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Abstract Mathematical programming problems with semi-continuous variables and
cardinality constraint have many applications, including production planning, port-
folio selection, compressed sensing and subset selection in regression. This class of
problems can be modeled as mixed-integer programs with special structures and are
in general NP-hard. In the past few years, based on new reformulations, approxima-
tion and relaxation techniques, promising exact and approximate methods have been
developed. We survey in this paper these recent developments for this challenging
class of mathematical programming problems.
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1 Introduction

In many real-world applications of mathematical programming models, the contin-
uous decision variables, xi , i = 1, · · · , n, have to be confined in a disconnected set,
{0} ∪ [li , ui], i = 1, · · · , n, and the number of nonzero variables of xi has to be up-
per bounded by a certain number K < n. In general, a variable xi ∈ {0} ∪ [li , ui] is
referred to as semi-continuous variable, where 0 ∈ [li , ui] is also allowed, and the
constraint for controlling the number of nonzero variables is referred to as cardinality
constraint. In the production planning, the semi-continuous variables can be used to
describe the state of a production process that is either turned off (inactive), hence
nothing is produced, or turned on (active) such that the amount of the production has
to lie in certain interval due to managerial and technological considerations. In port-
folio selection optimization models, the semi-continuous variables are closely related
to the so called minimum buy-in threshold which prevents the investors from holding
a small position for assets, while the cardinality constraint limits the total number of
different assets in the optimal portfolio due to the transaction cost and managerial
concerns. Cardinality constraint is particularly important in portfolio management
using index tracking strategy where a market benchmark index is tracked by a small
group of assets.

The concepts of semi-continuous variables and cardinality constraint can be gen-
eralized to a decision vector of the form x = (x1, · · · , xp)T ∈ �n1 × · · · × �np with
n1 + · · · + np = n. The sub-vector xi ∈ �ni is called semi-continuous if

xi ∈ Pi = {
xi ∈ �ni | Aixi � biyi, yi ∈ {0,1}}, (1)

where Ai ∈ �mi×ni , bi ∈ �mi and Aixi � 0 implies xi = 0. For x = (x1, · · · , xp)T ∈
�n, the cardinality constraint for x can be expressed as

card(x) � K, (2)

where card(x) is defined as the number of i ∈ {1, · · · ,p} such that xi �= 0. Using
the binary variable yi ∈ {0,1} in (1), the cardinality constraint (2) is equivalent to
eT y � K , where e is the column vector of all ones and y ∈ {0,1}p .

A general formulation of mathematical programming with semi-continuous vari-
ables and cardinality constraint can be expressed as the following mixed-integer pro-
gramming:

(P) minF(x, y, z)

s.t. (x, y, z) ∈ Ω,

eT y � K,

Aixi � biyi, yi ∈ {0,1}, i = 1, · · · ,p,

where F(x, y, z): (�n1 × · · · × �np ) × �p × �q → � is a convex function, the set
Ω ⊆ �n × �p × �q represents the general constraints for (x, y, z), and K is an
integer with 1 � K � p. Problem (P) is, in general, NP-hard as testing the feasibility
of (P) with linear constraints is already NP-complete (see [7]). We point out that there
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are polynomially solvable cases of (P); for instance, a class of polynomially solvable
cardinality-constrained quadratic optimization problems was identified in [28].

In this paper, we survey some of the recent advances in optimization problems
with semi-continuous variables and cardinality constraint. This survey is motivated
by continuously increasing interests in problem (P) in recent years from operations
research, management science, finance engineering and engineering communities. In
the sequel, we only consider the situation when the objective function of (P) has the
following separable form:

F(x, y, z) = f (x) + cT y + g(z), (3)

where f (x) and g(z) are convex cost functions of x and z, and c ∈ �n is the vector
of fixed cost coefficients associated with the semi-continuous variables.

In the next section, we describe some examples of problem (P) arising from differ-
ent real-world applications. One of the efficient techniques for improving the contin-
uous relaxation of (P) is the construction of convex envelope of a univariate function
over semi-continuous variable using perspective function. In Sect. 3, we describe
perspective reformulation of problem (P) when f (x) in (3) is a separable function. In
particular, we discuss two tractable perspective reformulations: SOCP reformulation
and perspective cut reformulation. A dual method for deriving the perspective refor-
mulation is also presented. In Sect. 4, we focus on the quadratic case of (P). We give
an SDP approach for computing the “best” diagonal decomposition of quadratic ob-
jective function. Specialized branch-and-bound and branch-and-cut methods for the
quadratic case of (P) are also discussed. In Sect. 5, we discuss various approximate
methods and techniques for dealing with the cardinality or sparse constraint. Finally,
we give some concluding remarks in Sect. 6.

2 Examples of Applications

In this section, we describe some examples of problem (P) arising from portfolio
selection, compressed sensing and subset selection, quadratic uncapacitated facility
location problem and unit commitment problem in power system.

Example 1 (Portfolio selection) Suppose there are n risky assets in the financial mar-
ket with random return vector R = (R1, · · · ,Rn)

T . The expected return vector and
the covariance matrix of R are given as μ and Q, respectively. A mean-variance port-
folio selection model with cardinality and minimum buy-in threshold can be modeled
as

(MV) min xT Qx

s.t. μT x � ρ,

n∑

i=1

xi = 1,

card(x) � K,

xi ∈ {0} ∪ [αi, ui], i = 1, · · · , n,
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where xi ∈ � represents the proportion of the total capital invested in the ith asset,
ρ is a prescribed return level set by the investor, αi ∈ (0,1) represents the minimum
transaction amount of the ith asset, and ui ∈ (αi,1] is the maximum position of the
ith asset.

Portfolio selection problems with cardinality and minimum threshold constraints
have been studied by many researchers (see, e.g., [6, 7, 9, 11, 16, 29, 37, 44]). The
model (MV) has been also investigated in finance literature in the context of limited-
diversification, small portfolios and portfolio selection models with real features (see,
e.g., [8, 33, 34, 42, 46]). In the literature, there are also heuristic procedures based
on metaheuristics such as genetic algorithms, tabu search, and simulated annealing
for problem (MV) (see, e.g., [12, 15, 20, 40, 43]). However, these metaheuristics
do not guarantee to find the optimal or even a satisfactory near-optimal solution
of (MV).

Example 2 (Compressed sensing and subset selection) Compressed sensing is an im-
portant problem in signal processing (see, e.g., [10] and the references therein). The
problem can be formulated as

(CS) min ‖Ax − b‖2
2

s.t. card(x) � K,

where A ∈ �m×n is a data matrix, b ∈ �m is an observation vector, and 1 � K � n

is an integer for controlling the sparsity of the solution. In the compressed sensing
problem, it is often assumed that m < n.

In multivariate linear regression, we are given m observed data points (ai, bi)

with ai ∈ �n and bi ∈ �. The goal is to minimize the least square measure of∑m
i=1(a

T
i x − bi)

2 with only a subset of the prediction variables in x. This subset
selection problem then has the same form as (CS) (see [3, 6, 41]). In contrast with
the case of compressed sensing, the number of data in subset selection is often much
larger than the dimension of the data (m > n).

In practice, we can always impose lower bound and upper bound on x, i.e., −li �
xi � ui , i = 1, · · · , n, for some sufficiently large positive numbers li and ui . Thus,
(CS) is a special case of (P).

Example 3 (Separable quadratic UFL) Given a set of customers N = {1, · · · , n} and
a set of facilities M = {1, · · · ,m}. A fixed cost ci occurs if facility i ∈ M is opened
and the total number of opened facilities should be no more than 1 � K � m. All
customers have unit demand that can be satisfied from the opened facilities. Let
yi ∈ {0,1} indicate whether or not facility i is opened, and xij denote the fraction
of demand of customer j satisfied from facility i. The transportation cost is defined
by qij x

2
ij . The separable quadratic uncapacitated facility location problem [31] can

be then formulated as

(SQUFL) min
m∑

i=1

n∑

j=1

qij x
2
ij +

m∑

i=1

ciyi
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s.t. 0 � xij � yi, i = 1, · · · ,m, j = 1, · · · , n,

eT y � K, yi ∈ {0,1}, i = 1, · · · ,m,

m∑

i=1

xij = 1, j = 1, · · · , n.

The problem (SQUFL) is a generalization of the classical linear uncapacitated facility
location problem in combinatorial optimization. We see that the decision vector can
be written as x = (x1, · · · , xm) ∈ �mn, where xi = (xi1, · · · , xin)

T for i = 1, · · · ,m.
Since 0 � xi � yie, xi is semi-continuous for i = 1, · · · ,m.

Example 4 (Unit commitment problem) This is a problem arising from electrical
power production (see [21, 25]). Given a set I of thermal generating units, for each
i ∈ I , the unit is either turned off or turned on with the power output lying between
pi

min and pi
max. The cost function of the ith unit is defined by a quadratic function of

the power output p: f i(p) = aip2 + bip + ci , i ∈ I . The power demand over time
period t ∈ T is dt , where T is the set of time periods in the planning horizon. The
unit commitment problem is to generate power to meet the demand while minimizing
the total cost. The operation of thermal units has to satisfy certain minimum up- and
down-time constraints: whenever a unit is turned on or turned off it must remain
committed or decommitted for a certain time. Let uit ∈ {0,1} represent the status
of commitment of unit i at time period t , and xit � 0 the power output of unit i at
time period t . Let U denote the set of uit satisfying the minimum up- and down-
time constraints. The basic unit commitment problem can be then formulated as a
mixed-integer separable quadratic problem:

(UC) min
∑

i∈I

∑

t∈T

aix2
it + bixit + ciyit

s.t.
∑

i∈I

xit = dt , t ∈ T ,

pi
minuit � xit � pi

maxuit , i ∈ I, t ∈ T ,

u = (uit ) ∈ U, uit ∈ {0,1}, i ∈ I, t ∈ T .

It is clear that (UC) is a special case of (P) with only semi-continuous variables. More
realistic constraints can be further attached to the above basic formulation (see [25]).

3 Perspective Reformulations for Mathematical Programming with
Semi-continuous Variables

In this section, we consider the following special case of (P):

(Ps) min
n∑

i=1

fi(xi) + cT y + g(z)



60 X.L. Sun et al.

s.t. Ax + By + Cz � b,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n,

where fi (i = 1, · · · , n) are univariate convex functions, A, B , C are matrices
with appropriate dimensions. Note that the cardinality constraint

∑n
i=1 yi � K can

be included in the linear constraints of (x, y, z). A novel reformulation technique
called perspective reformulation was proposed by Frangioni and Gentile [21–23] (see
also [31]). This reformulation method is based on constructing convex envelope of
a univariate function over the semi-continuous variable and gives rise to much more
efficient mixed-integer program reformulation than the standard formulation (Ps).

3.1 Convex Envelope and Perspective Reformulation

Consider the following one-dimensional minimization over a semi-continuous vari-
able:

min h(s) + dt

s.t. αt � s � βt, t ∈ {0,1}, (4)

where h : � → � is a convex function. This problem can be equivalently restated as

min
{
ĥ(s, t) | (s, t) ∈ �2}, (5)

where

ĥ(s, t) =

⎧
⎪⎨

⎪⎩

0, if s = t = 0,

h(s) + d, if s ∈ [α,β], t = 1,

+∞, otherwise.

(6)

The convex envelope of ĥ(s, t) is defined by

co(ĥ)(s, t) = inf
{
v | (s, t, v) ∈ conv

(
epi(ĥ)

)}
,

where epi(ĥ) is the epigraph defined by epi(ĥ) = {(s, t, v) | v � ĥ(s, t)}. By (6), the
convex hull of epi(ĥ) consists of all the points of the following form:

(1 − θ)(0,0, w̄) + θ(s̄,1, v̄) = (
θ s̄, θ, (1 − θ)w̄ + θv̄

)
,

where w̄ � 0, v̄ � h(s̄) + d , s̄ ∈ [α,β] and θ ∈ [0,1]. Letting t = θ and s = θ s̄ = t s̄,
we have s̄ = s/t and αt � s � βt . Since w̄ � 0 and v̄ � h(s̄) + d , we have

(1 − θ)w̄ + θv̄ � θ
(
h(s̄) + d

) = t · h(s/t) + dt

for t ∈ (0,1]. Thus,

co(ĥ)(s, t) =

⎧
⎪⎨

⎪⎩

0, if s = t = 0,

t · h(s/t) + dt, if αt � s � βt, t ∈ (0,1],
+∞, otherwise.
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Fig. 1 The perspective function
of h(s) = s2 on [−1,1]

This function is continuous at (0,0) by defining 0/0 := 0. The function t · h(s/t)

is called perspective function of h(s) in convex analysis [32], see Fig. 1. Replacing
ĥ(s, t) in (5) by co(ĥ)(s, t), we obtain the following equivalent form of (4):

min ψ(s, t) := t · h(s/t) + dt

s.t. αt � s � βt, t ∈ {0,1}. (7)

Problem (7) is hence called the perspective reformulation of problem (4). Its contin-
uous relaxation is

min ψ(s, t) := t · h(s/t) + dt

s.t. αt � s � βt, t ∈ [0,1]. (8)

Since the objective function of (8) is the convex envelope of h(s) + dt , (8) is tighter
than the direct continuous relaxation of (4). Actually, since there are no other con-
straints in (4), the optimal values of (4) and (8) are the same.

Now, we apply the one-dimensional perspective reformulation (7) to problem (Ps)

which has a separable objective function. The resulting perspective reformulation is

(PRs) min
n∑

i=1

yifi(xi/yi) + cT y + g(z)

s.t. Ax + By + Cz � b,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

The problem (PRs) is more efficient than (Ps) in the sense that the continuous relax-
ation of (PRs) is tighter than that of (Ps).

The above perspective reformulation technique can be extended to problem which
has an additional nonseparable term p(x) in the objective function. In fact, we can
introduce a copy constraint x = z̃ and rewrite the objective function as

∑n
i=1 fi(xi)+

cT y + g(z) + p(z̃). The perspective reformulation is then applicable to the resulting
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problem. In general, we can use perspective reformulation for minimization of any
convex function over semi-continuous variables provided that the objective function
has a separable term

∑n
i=1 fi(xi).

3.2 A Dual Approach for Perspective Reformulation

In this subsection, we describe a dual approach for deriving the perspective reformu-
lation (PRs). Without loss of generality, we consider a simple version of (Ps):

min
n∑

i=1

fi(xi) + cT y

s.t. Ax � b,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

(9)

Dualizing the first constraint of (9) yields the following Lagrangian relaxation:

d(λ) = min
n∑

i=1

fi(xi) + cT y + λT (Ax − b)

s.t. liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

The Lagrangian dual of problem (9) then takes the following form,

(Ds) max
λ�0

d(λ).

Next, we show that the dual problem (Ds) is equivalent to the continuous relax-
ation of (PRs). For each i = 1, · · · , n, let qi = minli�xi�ui

(fi(xi) + λT aixi), where
ai is the ith column of A. Then,

d(λ) = −λT b +
n∑

i=1

min(0, qi + ci). (10)

Since fi is convex, by strong duality, we have

qi = max
(ζi ,ηi )�0

min
xi∈�

[
fi(xi) + λT aixi + ηi(xi − ui) + ζi(li − xi)

]

= max
(ζi ,ηi )�0

ri(ζi , ηi, λ), (11)

where ζi and ηi are the multipliers for the inequalities li � xi and xi � ui , respec-
tively, and ri(ζi , ηi, λ) is the corresponding dual function. It then follows from (10)
and (11) that

v(Ds) = max
λ�0

[

−λT b +
n∑

i=1

min(0, qi + ci)

]
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= max
λ�0

−λT b −
n∑

i=1

si

s.t. −si � 0, −si � qi + ci, i = 1, · · · , n,

= max
λ�0

−λT b −
n∑

i=1

si

s.t. −si � 0, −si − ci � max
(ζi ,ηi )�0

ri(ζi , ηi, λ), i = 1, · · · , n,

= max−λT b −
n∑

i=1

si

s.t. −si − ci � ri(ζi , ηi, λ), i = 1, · · · , n,

(λ, s, ζ, η) � 0. (12)

Note that problem (12) is a convex program since ri(ζi , ηi, λ) is a concave function.
It is obvious that the Slater condition holds for (12). Dualizing the first constraint in
problem (12) with multiplier yi � 0 and using strong duality, we have

v(Ds) = min
y�0

max
(λ,s,ζ,η)�0

{

−λT b +
n∑

i=1

[−si + yi

(
si + ci + ri(ζi , ηi, λ)

)]
}

= min
y∈[0,1]n max

(λ,ζ,η)�0

{

−λT b + cT y +
n∑

i=1

yiri(ζi , ηi, λ)

}

= min
y∈[0,1]n

{

cT y + max
(λ,ζ,η)�0

min
x∈�n

[

λT

(
n∑

i=1

yiaixi − b

)

+
n∑

i=1

(
yifi(xi) + yiηi(xi − ui) + yiζi(li − xi)

)
]}

.

Applying again the strong duality to the inner maximization of the above problem,
we obtain

v(Ds) = min
n∑

i=1

yifi(xi) + cT y

s.t.
n∑

i=1

aiyixi � b,

liyi � yixi � uiyi, i = 1, · · · , n,

y ∈ [0,1]n.
Letting zi = yixi makes xi = zi/yi . Substituting xi = zi/yi into the above problem
yields exactly the continuous relaxation of (PRs) for problem (9).
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The above discussion reveals that the lower bound provided by the continuous re-
laxation of the perspective reformulation (PRs) is the same as the dual bound of (Ps),
which is usually much tighter than the direct continuous relaxation of the original
problem (Ps).

3.3 SOCP Reformulation and Perspective Cut Reformulation

Although the perspective reformulation (PRs) is, in theory, tighter than the original
mixed-integer formulation, the nonlinear term yifi(xi/yi) makes the objective more
nonlinear and intractable even for simple nonlinear functions such as quadratic func-
tions. In this subsection, we describe two tractable reformulations derived from the
basic perspective reformulation.

The second-order cone programming (SOCP) reformulation [1, 31, 45] is obtained
by introducing an additional variable φi = yifi(xi/yi) for each i. The problem (PRs)

can be then restated as

(SOCPs) min
n∑

i=1

φi + cT y + g(z)

s.t. Ax + By + Cz � b,

φi � yifi(xi/yi), i = 1, · · · , n,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

If the constraints φi � yifi(xi/yi) is SOCP-representable, then the continuous re-
laxation of problem (SOCPs) is an SOCP problem that can be solved efficiently
by interior-point methods [2, 5]. For instance, consider the quadratic case where
fi(xi) = aix

2
i +bixi with ai > 0. Then, yifi(xi/yi) = aix

2
i /yi +bixi . Problem (PRs)

can thus be equivalently rewritten as

min
n∑

i=1

(φi + bixi) + cT y + g(z)

s.t. Ax + By + Cz � b,

φiyi � aix
2
i , φi � 0, i = 1, · · · , n,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

(13)

It is easy to see that φiyi � aix
2
i , φi � 0, yi � 0 can be represented by the following

SOCP constraint:
∥
∥∥∥

√
aixi

φi−yi

2

∥
∥∥∥ � φi + yi

2
, i = 1, · · · , n.

Thus, problem (13) is a mixed-integer SOCP reformulation of (Ps). The standard
MIQP solvers such as CPLEX can be used to solve (13). Computational results in
[21, 31, 48] showed that the SOCP reformulation is more efficient than the standard
MIQP formulation (Ps).
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An alternative way in deriving tractable reformulation from (PRs) is the perspec-
tive cut reformulation proposed in [21–23]. Recall that the convex envelope of the
extended univariate function ĥ(s, t) defined in (6) is given by ψ(s, t) = t ·h(s/t)+dt

when αt � s � βt and t ∈ (0,1]. Assume that h is differentiable. Then,

∇ψ(s, t) =
[
h′(s/t), h(s/t) − s

t
h′(s/t) + d

]T

.

Note that ∇ψ(s, t) only depends on s/t and hence is constant on the line {(s̄t, t) | t ∈
[0,1]} for any s̄ ∈ [α,β]. Recall from the convex analysis that the convex function
ψ(s, t) is fully characterized by its tangent planes. For a given point (s̄, t̄) ∈ dom(ĥ),
the tangent plane of ψ is

v = ψ(s̄, t̄) + ∇T ψ(s̄, t̄)
[
(s, t) − (s̄, t̄)

]
.

Since ∇ψ(s, t) is constant on (s̄t, t), we only need to consider the tangent planes at
(s̄,1) for s̄ ∈ [α,β]. The epigraph epi(ĥ) can be then represented by the following
infinite many linear inequalities:

v � h(s̄) + d + h′(s̄)(s − s̄) + [
h(s̄) + d − h′(s̄)s̄

]
(t − 1), ∀s̄ ∈ [α,β],

which can be simplified to

v � h(s̄)s + [
h(s̄) + d − h′(s̄)s̄

]
t, ∀s̄ ∈ [α,β]. (14)

The inequalities (14) are called perspective cuts [21]. Applying this “linearized” rep-
resentation of epi(ĥ) to the perspective reformulation (PRs), we obtain the following
perspective cut (P/C) reformulation of (Ps):

(PCs) min
n∑

i=1

vi + g(z)

s.t. vi � f ′
i (x̄i )xi + [

fi(x̄i) + ci − f ′
i (x̄i )x̄i

]
yi, ∀x̄i ∈ [li , ui], ∀i,

Ax + By + Cz � b,

liyi � xi � uiyi, yi ∈ {0,1}, i = 1, · · · , n.

Problem (PCs) is a semi-infinite mixed-integer linear programming problem,
which cannot be solved directly. Nevertheless, “localized” subproblems of (PCs) with
a small finite subset of perspective cuts can be embedded in a branch-and-cut frame-
work, where the violated perspective cuts with x̄i = x∗

i /y∗
i are added at each node

when y∗
i is fractional in the optimal solution (x∗, y∗, z∗, v∗) of the continuous sub-

problem of the current node. The above solution scheme can be either implemented
by tailor-made branch-and-cut method (see [21, 22]) or by means of cutcallback
procedures in CPLEX (see [23]).

Computational results in [23] showed that the P/C reformulation is more efficient
than the SOCP reformulation for problems with only semi-continuous variables. As
mentioned in [31], the SOCP reformulation has the advantage featured with a simple
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and straightforward implementation using optimization modeling languages, without
appealing to the specialized branch-and-cut procedures. Moreover, the numerical re-
sults in [48] also suggested that the SOCP reformulation can be more efficient than
the P/C reformulation when cardinality constraint is present with small cardinality K .

A main drawback of the SOCP reformulation is the introduction of additional
variables and constraints that makes the continuous relaxation to be more com-
plex and time-consuming to solve. Recently, Frangioni et al. [24] proposed a pro-
jected perspective reformulation for problem (Ps) with quadratic function fi(xi) =
aix

2
i + bixi . This reformulation is based on a piecewise-quadratic description of

(1/yi)aix
2
i + bixi + ciyi , which is the convex envelope of fi(xi) + ciyi over the

semi-continuous variable. Consequently, the projected perspective reformulation in
[24] is a mixed-integer piecewise-quadratic program whose continuous relaxation
has roughly the same size of the standard continuous relaxation.

4 Quadratic Programming with Semi-continuous Variables and Cardinality
Constraints

In this section, we focus on quadratic programming with semi-continuous variables
and cardinality constraint. This problem is a special case of (P) with convex objective
quadratic function and linear constraints:

(CCQP) min q(x) := xT Qx + cT x

s.t. Ax � b, (15)

eT y � K, (16)

αiyi � xi � uiyi, i = 1, · · · , n, (17)

y ∈ {0,1}n, (18)

where Q is an n × n positive semidefinite matrix, c ∈ �n, A ∈ �m×n, b ∈ �m, K is
an integer satisfying 1 � K � n, 0 < αi < ui . Problem (CCQP) is an important case
of (P) because quadratic objective functions are used in most applications of (P), as
seen in Sect. 2.

4.1 Diagonal Decompositions

As the quadratic objective function q(x) is usually nonseparable, the perspective re-
formulations in Sect. 3 cannot be directly applied to (CCQP). A diagonal decomposi-
tion was proposed in [22] to extract separable terms from the quadratic form xT Qx.
Let d ∈ �n+ with Q − D � 0, where D = diag(d) denotes the diagonal matrix with
d being the diagonal vector. The quadratic objective function of (P) can be then de-
composed as

q(x) = xT (Q − D)x + cT x + xT Dx. (19)

Replacing the separable term xT Dx with its convex envelope over the semi-
continuous variables, which is the sum of the perspective functions of dix

2
i over
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xi ∈ {0} ∪ [αi, ui] for i = 1, · · · , n, the perspective reformulation for (CCQP) has
the following form:

(PR(d)) min xT
(
Q − diag(d)

)
x + cT x +

n∑

i=1

di

(
x2
i /yi

)

s.t. (15), (16), (17), (18).

The SOCP reformulation of (CCQP) is:

(SOCP(d)) min xT
(
Q − diag(d)

)
x + cT x + φT d

s.t.

∥
∥∥∥

xi
φi−yi

2

∥
∥∥∥ � φi + yi

2
, i = 1, · · · , n,

(15), (16), (17), (18).

(20)

On the other hand, using the perspective cuts (14) for quadratic function fi(xi) =
dix

2
i , we obtain the P/C reformulation of (PR(d)):

(PC(d)) min xT
(
Q − diag(d)

)
x + cT x +

n∑

i=1

divi

s.t. vi � 2x̄ixi − x̄2
i yi , ∀x̄i ∈ [αi, ui], i = 1, · · · , n,

(15), (16), (17), (18).

A key issue in implementing the SOCP reformulation (SOCP(d)) and the P/C
reformulation (PC(d)) is how to choose the parameter vector d . A natural choice is
d = (λmin − ε)e when Q is positive definite, where λmin is the minimum eigenvalue
of Q, ε > 0 is a sufficiently small scalar and e is the all one column vector. Frangioni
and Gentile [22] suggested to use a heuristic to find a diagonal matrix D = diag(d)

by solving a simple semidefinite program (SDP):

(SDPs) max
{
eT d | Q − diag(d) � 0, d � 0

}
,

which we will call the “small” SDP problem. Numerical results in [22] show that
this approach favorably compares with the minimum eigenvalue method. A further
question arises: How to find a “better” d in the perspective reformulation?

Zheng et al. [48] proposed an SDP approach for selecting the “best” parame-
ter vector d in the reformulation (SOCP(d)) such that the continuous relaxation of
(SOCP(d)) is as tight as possible.

The continuous relaxation of (SOCP(d)) has the following form:

(SOCP(d)) min xT
(
Q − diag(d)

)
x + cT x + φT d

s.t. 0 � yi � 1, i = 1, · · · , n,

(15), (16), (17), (20).
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The parameter vector d corresponding to the tightest continuous relaxation of
(SOCP(d)) can be found by solving the following problem:

max
{
v
(
SOCP(d)

) | d � 0, Q − diag(d) � 0
}
, (21)

where v(·) denotes the optimal value of problem (·). It was shown in [48] that prob-
lem (21) is equivalent to the following SDP problem:

(SDPl) max − Ks − eT π − τ

s.t.

(
di + μi

1
2 (ci − λi − βiμi)

1
2 (ci − λi − βiμi) πi + s + αiuiμi

)
� 0, i = 1, · · · , n,

(
Q − diag(d) 1

2 (λ + AT η)
1
2 (λ + AT η)T −ηT b + τ

)
� 0,

(s, η,μ,π, d) ∈ �+ × �m+ × �n+ × �n+ × �n+, (τ, λ) ∈ � × �n,

where βi := αi + ui for i = 1, · · · , n.
Compared with the “small” SDP formulation (SDPs) proposed by [22], the for-

mulation (SDPl) has a drawback of having a larger dimension: 4n + m + 2 variables
in (SDPl) compared to only n variables in (SDPs). Also, (SDPl) has n additional
2 × 2 linear matrix inequalities. In spite of the larger size of (SDPl), it can still be
computed efficiently by the interior-point based methods such as SeDuMi due to its
simple structure. The longer time spent on solving the SDP problem (SDPl) could
be well compensated by the savings in the computation time for the SOCP or P/C
reformulations, as witnessed in the computational results in [48].

A Lagrangian decomposition scheme was proposed in [44] for cardinality con-
strained quadratic program with q(x) = xT (HT H)x + xT Dx + cT x (without semi-
continuous variables). In [44], the dual bound is computed by subgradient method
for fixed H and D = diag(d) and is used in a branch-and-bound method. This La-
grangian decomposition method is extended in [48] to give an alternative deriva-
tion of the SOCP reformulation for (CCQP) when a fixed diagonal decomposition is
used.

4.2 Specialized Branch-and-Bound Methods for (CCQP)

In this subsection, we discuss specialized branch-and-bound and branch-and-cut
methods for solving (CCQP).

Since the objective function of (CCQP) is convex, a direct implementation of
branch-and-bound method is possible: At each node of the search tree, solve a
convex quadratic subproblem (CCQP) with all or part of the variables (x, y) and
branch at some yi by forcing yi = 0 or yi = 1. This procedure could be not desir-
able because the number of variables in the continuous relaxation is doubled com-
pared to the number of original decision variables. Bienstock [7] proposed to solve
the subproblem with original variables and a surrogate constraint

∑n
i=1 xi/ui �

K which replaces the constraint
∑n

i=1 yi � K . Clearly,
∑n

i=1 xi/ui � K is valid
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to (CCQP) since xi � uiyi . The continuous subproblem then has the following
form:

min xT Qx + cT x

s.t. Ax � b,

n∑

i=1

xi/ui � K,

xi ∈ [
xl
i , x

u
i

]
, i = 1, · · · , n,

where xl
i and xu

i are lower and upper bounds of xi at the current node; and it is
possible xl

i = xu
i when the variable is fixed. Primal feasible method is used in [7]

for solving the continuous subproblem. The branching in [7] is done directly on
the variable xi instead of on the binary variable yi : Either the constraint xi � 0
is added when xi is branched down or the constraint xi � αi is added when xi is
branched up. Mixed-integer rounding cuts, knapsack cuts and disjunctive cuts for car-
dinality constraint and semi-continuous variables were investigated in [7]. Recently,
strong valid inequalities for semi-continuous knapsack polyhedron and cardinality
constraint were derived in [18, 19]. These cuts can be incorporated into branch-and-
cut methods.

Bertsimas and Shioda [6] proposed a branch-and-bound method where the con-
tinuous subproblem at each node is solved by Lemke’s pivoting method. One of the
advantages of using Lemke’s method in a branch-and-bound method is that the opti-
mal solution of the parent node can be used as an initial point of the Lemke’s method
for solving the continuous subproblem of the current node, because Lemke’s method
can be started from an infeasible basic solution.

Shaw et al. [44] presented a branch-and-bound method for cardinality constrained
mean-variance portfolio problems, where the asset returns are driven by a fac-
tor model. The covariance matrix of the asset returns can be then expressed as
Q = HT H + D, where H ∈ �m×n and D is a nonnegative diagonal matrix. Unlike
the above two exact methods where a quadratic programming relaxation is solved
at each node, the lower bounds in [44] are computed by solving a Lagrangian dual
problem via subgradient method. Recently, [27] derived the optimal control law for
discrete-time cardinality constrained linear-quadratic control problem, in which the
number of time periods where controls can be applied is limited, by using a semi-
definite programming solution scheme.

To provide upper bounds in branch-and-bound or branch-and-cut methods, fast
heuristics are needed to find feasible solutions of (CCQP) at the root node or some
sub-nodes during the branch-and-bound search process. A simple and natural heuris-
tic to generate a feasible solution of (CCQP) is as follows.

Heuristic 1 ([34]) Let x∗ be the optimal solution of the continuous relaxation. Rank
the absolute values of x∗

i as: |x∗
i1
| � |x∗

i2
| � · · · � |x∗

in
|. Resolve the continuous prob-

lem with xij = 0 for j = 1, · · · , n − K and xij � αi for j = n − K + 1, · · · , n. If the
problem is feasible, then the optimal solution is feasible to (CCQP).
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Another heuristic is based on solving the small mixed-integer subproblem of
(CCQP) using branch-and-bound method. The number of variables of the subproblem
is K + κ , where κ is a small integer, e.g., κ = �n/10�. The heuristic can be described
as follows:

Heuristic 2 ([7]) Let x∗ be the optimal solution of the continuous relaxation. Rank
the absolute values of x∗

i as: |x∗
i1
| � |x∗

i2
| � · · · � |x∗

in
|. Set xij = 0 for j = 1, · · · , n−

K − κ in (CCQP). Solve the reduced mixed-integer quadratic program with initial
upper bound obtained from Heuristic 1 (or +∞ if no feasible solution is found by
Heuristic 1). Early termination of the branch-and-bound method for the small reduced
subproblem can be also done by setting a limit on the maximum time, number of
nodes or relative gap. Since K +κ is often much less than n in practice, it is expected
that Heuristic 2 is fast in finding a reasonably good feasible solution of (CCQP). If
the reduced mixed-integer program is infeasible, we can increase κ until the reduced
problem is feasible.

5 Approximate Methods for Cardinality Constrained Problems

In the literature, for a vector x = (x1, · · · , xn)
T ∈ �n, the cardinality function card(x)

is also called (quasi) �0-norm, denoted by ‖x‖0, in sparse optimization literature.
A general form of cardinality constrained mathematical programming can be formu-
lated as

(Pc) min f (x)

s.t. g(x) � 0, h(x) = 0,

‖x‖0 � K,

where f : �n → �, g : �n → �m, h : �n → �p are continuously differentiable func-
tions. (Pc) can be regarded as a special case of (P) without explicit semi-continuous
variables. An important special case of (Pc) is the cardinality constrained quadratic
program where f is quadratic and g and h are affine functions. In particular, the fol-
lowing problem of minimizing a quadratic function under cardinality constraint is of
interest:

(QPc) min
{
xT Qx + cT x | ‖x‖0 � K

}
.

The above formulation includes many applications such as compressed sensing and
subset selection. Specialized convex relaxations for (QPc) are discussed in [4].
A closely related problem to the cardinality constrained quadratic program is the
�0-norm minimization problem or sparse solutions of linear equations:

min
{‖x‖0 | Ax = b

}
.

The reader is referred to [10, 35, 47] for an extensive literature on this problem.
In this section, we describe different inexact methods for (Pc) or its special cases.

These methods are mainly based on various approximations and relaxations of the
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�0-norm function ‖x‖0 except for the penalty decomposition and alternating direction
method in [38]. The suboptimal or local solutions obtained from these approximate
methods can be used to improve the performance of branch-and-bound methods to
find exact solutions of (Pc).

5.1 �p-Norm Approximation

A popular approach in the literature for dealing with �0-norm ‖x‖0 is to replace it
with the �1-norm ‖x‖1. The resulting problem then becomes

min f (x)

s.t. g(x) � 0, h(x) = 0,

‖x‖1 � K.

(22)

The above problem is a convex relaxation of (Pc) when f and g are convex and h is
affine. The �1-norm constraint ‖x‖1 � K in problem (22) can be also incorporated
into the objective function as a regularized or penalized term, yielding the following
convex problem,

min f (x) + λ‖x‖1

s.t. g(x) � 0, h(x) = 0,
(23)

where λ > 0 is a regularization parameter. The approach to replace �0-norm with
�1-norm is called basis pursuit [17]. In contrast to its successful applications in
sparse solution to linear system, the �1-norm approximation problem formulation
(22) or (23), however, does not necessarily produce solutions with desired sparsity
for general cardinality constrained optimization problems. Nonconvex norm �p-norm
(0 < p < 1) can be used to replace ‖x‖0 to enforce a stricter sparsity, leading to the
following nonconvex approximation of (Pc):

min f (x)

s.t. g(x) � 0, h(x) = 0,

‖x‖p � K

(24)

or its regularized problem:

min f (x) + λ‖x‖p
p

s.t. g(x) � 0, h(x) = 0.
(25)

The �p-norm approximation is based on the following property:

lim
p→0+ ‖x‖p = ‖x‖0

for any fixed x (see Fig. 2 for the one-dimensional case).
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Fig. 2 �p-norm functions with different values of p

It is shown in [30] that the �p minimization: min{‖x‖p
p | Ax = b} is strongly NP-

hard when 0 < p < 1. An interior point method is suggested in [30] for the �p min-
imization. Lai and Wang [36] also developed an iterative solution method for the �p

minimization. In [26], it is proved that the �0 and �p minimization problems with
linear equality and inequality constraints are equivalent for some sufficiently small
p > 0. A successive linearization algorithm is proposed in [26] for finding a station-
ary point of the �p minimization problem. Chen et al. [13] proved that the uncon-
strained �q -�p minimization:

min
x∈�n

‖Ax − b‖q
q + λ‖x‖p

p, where q � 1, λ > 0, 0 < p < 1,

is strongly NP-hard. Lower bounds of the parameter λ in the �2-�p minimization for
achieving the sparsity requirement ‖x‖0 � K are established in [13, 14].

5.2 Mangasarian’s Approximation Method

Mangasarian [39] suggested to replace ‖x‖0 by the following exponential function:

φα(x) =
n∑

i=1

(
1 − e−α|xi |)

for some α > 0. It is clear that φα(x) � ‖x‖0 and

lim
α→+∞φα(x) = ‖x‖0

for any fixed x (see Fig. 3 for the one-dimensional case). It is shown in [39] that the
φα minimization and the �0 minimization over polyhedral set are equivalent for some
large α > 0. A successive linearization algorithm is also proposed in [39] to find a
stationary point of the φα minimization problem.
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Fig. 3 Functions 1 − e−α|x| with different values of α

Fig. 4 (a) Function y = sign(|z|); (b) function y = w(z, t)

5.3 DC Approximation

In this subsection, we introduce a DC approach [49] to approximate the �0 norm
function ‖x‖0. We first note that

‖x‖0 =
n∑

i=1

sign
(|xi |

)
, (26)

where sign(z) denotes the sign function of z ∈ � which is discontinuous at 0. Con-
sider the following piecewise linear approximation of sign(|z|):

w(z, t) = min

{
1,

1

t
|z|

}
, (27)

where t > 0 is a parameter (see Fig. 4). It is easy to see that

lim
t→0+ w(z, t) = sign

(|z|)

for any fixed z.
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We see that function w(z, t) can be also expressed as

w(z, t) = 1

t
|z| − 1

t

[
(z − t)+ + (−z − t)+

] = 1

t

[
h(z,0) − h(z, t)

]
,

where a+ = max(a,0) and h(z, t) = (z − t)+ + (−z − t)+. Since h(z, t) is a convex
function of z, w(z, t) is a DC function (difference of two convex functions) of z.
Using w(z, t), we can construct the following piecewise linear underestimation of
the �0-norm function ‖x‖0 for x ∈ �n:

ψ(x, t) =
n∑

i=1

w(xi, t) = 1

t

(

‖x‖1 −
n∑

i=1

h(xi, t)

)

.

We see that ψ(x, t) is a nonsmooth piecewise linear DC function of x and
limt→0+ ψ(x, t) = ‖x‖0 for any fixed x.

A prominent feature of the above piecewise linear DC approximation lies in its
polyhedral properties which can be exploited to construct tighter convex subproblems
using strengthening cuts when linearization method is used to derive convex approx-
imation of the constraint ψ(x, t) � K . In fact, by the definition of w(xi, t), it always
holds w(xi, t) � 1 (i = 1, · · · , n). The convex inner approximation of w(xi, t) � 1 at
yi is

n∑

i=1

1

t
|xi | − 1

t

[
h(yi, t) + ξi(xi − yi)

]
� 1,

where ξi ∈ ∂h(yi, t) for i = 1, · · · , n. The above n inequalities provide strengthen-
ing cuts to the feasible set of the convex subproblems in the linearization method
(see [49]).

5.4 Penalty Decomposition and Alternating Direction Method

Alternating direction method (ADM) or block coordinate decent method is a classical
method in solving convex programming: min(x,y)∈X×Y f (x, y). The idea of ADM
is quite simple and straightforward: The function f (x, y) is minimized over x for
fixed y and minimized over y for fixed x alternatively in the hope that the iterative
sequence {(xk, yk)} eventually converges to the stationary point of the problem. This
method is particularly useful when the problem over (x, y) can be reduced to “easier”
subproblems when either x or y is fixed.

We now consider the problem (Pc) with convex f and g, which can be rewritten
as

min f (x)

s.t. g(x) � 0, h(x) = 0,

x = y,

‖y‖0 � K.
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Penalizing the equality constraints x = y, we obtain

min f (x) + ρ

2
‖x − y‖2

2

s.t. g(x) � 0, h(x) = 0,

‖y‖0 � K.

(28)

We observe that problem (28) reduces to a continuous convex program for fixed y,
and to a minimization of separable quadratic function with cardinality constraint for
fixed x. It turns out the latter problem can be explicitly solved as stated in the follow-
ing lemma.

Lemma 1 ([38]) Consider the problem:

min

{
n∑

i=1

qi(xi) | ‖x‖0 � K, xi ∈ Xi, i = 1, · · · , n

}

, (29)

where qi(0) = 0 (i = 1, · · · , n). Let q∗
i = minxi∈Xi

qi(xi) with minimizer xi = x̄∗
i . Let

{q∗
i }ni=1 be ranked in an increasing order: q∗

i1
� q∗

i2
� · · · � q∗

in
. Then, the optimal

solution x∗ of (29) is given by

x∗
ik

=
{
x̄∗
ik
, 1 � k � K,

0, otherwise.

It is shown in [38] that under some mild conditions, the ADM for (Pc) converges
to a local minimizer of (Pc). Computational results in [38] show that the ADM is
capable of finding feasible solutions of good quality within reasonable computing
time. We remark that alternating direction method for (Pc) can be extended to prob-
lem (CCQP) with semi-continuous variables xi ∈ {0} ∪ [αi, ui], where 0 < αi < ui .
Finally, we point out that the augmented Lagrangian function f (x) + λT (x − y) +
ρ
2 ‖x − y‖2

2 can be also employed in the penalized problem (28).

6 Conclusions

We have summarized in this paper some recent advances in mathematical program-
ming with semi-continuous variables and cardinality constraint. Our focuses are
mainly on theory and solution techniques that are potentially applicable to problems
arising from the real-world applications. On one hand, semi-continuous variables and
cardinality constraint have been widely used in modeling real-world optimization
problems, leading to increasing interests and demands of efficient solution methods
to tackle this kind of discrete constraints. On the other hand, the inherent combina-
torial nature makes it very difficult to find the exact solutions of the problems with
realistic dimension and data structures. The current literature lacks systematic investi-
gation of the theory and solution methods for mathematical programming with semi-
continuous variables and cardinality constraint. Further research efforts are needed
to better our understandings of this class of challenging mathematical programming
problems.
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