliers for the equality constraints in (5). The

augmented Lagrangian function can be expressed as follows:

L w; b; z; d; a; bð Þ ¼
Xl

i¼1

fi wi; bið Þ þ g z; dð Þ þ
Xl

i¼1

aT
i wi � zð Þ þ q

2

Xl

i¼1

wi � zk k2
2

þ
Xl

i¼1

bT
i bi � dð Þ þ q

2

Xl

i¼1

bi � dk k2
2

Here, we primarily give the optimal conditions of consensus PSVM,

rwi
fi w�i ; b

�
i

� �
þ a�i þ q w�i � z�

� �
¼ 0; i ¼ 1; � � � ; l;

rbi
fi w�i ; b

�
i

� �
þ b�i þ q b�i � d�

� �
¼ 0; i ¼ 1; � � � ; l;

rzg z�; d�ð Þ þ
Pl

i¼1

�a�i � q w�i � z�
� �� �

¼ 0;

rdg z�; d�ð Þ þ
Pl

i¼1

�b�i � q b�i � d�
� �� �

¼ 0;

w�i � z� ¼ 0; i ¼ 1; � � � ; l;
b�i � d� ¼ 0; i ¼ 1; � � � ; l;

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Subsequently, we give the stopping criteria due to the optimal conditions,

0 ¼ rzgðzkþ1; dkÞ �
Xl

i¼1

ak
i �

Xl

i¼1

q wkþ1
i � zkþ1

� �

¼ rzgðzkþ1; dkÞ �
Xl

i¼1

ak
i �

Xl

i¼1

qr̂kþ1
i

¼ rzgðzkþ1; dkÞ �
Xl

i¼1

akþ1
i

and

0 ¼ rdgðzkþ1; dkþ1Þ �
Xl

i¼1

bk
i �

Xl

i¼1

q bkþ1
i � dkþ1

� �

¼ rdgðzkþ1; dkþ1Þ �
Xl

i¼1

bk
i �

Xl

i¼1

qŝkþ1
i

¼ rdgðzkþ1; dkþ1Þ �
Xl

i¼1

bkþ1
i
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Obviously, the third and the fourth conditions are always satisfied.

The first and the second conditions involve the dual feasibility, so we have

0 ¼ rwi
fi wkþ1

i ; bk
i

� �
þ ak

i þ q wkþ1
i � zk

� �

¼ rwi
fi wkþ1

i ; bk
i

� �
þ ak

i þ q wkþ1
i � zkþ1

� �
þ q zkþ1 � zk
� �

¼ rwi
fi wkþ1

i ; bk
i

� �
þ akþ1

i þ q zkþ1 � zk
� �

; i ¼ 1; � � � ; l

and

0 ¼ rbi
fi wkþ1

i ; bkþ1
i

� �
þ bk

i þ q bkþ1
i � dk

� �

¼ rbi
fi wkþ1

i ; bkþ1
i

� �
þ bk

i þ q bkþ1
i � dkþ1

� �
þ q dkþ1 � dk
� �

¼ rbi
fi wkþ1

i ; bkþ1
i

� �
þ bkþ1

i þ q dkþ1 � dk
� �

; i ¼ 1; � � � ; l;

where r ¼ q zkþ1 � zk
� �

and s ¼ q dkþ1 � dk
� �

are called the dual residuals.

From the last two conditions, we can get the primal residuals as follows:

r̂i ¼ wi � z; ŝi ¼ bi � d; i ¼ 1; � � � ; l:

Accordingly, the primal residuals can be written as

r̂k k2
2¼
Xl

i¼1

wi � zk k2
2; ŝk k2

2¼
Xl

i¼1

bi � dk k2
2:

And therefore, the stopping criteria can be expressed as,

r̂k k2
26 eprimal

1 ; ŝk k2
26 eprimal

2 ; rk k2
26 edual

1 ; sk k2
26 edual

2 :

Now we can establish the consensus PSVM algorithm for classification problems,

Algorithm for Consensus PSVM
Given a training set T ¼ fðx1; y1Þ; � � � ; ðxl; ylÞg � R

n � f�1; 1g and select

parameters k and q. With the given iterate tk, we can get the new iterate tk?1 as

follows:

Step 1. Update ~tk ¼ f ~wk
1; � � � ; ~wk

l ;
~bk

1; � � � ; ~bk
l ; ~z

k; ~dk; ~ak
1; � � � ; ~ak

l ;
~bk

1; � � � ; ~bk
l g in the

alternating order by ADMM iterative scheme.

~wkþ1
i :¼ arg min

wi

� 1

l
1� yi wT

i xi þ bk
i

� �� �2þak
i

T
wi � zk
� �

þ q
2

wi � zk
�
�

�
�2

2

�
; i ¼ 1; � � � ; l;

~bkþ1
i :¼ arg min

bi

� 1

l
1� yi ð ~wkþ1

i Þ
T
xi þ bi

� �� �2

þbk
i

T
bi � dk
� �

þ q
2

bi � dk
�
�

�
�2

2

�
; i ¼ 1; � � � ; l;

~zkþ1 :¼ arg min
z

k zk k2
2þ
Xl

i¼1

�ak
i

T
zþ q

2
~wkþ1

i � z
�
�

�
�2

2

� �
 !

;

~dkþ1 :¼ arg min
d

kd2 þ
Xl

i¼1

�bk
i

T
d þ q

2
~bkþ1

i � d
�
�

�
�2

2

� �
 !

;

~akþ1
i :¼ ak

i þ q ~wkþ1
i � ~zkþ1

� �
; i ¼ 1; � � � ; l;

~bkþ1
i :¼ bk

i þ q ~bkþ1
i � ~dkþ1

� �
; i ¼ 1; � � � ; l:
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Step 2. Stopping criteria. Quit if the following conditions are satisfied.

r̂k k2
26 eprimal

1 ; ŝk k2
26 eprimal

2 ; rk k2
26 edual

1 ; sk k2
26 edual

2 :

Then, we get the solution t� ¼ fw�1; � � � ;w�l ; b�1; � � � ; b�l ; z�; d�; a�1; � � � ; a�l ;
b�1; � � � ; b

�
l g.

Step 3. Construct the decision function as f xð Þ ¼ sgn ðz�ÞTxþ d�
� �

.

According to the above algorithm for Consensus PSVM, it is evident that after each

iteration tk, we can compute the consensus point ð~zkþ1; ~dkþ1Þ, in particular when the

iteration reaches the stopping criteria, an optimal or near optimal consensus point

(z*, d*) can be obtained.

What’s more, we briefly analyze the computational complexity of our

methods. The complexity mainly relies on ADMM iterative scheme. For each

iteration, w1; � � � ;wl are solved at the same time. After solving

w1; � � � ;wl; b1; � � � ; bl are also solved at the same time. Then z, d can be solved.

At last, a1; � � � ; al; b1; � � � ; bl can be also solved simultaneously. Thus, each

iteration contains only 4 flops. Compared with PSVM algorithm [11], the total

cost of our methods is also small.

3.2 Consensus ‘1-‘2 PSVM

To get more sparse solutions, we add a term of absolute values of global variables

z to the objective function of consensus PSVM 5, then ‘1-‘2 PSVM can be

reformulated as following:

min
w;b;z;d

k zk k1þ 1� kð Þ zk k2
2þð1� kÞd2 þ 1

l

Xl

i¼1

1� yi wT
i xi þ bi

� �� �2

s.t. wi ¼ z; i ¼ 1; � � � ; l;
bi ¼ d; i ¼ 1; � � � ; l;

ð3:3Þ

where k 2 0; 1½ �; xi 2 R
n, yi 2 f�1; 1g;wi 2 R

n; bi 2 R, i ¼ 1; � � � ; l; z 2 R
n; d 2 R.

The augmented Lagrangian function of (6) can be expressed as

L w; b; z; d; a;bð Þ ¼ k zk k1þ 1� kð Þ zk k2
2þð1� kÞd2 þ 1

l

Xl

i¼1

1� yi wT
i xi þ bi

� �� �2

þ
Xl

i¼1

aT
i wi � zð Þ þ q

2

Xl

i¼1

wi � zk k2
2þ
Xl

i¼1

bT
i bi � dð Þ þ q

2

Xl

i¼1

bi � dk k2
2

Thus, the iterative scheme of ADMM for solving (6) is as follows:
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wkþ1
i :¼ arg min

wi

� 1

l
1� yi wT

i xi þ bk
i

� �� �2þak
i

T
wi � zk
� �

þ q
2

wi � zk
�
�

�
�2

2

�
; i ¼ 1; � � � ; l;

bkþ1
i :¼ arg min

bi

� 1

l
1� yi ðwkþ1

i Þ
T
xi þ bi

� �� �2

þbk
i

T
bi � dk
� �

þ q
2

bi � dk
�
�

�
�2

2

�
; i ¼ 1; � � � ; l;

zkþ1 :¼ S k
2ð1�kÞþql

�
Pl

i¼1

qwkþ1
i þ

Pl

i¼1

ak
i

2ð1� kÞ þ ql

�

;

dkþ1 :¼ arg min
d

ð1� kÞd2 þ
Xl

i¼1

�bk
i

T
d þ q

2
bkþ1

i � d
�
�

�
�2

2

� �
 !

;

akþ1
i :¼ ak

i þ q wkþ1
i � zkþ1

� �
; i ¼ 1; � � � ; l;

bkþ1
i :¼ bk

i þ q bkþ1
i � dkþ1

� �
; i ¼ 1; � � � ; l:

Compared with (3.1), the ADMM iterative scheme is different in z-iteration,

1� zj [ 0;

0 ¼ 2 1� kð Þzj þ k�
Xl

i¼1

aij �
Xl

i¼1

q wij � zj

� �
;

zj ¼

Pl

i¼1

qwij þ
Pl

i¼1

aij � k

2 1� kð Þ þ ql
;

2� zj\0;

0 ¼ 2 1� kð Þzj � k�
Xl

i¼1

aij �
Xl

i¼1

q wij � zj

� �
;

zj ¼

Pl

i¼1

qwij þ
Pl

i¼1

aij þ k

2 1� kð Þ þ ql
;

3� zj ¼ 0;

0 ¼ 2 1� kð Þzj þ khj �
Xl

i¼1

aij �
Xl

i¼1

q wij � zj

� �
;

0 ¼ khj �
Xl

i¼1

aij �
Xl

i¼1

qwij;

Xl

i¼1

qwij þ
Xl

i¼1

aij

	
	
	
	
	

	
	
	
	
	
6 kj j;

where j ¼ 1; � � � ; n; hj

�
�
�
�2

2
6 1.

At the last iteration, we can get z*,

z�j ¼ max
1

2 1� kð Þ þ ql

Xl

i¼1

qw�ij þ
Xl

i¼1

a�ij

	
	
	
	
	

	
	
	
	
	
� k

 !

; 0

( )

sgn

Pl

i¼1

qw�ij þ
Pl

i¼1

a�ij

2 1� kð Þ þ ql

0

B
B
@

1

C
C
A

where j ¼ 1; � � � ; n.

From the definition of the soft thresholding operator S, z* is given by,
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z�j ¼

1
2 1�kð Þþql

Pl

i¼1

qw�ij þ
Pl

i¼1

a�ij � k

� �

;
Pl

i¼1

qw�i þ
Pl

i¼1

a�i [ k

0;
Pl

i¼1

qw�i þ
Pl

i¼1

a�i

	
	
	
	

	
	
	
		 k

1
2 1�kð Þþql

Pl

i¼1

qw�ij þ
Pl

i¼1

a�ij þ k

� �

;
Pl

i¼1

qw�i þ
Pl

i¼1

a�i \� k

8
>>>>>>><

>>>>>>>:

where j ¼ 1; � � � ; n.

Equivalently, z� ¼ S k
2ð1�kÞþql

Pl

i¼1

qw�iþ
Pl

i¼1

a�i

2ð1�kÞþql

0

B
@

1

C
A.

4 Numerical Experiments

In this section, we firstly report results on five synthetic datasets in Table 1 in terms

of the classification accuracy. Then eight real-world datasets are taken from the UCI

Repository, including Heart disease, Australian credit approval, Sonar, Pima Indians

diabetes, Spambase, Mushroom, BUPA liver, and Ionosphere (Table 2). They are

used to evaluate the classification performance and the execution time of our

approaches in Tables 3, 4, and 5, respectively. Compared with real-world datasets,

the dimension of synthetic datasets is lower, and the number of sample points is

smaller. Two classes of sample points are selected better in synthetic datasets, and

thus, they are easier to separate. While sample points of real-world datasets may be

crowded together, and they are hard to be controlled by the artificial means (Table

6).

The consensus PSVM training approaches are implemented on a PC with an Intel

Pentium IV 1.73 GHz CPU, 1,024 MB RAM, the Windows XP operating system,

and the Matlab 2011a development environment. In the following experiments, we

set the penalty parameter q = 1 and set the termination tolerances eprimal
i ¼ 10�4

and edual
i ¼ 10�3; i ¼ 1; 2, respectively. The variables ~w0

i ;
~b0

i ; ~z
0; ~d0; ~a0

i and ~b0
i ; i ¼

1; � � � ; l are initialized to zero.

Figure 4 shows the iterative process of the problem with the synthetic data,

including 50 positive instances and 50 negative instances. The examples split into

ten groups, in the worst case, each group contains only the examples of the same

kind. The circles and crosses stand for two different classes.

Firstly, we give the classification accuracy of our approaches for the synthetic

data in Table 1.

To demonstrate the performance of our methods better, we report results on the

following datasets from the UCI Repository.

We summarize the classification performances of consensus PSVM and

consensus ‘1-‘2 PSVM for the real-world data in Tables 3 and 4, respectively.
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And we also compare them with the numerical results of ‘1-PSVM, ‘p-PSVM,

GEPSVM, PSVM, and SVM-light in terms of the classification accuracy,

respectively.

Table 1 Performance of classification on five problems with synthetic data

?train./-train./dimension Consensus PSVM Consensus ‘1-‘2 PSVM

50/50/2 95.00 % (k = 1) 97.00 % (k = 1)

100/80/2 96.11 % (k = 1) 94.44 % (k = 1)

500/500/2 96.50 % (k = 1) 96.50 % (k = 1)

50/50/3 98.00 % (k = 1) 98.00 % (k = 1)

100/100/6 97.50 % (k = 1) 96.50 % (k = 1)

Table 2 Datasets from the UCI

Repository
Dataset Classes Instances Features

Heart 2 270 13

Australian 2 690 14

Sonar 2 208 60

Pima 2 768 8

Spambase 2 4 601 57

Mushroom 2 8 124 22

BUPA 2 345 6

Ionosphere 2 351 34

Table 3 Classification accuracy rates obtained by consensus PSVM, consensus ‘1-‘2 PSVM, ‘p-PSVM,

and ‘1-PSVM [7]

Dataset Consensus PSVM Consensus ‘1-‘2 PSVM ‘p-PSVM ‘1-PSVM

Heart 84.81 % (k = 1) 84.07 % (k = 0.5) 79.63 % 79.63 %

Australian 86.09 % (k = 1) 86.09 % (k = 0.5) 85.80 % 85.94 %

Sonar 89.90 % (k = 1) 85.10 % (k = 0.5) 77.51 % 75.62 %

Table 4 Classification accuracy rates obtained by consensus PSVM, consensus ‘1-‘2 PSVM, GEPSVM,

PSVM, and SVM-light [21]

Dataset Consensus PSVM Consensus ‘1-‘2 PSVM GEPSVM PSVM SVM-light

Pima 78.39 % (k = 1) 77.86 % (k = 0.5) 73.6 % 75.9 % 75.7 %

Spambase 88.81 % (k = 1) 87.37 % (k = 0.5) 76.8 % 77.1 % 77.1 %

Mushroom 94.37 % (k = 1) 92.15 % (k = 0.5) 81.1 % 80.9 % 81.5 %
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Table 5 Average time on the four datasets obtained by consensus PSVM, consensus ‘1-‘2 PSVM,

PSVM [11]

Dataset Consensus PSVM (s) consensus ‘1-‘2 PSVM (s) PSVM (s)

Pima 0.003 7 0.015 8 0.02

Mushroom 0.008 3 0.095 9 1.15

BUPA 0.012 3 0.152 8 0.02

Ionosphere 0.006 6 0.081 1 0.17

Table 6 Sparse solutions and

classification accuracy obtained

by consensus ‘1-‘2 PSVM and

‘1-PSVM [7]

Dataset consensus ‘1-‘2 PSVM ‘1-PSVM

Heart 84.07 % ðk ¼ 0:5; ] ¼ 4Þ 79.63 % (] ¼ 3)

Australian 86.09 % (k ¼ 0:5; ] ¼ 7) 85.94 % (] ¼ 2)

Sonar 83.65 % (k ¼ 1; ] ¼ 37) 75.62 % (] ¼ 36)
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Fig. 4 The iterative process of the problem
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Fig. 5 The iterations of the three problems, including Heart, Australian and Sonar
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The numerical results ‘1-PSVM and ‘p-PSVM are taken from [7], those of PSVM

are from [11] and those of GEPSVM and SVM-Light are from [21], respectively.

The first column of the following tables lists the names of datasets. The second

column lists the results obtained by our consensus PSVM and they are labeled in

bold which are tried to emphasize the effectiveness.

From Table 3, we can see that our approaches succeed in getting the highest

correctness among the approaches.

In addition, we give the iterations of our first approach in Fig. 5.

It is obvious that our methods outperform GEPSVM, PSVM, and SVM-light in

Table 4. Likewise, we give the iterations of our first approach in Fig. 6.

Table 5 contains the execution time of our methods. From the average time, it is

evident that our first approach is faster than PSVM.

Finally, we compare our second approach, i.e., consensus ‘1-‘2 PSVM with ‘1-

PSVM [7] in terms of more sparse solutions and higher classification accuracy. For

each dataset, including Heart disease, Australian credit approval, and Sonar, we

choose the appropriate parameter k for consensus ‘1-‘2 PSVM. Table 6 shows the

numerical results, where ] means the number of zero variables in w* of ‘1-PSVM

and z* of consensus ‘1-‘2 PSVM.

From the experiments, we find that if k! 0 in consensus ‘1-‘2 PSVM, the

classification performance of the model is better. While k! 1 in consensus ‘1-‘2

PSVM, more sparse solutions can be obtained. We also find that the assumption that

the larger k is, the better classification performance of consensus PSVM is not valid.

5 Conclusions and Future Research

We have proposed two consensus PSVMs for the classification problems, and the

two consensus PSVMs have been solved by the ADMM. Furthermore, they have

been implemented by the real-world data taken from the University of California,

Irvine Machine Learning Repository (UCI Repository) and are compared with the

existed models such as ‘1-PSVM, ‘p-PSVM, GEPSVM, PSVM, and SVM-light.

Numerical results show that our models outperform others with the classification

accuracy and the sparse solutions. Moreover, we can see that consensus ‘1-‘2

PSVM succeeds in finding more sparse solutions with higher accuracy than ‘1-

PSVM.

We considered the binary linear classification problems and investigated the

numerical behaviors of two consensus PVSMs. Our future research will derive the

analysis of computation complexity of ADMM for two models thoroughly.

Furthermore, we will consider the multi-class classification and nonlinear classi-

fication. We presume that the classification performance of consensus PSVM is

related to the characteristic structure of the sample points. Thus, our next research

will also analyze the relationship among the selection of k, the characteristic

structure of datasets, and the classification performance of consensus PSVM.

The size of datasets used in our numerical test is not large-scale problems in

which the dimension of the problems is about hundred millions or more. ADMM

has a great advantage in large-scale problems, and it has been applied in [4]. We
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plan to do such a large-scale experiment under the parallel environment with a

distributed system (including several computers) or a clustering in the next step.

Thus, our methods can be verified and extended better.
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