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Abstract
In the spatial autologistic model, the dependence parameter is often assumed to be
a single value. To construct a spatial autologistic model with spatial heterogeneity,
we introduce additional covariance in the dependence parameter, and the proposed
model is suitable for the data with binary responses where the spatial dependency
pattern varies with space. Both the maximum pseudo-likelihood (MPL) method for
parameter estimation and the Bayesian information criterion (BIC) formodel selection
are provided. The exponential consistency between themaximum likelihood estimator
and the maximum block independent likelihood estimator (MBILE) is proved for a
particular case. Simulation results show that the MPL algorithm achieves satisfactory
performance inmost cases, and the BIC algorithm ismore suitable formodel selection.
We illustrate the application of our proposed model by fitting the Bur Oak presence
data within the driftless area in the midwestern USA.
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1 Introduction

Spatial data with discrete responses appear very frequently in research on the distri-
bution of species [14, 16, 23], the transmission of diseases [5, 10, 21], and land-use
change [22]. For instance, binary response data can be used to describe the occurrence
of certain wildlife species (e.g., one if present and zero if absent) [23]. For binary data,
the spatial autologistic covariance model is one of the most well-known [4, 13]. Besag
[4] proposed the spatial autologistic covariance model by modeling the conditional
probability of the spatial observationswith respect to their neighbors. In thismodel, the
log-odds of the conditional probability have a linear form relating to the neighboring
observations, where the dependency is described by spatial dependence parameters.
Caragea and Kaiser [8] found that when the spatial dependence parameters in Besag’s
model are large, the observed values will be very close to 1, which makes it difficult
to interpret the practical meaning of the explanatory variable term in applications. To
resolve this problem, Caragea and Kaiser [8] proposed the centered autologistic model
by transforming the neighboring observations.

In a spatial autologistic model, the spatial dependence parameter ηi j describes the
influence of Y j on the conditional probability of Yi . This parameter is often assumed
to be invariant with locations, that is, ηi j = η · I {i ∼ j}, where I {·} is the indicator
function, and i ∼ j means that the observation location si corresponding to Yi is the
neighborhood of the location s j corresponding to Y j . For extensions on the depen-
dence parameter, Augustin et al. [1] assumed that ηi j is inversely proportional to the
distance between these two locations. They fitted the data on the spatial distribution
of wildlife by introducing an extra covariate. Bo et al. [5] used the same method
to fit the record data on hand-foot-and-mouth disease in Mainland China. To fit a
product recommendation model using the past purchase behavior data of customers,
Moon and Russell [17] assumed that ηi j has an exponential distribution structure, e.g.,
ηi j = σ 2 exp(−λ‖si − s j‖), where σ 2 and λ are unknown parameters. For anisotropy
structure, Bardos [2] considered a spatial anisotropic neighboring structure, where ηi j
can have two different values, relating to the horizontal and vertical autocorrelation,
respectively, within the set of neighbors. Caragea and Berg [7] introduced the spatial
anisotropy structure by allowing ηi j to be dependent on the direction of si − s j . How-
ever, these extensions of ηi j are only dependent on si − s j , not on separate si and s j . In
other words, the spatial autologistic models considered in these works are only those
with spatial autocovariance structures invariant with spatial observation locations. Bo
et al. [5] pointed out that this assumption of stationarity may not be suitable when
the range of observations is extensive. For instance, let Yi be a binary response to the
occurrence of a specific disease. The covariate representing the speed of spread may
be related to the climate and socio-economic factors. In a heavily polluted area, the
disease may be more likely to spread due to residents’ lack of immunity. A stationary
spatial model may not fit the data when these factors vary in different locations.

When the observed values come from a continuous random variable, the data with
spatial heterogeneity can be fitted by various non-stationary models. In the literature,
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the kernel convolutionmodel is intuitive, which can be considered aMatérn covariance
model with spatially variant parameters [19, 20]. Parker et al. [20] constructed the
non-stationary model by dividing the observation region into small subregions and
assigningparameters for each subregionwith various values.The spatial autoregressive
model is also a popular non-stationary model, including simultaneous and conditional
autoregressive models. These two models are suitable for the cases where the data
are observed from certain predetermined regions, e.g., the administrative divisions
[12]. The construction of the conditional autoregressive model is similar to that of the
spatial autologistic model. Let Z1, . . . , Zn be continuous variables. Disregarding the
covariates and the observation errors, the conditional distribution of Zi satisfies

Zi | {Z j , j �= i} ∼ N
⎛
⎝∑

j∼i

ci j Z j ,mii

⎞
⎠ , (1.1)

where the notation j ∼ i is defined before, ci j is the spatial autocovariance part, and
mii is the variance part. Hoef et al. [12] pointed out that one can include a covariate
term in ci j , such as the ecological covariate and connectivity structure for each obser-
vation location, which helps make the model suitable for more delicate autocovariance
structures. However, this inclusion is not popular in the literature. Hanks and Hooten
[11] introduced the landscape characteristic covariate xi and assumed that when i ∼ j ,

ci j = exp

{
1

‖si − s j‖

(
x�
i + x�

j

2

)
β

}
, (1.2)

where β is the vector of the unknown parameter. For the simultaneous autoregressive
model, Bera et al. [3] assumed that the element of the weight matrix W comes from
extra spatial data satisfying a linear model. However, to our best knowledge, no pre-
vious work provides a spatial model with binary observations capable of fitting data
with spatial heterogeneity.

Inspired by the work stated above, such as Hanks and Hooten’s work [11] for the
continuous case,we propose in this article a non-stationarymodel for binary responses,
the spatial autologistic covariance model with spatial heterogeneity by generalizing
the autocorrelation parameter ηi j . The Gibbs samplingmethod for data generation, the
maximum likelihood estimation (MLE), two kinds ofmaximumpseudolikelihood esti-
mation (MPL) for parameter estimation, and the Akaike information criterion (AIC)
and Bayesian information criterion (BIC) for parameter selection are all included.
For the maximum block independent likelihood estimation (MBILE), an estimation
similar to the MPL, we prove the exponential consistency for a particular case where
the explanatory variable term is an unknown constant. It is shown from numerical
simulations that our proposed model can characterize the binary response data with
spatial heterogeneity well. The performance of the MPL estimator and the criteria of
variable selection for the simulation are also investigated. To illustrate the application
of our proposed model, we also fit the Bur Oak presence dataset in the driftless area of
the midwestern USA. Results show that, compared to Caragea and Kaiser’s [8] model,
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our proposed model is more capable of describing the spatial varying autocorrelation
relationships and can provide better prediction results for this dataset.

The rest of the article is organized as follows. In Sect. 2, we define the spatial
autologistic model with spatial heterogeneity. In Sect. 3, we give the methods of data
generation, estimation, and variable selection for our proposed model. In Sect. 4, we
prove the exponential consistency of the MBILE estimation. In Sect. 5, we provide
the simulation results. In Sect. 6, we provide the applications for fitting the Bur Oak
presence dataset. Conclusions and discussions are given in Sect. 7.

2 Definition of Our ProposedModel

In this section, for the spatial dataset with binary responses, we propose our model
by generating the spatial autologistic model of Besag [4] and Caragea and Kaiser
[8]. In real applications, the spatial dataset may have spatially varying autocorrela-
tion structures. For instance, consider a disease with infectivity in the epidemic area
stronger than in the non-epidemic area. Then assume that the autocovariance within
the epidemic area is stronger. However, the autocorrelation parameter in the spatial
autologistic covariance model is usually irrelevant to the spatial locations [24]. We
propose the spatial autologistic model with spatial heterogeneity by introducing the
correlation covariate. We extend Caragea and Kaiser [8]’s model by allowing the auto-
correlation parameter to be dependent on the spatial locations. The methods of data
generation, estimation, and selection are also provided for our proposed model.

Consider the binary-valued response Yi = Y (si ), i ∈ {1, . . . , n} observed on
s1, . . . , sn ∈ R

2, where the value of Yi can be zero or one. Besag [4] first proposed
the spatial autologistic model, but the covariate may not reflect the mean value of
the response. To tackle this problem, Caragea and Kaiser [8] proposed the following
centered spatial autologistic model:

logit{ Pr(Yi = 1 | Y j , j �= i)} = x�
i β + η

∑
i∼ j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}
, (2.1)

where x�
i β is the covariate term or the explanatory variable term, β is an unknown

p-dimensional vector of covariate parameters, η is the spatial autologistic parameter,
i ∼ j means that i ∈ A j and j ∈ Ai , where Ai ⊂ {1, . . . , n} is the set of neighbors for
the location si . This model assumes that the conditional distribution of Yi with respect
to the other observed values is only related to the responses observed in the locations
within Ai ; in other words, Pr(Yi = 1 | Y j , j �= i) = Pr(Yi = 1 | Y j , j ∈ Ai ). Thus
Ai is called the set of neighbors. One can set that Ai = {s j : 0 < ‖si − s j‖ ≤ h},
where h is the radius of the neighbor. For instance, when the data are observed on a
regular grid, Besag [4] would set h as the distance between two locations, so there
can be at most four locations for Ai . Such a setting is called the nearest neighborhood
setting. Note that the set of neighbor Ai for location si does not include si itself.

As we have mentioned in Introduction, although this condition allows the spatial
autologistic parameter to change with space, this parameter is usually assumed to be
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a constant or has a simple form with respect to si − s j in the literature. To introduce
the heterogeneity to this model, we allow that η is dependent on i and j and propose
the following spatial autologistic model with spatial heterogeneity:

logit{ Pr(Yi = 1 | Y j , j �= i)} = x�
i β +

∑
i∼ j

ηi j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}
, (2.2)

ηi j = 1

2
γ �(zi + z j )I {i ∼ j}, (2.3)

where x�
i β is the covariate term, i ∼ j means that i ∈ A j and j ∈ Ai , Ai is the

set of neighbors for location si , zi is a predetermined q-dimensional vector, called
the correlation covariate, γ is an unknown q-dimensional vector of parameters, called
the intrinsic correlation parameter. Here zi describes how the autocovariance term ηi j
relates to space. Besag [4] proved that the joint distribution of (Y1, . . . , Yn) exists if
and only if:

• i ∈ A j if and only if j ∈ Ai ;
• ηi j = η j i , and ηi j = 0 when i /∈ A j .

For the simulation, we consider the case of q = 2, where zi = (1, zi )�. Now every
location corresponds to a one-dimensional correlation covariate zi = z(si ) ∈ R.
For instance, if the response means the occurrence of a certain disease, then zi can
represent whether the location lies within the epidemic area; if the response means the
existence of a certain wild animal, then zi can represent the land type, such as whether
the observation located in woodland. In this case,

ηi j = {γ0 + γ1(zi + z j )/2} · I {i ∼ j}, (2.4)

where γ = (γ0, γ1)
�. In this setting, γ1 represents the difference in autocorrelation in

different spatial locations.
In applications, one can choose the correlation covariate zi by application back-

grounds and the information of the dataset, such as the observation locations and the
covariate xi . For instance, in Sect. 6, we will fit the Bur Oak presence data using our
proposedmodel, where zi includes the spatial coordinates and theWhite Oak presence
information. More precisely, we will choose zi = (1, si,1, si,2,Wi ), where (si,1, si,2)
is the coordinate of observation locations, and Wi is the White Oak presence data.
To remove possibly redundant correlation covariate terms in zi , one can perform the
model selection by computing the BIC criterion for models with different zi , which
will be introduced in Sect. 3. The model with the smallest BIC value is the model
selection result.

3 Data Generation, Estimation, andModel SelectionMethods

Next, we will provide the methods of data generation, estimation, and model selection
for our proposed spatial autologistic model.
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Since model (2.2) is defined by conditional probability, we can use Gibbs sampling
to get a sample of (Y1, . . . ,Yn). The algorithm can be stated as follows:

Input: Covariates xi , i ∈ {i, . . . , n}, correlation covariates zi , i ∈ {1, . . . , n},
parameters β, γ .

1. First generate a suitable initial sample y(0) = (y(0)
1 , . . . , y(0)

n ), where y(0)
i ∈ {0, 1},

i ∈ {1, . . . , n}.
2. When y(i) = (y(i)

1 , . . . , y(i)
n ), i ≥ 0 is generated, generate y(i+1) =

(y(i+1)
1 , . . . , y(i+1)

n ) by the following steps:

• Generate y(i+1)
1 ∼ Binom(1, p(i+1)

1 ), where p(i+1)
1 = Pr(Y1 = 1 | Y2 =

y(i)
2 , . . . ,Yn = y(i)

n ) is computed by (2.2);

• Generate y(i+1)
2 ∼ Binom(1, p(i+1)

2 ), where p(i+1)
2 = Pr(Y2 = 1 | Y1 =

y(i+1)
1 ,Y3 = y(i)

3 , . . . ,Yn = y(i)
n ) is generated by (2.2);

. . .

• Generate y(i+1)
n ∼ Binom(1, p(i+1)

n ), where p(i+1)
n = Pr(Yn = 1 | Y1 =

y(i+1)
1 , . . . ,Yn−1 = y(i+1)

n−1 ) is generated by (2.2).

3. Repeat step 2 until the number of generations i reaches a sufficiently large number
M .

Output: A generated sample y(M).
In the simulation, the initial sample y(0)

1 , . . . , y(0)
n is generated from a random

sample of size n from Bernoulli distribution Binom(1, 0.5), and we set M = 1000.
The unknown parameters of our proposed model can be estimated by the maximum

pseudolikelihood (MPL) proposed by Hughes et al. [13]. This method approximates
the logarithm of the probability mass function log{ Pr(Y1, . . . ,Yn)} by the sum of the
logarithm of the conditional probability mass function on each location, e.g.,

log{ Pr(Y1, . . . ,Yn)} ≈
n∑

i=1

log{ Pr(Yi | Y j , j �= i)}. (3.1)

For spatial autologistic model (2.2), the log-pseudolikelihood function is

�(θ | Y1, . . . ,Yn) =
n∑

i=1

[
Yi logit{ Pr(Yi | Y j , j �= i)}

− log
[
1 + exp

[
logit{ Pr(Yi | Y j , j �= i)}]]]

=
n∑

i=1

⎡
⎣Yi

⎡
⎣x�

i β +
∑
i∼ j

ηi j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}⎤
⎦

− log

⎡
⎣1 + exp

⎡
⎣x�

i β +
∑
i∼ j

ηi j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}⎤
⎦
⎤
⎦
⎤
⎦ .

(3.2)
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The maximum point of this function is defined as the MPL estimate of the param-
eter. The MPL can be computed by iterative optimization algorithms, such as the
Nelder-Mead algorithm [18]. In Sects. 5 and 6, we will adopt the R function optim()
(version 4.1.1) for implementing the Nelder-Mead algorithm. The iteration stops when
the improvement of one iteration is smaller than εr (|�| + εr ), where � is the log-
pseudolikelihood function value, and εr is the relative convergence tolerance, for
which the default value is εr = 1.49×10−8, or the square root of the machine epsilon
in double precision.

We can use the following Akaike information criterion (AIC) or Bayesian infor-
mation criterion (BIC) to deal with the variable selection problem for our proposed
model:

AIC = −2�(θ̂ | Y1, . . . ,Yn)+2p; BIC = −2�(θ̂ | Y1, . . . ,Yn)+ log(n)p, (3.3)

where � is the log-pseudolikelihood function, θ̂ is the MPL estimate, p is the number
of unknown parameters, and n is the number of observations. The selection procedure
prefers the model with the smallest AIC or BIC value. In Sect. 5, we will show by
numerical simulations that the BIC criterion is more suitable for variable selection.

For the variable selection procedure, we adopt the forward selection algorithm.
Denote the unknown parameters of our proposed model by θ = (β, γ ) =
(θ1, . . . , θp+q) and the feature set F ⊂ {1, . . . , p + q}, which represents the indices
of selected parameters. We define the model with feature F as our proposed model
which θ j is unknown if j ∈ F and θ j is fixed at zero if j /∈ F . The algorithm is as
follows:

1. Let F = ∅ and BICF = +∞.
2. For i in {1, . . . , p + q}\F :

• Let Fnew = F .
• Fit the proposed model with feature F ∪ {i} and compute the corresponding
BIC value BICF∪{i};

• If BICF∪{i} < BICF , then let Fnew = F ∪ {i} and BICF = BICF∪{i}.

3. If Fnew = F still holds or Fnew = {1, . . . , p + q}, then stop the algorithm. The
model with feature Fnew is the final selected model. If not, let F = Fnew and
continue running Step 2 until the algorithm stops.

4 Exponential Consistency of theMPL Estimator

With the results of Comets [9], for the spatial autologistic model without centering,
the exponential consistency of the maximum likelihood estimation (MLE) and the
maximum block independent likelihood estimation (MBILE) can be proved under a
specific setting. Here the MBILE is an estimator similar to the MPL, which splits the
observation region into several squares and ignores the correlation between different
squares. We assume that the covariate term is a single parameter β0 and the covariate
zi in (2.4) has periodicity.

123



L. Fang et al.

Assume that the data are observed on i ∈ Z
d and the neighborhood structure is the

nearest neighborhood. We further assume that the observations Yi follow

logit
(
Pr{Yi = 1 | Y j : j �= i}) = β0 +

∑
i∼ j

ηi jY j ; (4.1)

ηi j = {γ0 + γ1(z i + z j )/2
} · I {i ∼ j}, (4.2)

where θ = (β0, γ0, γ1) is the unknown parameter, i ∼ j means that the observed
locations i and j are adjacent to the nearest neighborhood definition.

We consider the consistency under increasing domain regime, and the observation
region can be divided into several squares. Without loss of generality, we set d = 2.
In this case, for any i = (i1, i2) ∈ Z

2, we denote the square by

R(i) = {(K1i1 + j1, K2i2 + j2) | j1 = 0, . . . , K1 − 1, j2 = 0, . . . , K2 − 1}, (4.3)

and denote R(0) = R. Note that the square is a regular lattice with K1 ×K2 locations.
The observed value in each square is denoted by

Y [R]
i := YR(i) = {Y(K1i1+ j1,K2i2+ j2) | j1 = 0, . . . , K1 − 1, j2 = 0, . . . , K2 − 1},

(4.4)
and we denote [Y [R]

i ]( j1, j2) = Y(K1i1+ j1,K2i2+ j2). Similarly, we define

z[R]
i := zR(i) = {z(K1i1+ j1,K2i2+ j2) | j1 = 0, . . . , K1−1, j2 = 0, . . . , K2−1}. (4.5)

When z[R]
i is not dependent on i for all i , the correlation covariate has periodicity

with respect to the squares. In this case, Y [R]
i can be regarded as a stationary process

with the observed values relying on X = {0, 1}R . Thus, we can prove the consistency
using the results in Comets [9]. Note that we denote {0, 1}A as the set of mappings
from A to {0, 1} for a countable set A.

We set the observed region as 
n = ∪i=(i1,i2):|i1|≤n,|i2|≤n R(i) = [−K1n, (K1 +
1)n − 1] × [−K2n, (K2 + 1)n − 1], where n ∈ N, and denote Yn as the response
variable in this region.We set the observed values outside this region by yb ∈ {0, 1}
C

n .
In this case, the conditional log-likelihood function for the observed values is

l
n , yb (θ ,Yn) = f
n (θ ,Yn; yb) − log

⎡
⎣ ∑

Ỹn∈{0,1}
n

exp{ f
n (θ, Ỹn; yb)}
⎤
⎦ , (4.6)

where
f
n (θ,Yn; yb) = β0

∑
i∈
n

Ỹi +
∑

i∼ j ,{i, j}∩
n �=∅
ηi j Ỹi Ỹ j ,
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Ỹ = {Ỹi : i ∈ Z
2} is the vector consisting of Yn and yb, where the elements are

Ỹi =
{
Yi i ∈ 
n,

[yb]i i /∈ 
n .

Thus, the value of l
n , yb (θ ,Yn) is only related to θ ,Yn , and the value of yb on
∂
n := {i ∈ 
C

n | ∃ j ∈ 
n, i ∼ j}. Here ∂
n is called the boundary of 
n .
The maximum block independent likelihood estimation (MBILE) is proposed by

Lim et al. [15]. Themain idea is to approximate the conditional log-likelihood function
l
n , yb (θ ,Yn) by the sum of conditional log-likelihood functions on different blocks,
e.g.,

pl
n , yb (θ,Yn) =
∑

i=(i1,i2):|i1|≤n,|i2|≤n

lR(i), y[R]
b (i)(θ ,Y [R]

i ),

where y[R]
b (i) is the vector of Yn and yb, restricted in the region R(i)C . For the MLE

and MBILE, we have the following result of exponential consistency.

Theorem 4.1 Consider the spatial autologistic model with spatially dependent auto-
correlation parameters defined by (4.1) and (4.2),where the autocovariance covariate
zi is periodic with respect to the square R, e.g., z[R]

i defined by (4.5) is not related to
i . Assume that the model is identifiable, denote

θ̂n,yb = argmax
θ

l
n , yb (θ,Yn), θ̃n,yb = argmax
θ

pl
n , yb (θ ,Yn),

are the MLE and MBILE of the parameter θ , respectively. Then ∀ε > 0, there exists
c > 0,δ > 0, which are not related to yb, such that

Prn,θ0

(
‖θ̂n, yb − θ0‖ > ε

)
≤ c exp (− | 
n | δ) ;

Prn,θ0

(
‖θ̃n, yb − θ0‖ > ε

)
≤ c exp (− | 
n | δ) ,

where θ0 is the true value of the parameter, Prn,θ0 is the probability distribution of
Yn, | 
n | is the number of observations when the observation region is 
n.

Proof LetX = {0, 1}R , where R = R(0) is defined by (4.3). For all i = (i1, i2) ∈ Z
2,

the observations on the square R(i) are denoted byY [R]
i ∈ X , see (4.4). For all
 ⊂ Z

2,

denote by Y [R]

 = {Y [R]

i : i ∈ 
} ∈ X
 the observations on the region ∪i∈
R(i),

y[R]
b = {Y [R]

i : i /∈ 
} ∈ X
C
the response value outside the region, and Y [R] ∈ XZ

2

the combinations of the observations Y [R]

 and y[R]

b . Due to the periodicity of z i , let

I (1)
{i} (Y [R]) =

∑
j∈R

[
Y [R]
i

]
j
,

I (2)
{i} (Y [R]) =

∑
j ,�∈R

[
Y [R]
i

]
j

[
Y [R]
i

]
�
,
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I (2)
{i,i+(1,0)}(Y

[R]) =
K2−1∑
j=0

[
Y [R]
i

]
(K1−1, j)

[
Y [R]
i+(1,0)

]
(0, j)

,

I (2)
{i,i+(0,1)}(Y

[R]) =
K1−1∑
j=0

[
Y [R]
i

]
( j,K2−1)

[
Y [R]
i+(0,1)

]
( j,0)

,

I (3)
{i} (Y [R]) = 1

2

∑
j ,�∈R

(z j + z�)
[
Y [R]
i

]
j

[
Y [R]
i

]
�
,

I (3)
{i,i+(1,0)}(Y

[R]) = 1

2

K2−1∑
j=0

(z(K1−1, j) + z(0, j))
[
Y [R]
i

]
(K1−1, j)

[
Y [R]
i+(1,0)

]
(0, j)

,

I (3)
{i,i+(0,1)}(Y

[R]) = 1

2

K1−1∑
j=0

(z( j,K2−1) + z( j,0))
[
Y [R]
i

]
( j,K2−1)

[
Y [R]
i+(0,1)

]
( j,0)

,

then the log-likelihood function l
n , yb (θ ,Yn) of the model satisfies (4.6), where

f
n (θ ,Yn; yb) = β0

∑
i∈I

I (1)
{i} (Y [R])

+ γ0

[∑
i∈I

I (2)
{i} (Y [R]) +

∑
i∈I or i+(1,0)∈I

I (2)
{i,i+(1,0)}(Y

[R])

+
∑

i∈I or i+(0,1)∈I
I (2)
{i,i+(0,1)}(Y

[R])
]

+ γ1

[∑
i∈I

I (3)
{i} (Y [R]) +

∑
i∈I or i+(1,0)∈I

I (3)
{i,i+(1,0)}(Y

[R])

+
∑

i∈I or i+(0,1)∈I
I (3)
{i,i+(0,1)}(Y

[R])
]
,

I = {i = (i1, i2) ∈ Z
2 :| i1 |≤ n, | i2 |≤ n}.

Next, we verify that our model meets the assumptions of Theorem 2.1 of Comets
[9]. Define the following distance on X :

d(a, b) =
{
0, a is the same as b;
1, otherwise,

then X and this distance constitute a Polish space. One can verify that I (1)
{i} , I

(2)
{i} ,

I (2)
{i,i+(1,0)}, I

(2)
{i,i+(0,1)}, I

(3)
{i} , I

(3)
{i,i+(1,0)}, I

(3)
{i,i+(0,1)} are all bounded continuous func-

tions on  = XZ
2
, and I (1)

{i} , I
(2)
{i} , I

(3)
{i} are only dependent on Y [R]

i ; I (2)
{i,i+(0,1)},

I (3)
{i,i+(0,1)} are only dependent on Y [R]

i and Y [R]
i+(1,0); I

(2)
{i,i+(1,0)}, I

(3)
{i,i+(1,0)} are only
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dependent on Y [R]
i and Y [R]

i+(1,0). Moreover, define the shift operator

τi :  → , (τi Y [R]) j = Y [R]
i+ j ,

then for the I (l)
V , l = 1, 2, 3 defined before, one can verify the following properties of

shifting invariance and additivity:

I (l)
V ◦ τi = I (l)

i+V for all i, V , l;⎡
⎣

3∑
m=1

⎧⎨
⎩

∑
V :(0,0)∈V

‖I (l)
V ‖∞

⎫⎬
⎭

⎤
⎦ < ∞.

Finally, the model is identifiable. Then the theorem is proved, since the assumptions
of Theorem 2.1 in Comets [9] hold. ��

5 Numerical Simulations

In this section, numerical simulations will be performed to compare the cases where
the autocorrelation parameter in the spatial logistic model is independent or dependent
on spatial locations. We will consider two settings of the autocorrelation parameter
for the dependent cases, linearly dependent on spatial locations or related to a circular
area. The properties of the MPL estimation and model selection methods will also be
investigated.

5.1 The CaseWhere the Autocorrelation Parameter is Linearly Dependent

Here we set the autocorrelation parameter as being linearly dependent, e.g., the zi ’s
in (2.4) have a linear trend with spatial location si = (si,1, si,2)� with locations
si,1, si,2 ∈ {1, . . . , 30}, and the number of observations is n = 302 = 900. The
observed values follow the autocovariance model

logit{ Pr(Yi = 1 | Y j , j �= i)} = β0 + β1xi +
∑
i∼ j

ηi j
{
Y j − μ j

}
, (5.1)

where

μ j = exp(β0 + β1x j )

1 + exp(β0 + β1x j )
, (5.2)

and the neighborhood structure is the nearest-neighbor scheme. We generate each
xi from independent samples assuming the distribution N (si,1 + si,2 + 4, 1), i ∈
{1, 2, . . . , n} and choose β0 = −2, β1 = 0.1. The values of the covariate xi ’s and the
approximated mean μi ’s are shown in Fig. 1.

In this simulation, we have the following two choices of ηi j :
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Fig. 1 Illustrations of the covariate xi ’s and the approximated mean μi ’s of the observations in the case of
linearly dependent autocorrelation parameter cases

Fig. 2 Illustration of the
covariate zi in (5.4) in the
simulation of linearly dependent
autocorrelation parameter cases

1. The autocorrelation parameter is independent of spatial locations:

ηi j = γ0 · I {i ∼ j}, (5.3)

where γ0 can be 0.5, 1, 1.5.
2. The autocorrelation parameter is linearly dependent on spatial locations:

ηi j = γ1(zi + z j )/2 · I {i ∼ j}, (5.4)

where zi = (si,1 − si,2 + 29)/58. Here, zi has a linear relationship with spatial
locations, ranging from 0 to 1. The values of zi are shown in Fig. 2, indicating that
this model has a smaller spatial autocovariance in the upper left corner and a larger
autocovariance in the bottom right corner. We choose γ1 ∈ {0.5, 1, 1.5}.
In summary, we consider six parameter combinations. For each combination, we

use the MPL estimation to fit model (5.1), where the autocorrelation parameter can
be (5.3), (5.4), or more generally, (2.4). The estimation properties are investigated in
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Fig. 3 Illustrations of a generated sample for each parameter combination in the simulation, where the
autocorrelation parameter is linearly dependent with observation locations

terms of the samplemean and the standard deviation. Formodel selection, we compute
the AIC and BIC for these models, select the model with the smallest criterion values,
and explore their accuracy via the frequency of correct selections.

First,we showa randomlygenerated sample for eachparameter combination, shown
in Fig. 3. The first row is model (5.3), where the autocorrelation parameter does not
change with space, with γ0 ∈ {0.5, 1.0, 1.5}; the second row is model (5.4), where the
autocorrelation parameter is linearly related to the locations, with γ1 ∈ {0.5, 1.0, 1.5}.
One can find that when the autocorrelation parameter does not change with space,
the samples have different patterns for different γ0’s. For instance, when γ0 = 0.5,
the white parts in the figure are small, but they become larger when γ0 = 1.0 and
γ0 = 1.5. This indicates that the samples are smoother for larger γ0’s. In these figures,
for a sample with a larger autocorrelation parameter, the block of the same color is
larger and has a smoother boundary. When the autocorrelation parameter is linearly
related to the locations, one can inspect different smoothness only forγ1 = 1.5. Figures
of samples from different spatial logistic models with large autocorrelation parameters
are distinct. However, if the autocorrelation parameter is small, it is difficult to tell
whether the autocorrelation parameter is related to locations. In this case, one may
need to adopt statistical methods such as model selection to inspect it.

Next, we compare the performance of the maximum pseudolikelihood (MPL) esti-
mates,where the autocorrelationparameter canbe: irrelevant to locations (5.3), linearly
correlated with locations (5.4), or linearly correlated with locations with unknown
intercept (2.4), respectively. Results are shown in Table 1. In Table 1, γ0 and γ1 in
the true model are the values of γ0 and γ1 in models (5.3) and (5.4), respectively. The
estimation results under the correct model are in bold. The number of replicates for
the simulation is 500. Results show that, if the model is correctly specified, then the
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Table 1 Sample mean and standard deviation (in brackets) of the MPL estimation in the simulation, where
the autocorrelation parameters are linearly correlated with locations

True model The autocorrelation is (5.3) The autocorrelation is (5.4)
γ0 = 0.5 γ0 = 1.0 γ0 = 1.5 γ1 = 0.5 γ1 = 1.0 γ1 = 1.5

Fit the model determined by (5.3)

β0 −2.0156 −1.9525 −2.0825 −2.0223 −2.0488 −2.2642

(0.3302) (0.7423) (0.4722) (0.2783) (0.3625) (0.5029)

β1 0.1009 0.0995 0.1007 0.1009 0.1009 0.1044

(0.0105) (0.0189) (0.0176) (0.0089) (0.0113) (0.0137)

γ0 0.4961 1.0092 1.5100 0.2280 0.5081 0.8734

(0.1345) (0.1074) (0.0620) (0.1387) (0.1374) (0.1099)

Fit the model determined by (5.4)

β0 −2.0130 −2.2828 −1.0928 −2.0193 −2.0349 −2.0350

(0.3282) (0.4906) (0.9090) (0.2764) (0.3489) (0.4061)

β1 0.1003 0.1011 0.0158 0.1009 0.1011 0.1012

(0.0103) (0.0131) (0.0207) (0.0088) (0.0111) (0.0120)

γ1 0.8476 1.7357 3.2147 0.4704 0.9899 1.5005

(0.2519) (0.2199) (0.2938) (0.2522) (0.2353) (0.1560)

Fit the more general model determined by (2.4)

β0 −2.0187 −2.0266 −2.0964 −2.0224 −2.0345 −2.0677

(0.3319) (0.7681) (0.5668) (0.2773) (0.3545) (0.5065)

β1 0.1010 0.1012 0.1027 0.1011 0.1012 0.1022

(0.0105) (0.0189) (0.0158) (0.0088) (0.0112) (0.0144)

γ0 0.4812 1.0180 1.5028 −0.0675 −0.0421 −0.0258

(0.3523) (0.2501) (0.1237) (0.3414) (0.3588) (0.3310)

γ1 0.0278 −0.0215 0.0125 0.5842 1.0567 1.5440

(0.6463) (0.4499) (0.2159) (0.6177) (0.6200) (0.4973)

Results when the model is correctly specified are in bold

estimates of β0, β1, and γ0 have no apparent biases for the actual model determined
by (5.3). When the autocorrelation increases, the standard deviations of the estimates
for β0 and β1 first increase and then decrease, whereas the standard deviation of the
estimates for γ0 decreases. If the autocorrelation structure is misspecified as (5.4),
then the estimates of β0 and β1 are biased when the autocorrelation is large. The
estimates are unbiased if the autocorrelation structure is set as (2.4). However, the
standard deviation of the estimates for γ0 is significantly larger than that of the model
determined by (5.3). For the true model determined by (5.4), the estimates of β0, β1,
and γ1 are also unbiased. When the autocorrelation increases, the estimates for β0
and β1 increase, whereas the standard deviation of the estimates for γ1 decreases. If
the autocorrelation structure is misspecified as (5.3), then the estimate of β0 is biased
when the autocorrelation is large. If the autocorrelation structure is set as (2.4), then
the parameter estimates are also unbiased and have a larger variance than the correct
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Table 2 Frequency of the model selection results by the AIC and BIC in the simulation, where the
autocorrelation is linearly related to the locations

True model Model selection results by the AIC Model selection results by the BIC
Constant Linear General Constant Linear General

γ0 = 0.5 0.618 0.240 0.142 0.712 0.250 0.038

γ0 = 1.0 0.798 0.008 0.194 0.960 0.024 0.016

γ0 = 1.5 0.920 0.000 0.080 0.990 0.000 0.010

γ1 = 0.5 0.284 0.524 0.192 0.304 0.668 0.028

γ1 = 1.0 0.188 0.628 0.184 0.190 0.772 0.038

γ1 = 1.5 0.010 0.702 0.288 0.052 0.908 0.040

The model selection frequencies corresponding to the correct results are shown in bold

model. In conclusion, the estimation behaves well when the model is correctly speci-
fied. If one adopts more general autocorrelation structure (2.4), the estimates may have
a larger standard deviation. Therefore, removing redundant parameters in the model
by a model selection procedure can be helpful.

The data generation and estimation are computationally efficient in our simulation
settings. We adopt the 64-bit 20-core Intel Xeon Gold 6248 CPU running at 2.50 GHz
for our computation. The time for generating one sample from the model considered
in this section ranges from 12.62 to 19.84 s. The MPL estimation times for models
(5.3) and (5.4) range from 1.21 to 5.09 s; and 1.21 to 5.75 s, respectively, whereas the
MPL estimation time for model (2.4) ranges from 2.41 to 9.75 s. Therefore, removing
redundant parameters can also cut the computational time.

Finally, we investigate the model selection performance of the AIC and BIC pro-
cedures defined by (3.3). For each parameter combination, we compute the AIC and
BIC for the data, where the autocorrelation parameters in the model can be (5.3),
(5.4), or (2.4). Results on the frequency of determined models are shown in Table 2.
In this table, the “Constant," “Linear," and “General" mean that the autocorrelation
parameter is irrelevant to locations (5.3), linearly correlated with locations (5.4), and
linearly correlated with locations with unknown intercept (2.4). The frequency corre-
sponding to the correct model is in bold. For the true model, γ0 and γ1 represent the
true parameter values in the model determined by (5.3) and (5.4), respectively. Table
2 shows that the model selection works better when the autocorrelation parameter is
larger. Moreover, the BIC procedure is more likely to choose the correct model than
the AIC because the BIC procedure tends to select the model with fewer parameters.
In conclusion, the AIC and BIC both perform well in model selection, where the BIC
is recommended as the better choice.

5.2 The CaseWhere the Autocorrelation Parameter is Dependent with a Circle

Next, we consider the case where the autocorrelation parameter depends on a circular
region. The covariance zi in (2.4) is an indicator function of a circular region. In this
case, if γ1 > 0, then the autocovariance within the circle is stronger than that outside.
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Table 3 List of models for the simulation where the autocorrelation parameter is dependent on a circular
region

Number of models logit{ Pr(Yi = 1 | Y j , j �= i)} ηi j

O1 β0 +∑i∼ j ηi j
{
Y j − μ j

} {γ0 + γ1(zi + z j )/2} · I {i ∼ j}
O2 β0 +∑i∼ j ηi j

{
Y j − μ j

}
γ0 · I {i ∼ j}

O3 β0 +∑i∼ j ηi j
{
Y j − μ j

} {γ1(zi + z j )/2} · I {i ∼ j}
O4 β0 +∑i∼ j ηi j

{
Y j − μ j

}
0

E1 β0 + β1zi +∑i∼ j ηi j
{
Y j − μ̃ j

} {γ0 + γ1(zi + z j )/2} · I {i ∼ j}
E2 β0 + β1zi +∑i∼ j ηi j

{
Y j − μ̃ j

}
γ0 · I {i ∼ j}

E3 β0 + β1zi +∑i∼ j ηi j
{
Y j − μ̃ j

} {γ1(zi + z j )/2} · I {i ∼ j}
E4 β0 + β1zi +∑i∼ j ηi j

{
Y j − μ̃ j

}
0

Assume that the observation region is [0, 1]2, and the observation locations are
((k1 − 0.5)/

√
n, (k2 − 0.5)/

√
n)�, k1, k2 ∈ {1, . . . ,√n}, which is denoted by si =

(si,1, si,2)�, i ∈ {1, . . . , n}. Choose the number of locations as n ∈ {302, 402, 502},
and the observations follow the following autologistic model:

logit{ Pr(Yi = 1 | Y j , j �= i)} = β0 +
∑
i∼ j

ηi j
{
Y j − μ j

}
, (5.5)

where

μ j = exp(β0)

1 + exp(β0)
, (5.6)

with the neighborhood being the nearest neighborhood structure. The autocorrelation
parameter in this model follows (2.3), where zi = I {(si,1 − 0.5)2 + (si,2 − 0.5)2 ≤
0.32}. Thus, the autocorrelation parameters in the circle with center (0.5, 0.5) and
radius 0.3 are larger than that outside the circle. Set β0 = log(0.6/0.4) ≈ 0.4055,
γ0 ∈ {0.5, 1.0}, γ1 ∈ {0, 0.5}, where E{Yi } ≈ 0.6. Note that when γ1 = 0, the
autocorrelation parameter is independent of space. We also take simulations for the
case where E{Yi } ≈ 0.4 or β0 = log(0.4/0.6) ≈ −0.4055. The results are omitted
here due to the resemblance of E{Yi } ≈ 0.6.

Similar to the previous simulation, we first generate one sample and inspect the
properties of the generated data. Then we perform maximum pseudolikelihood esti-
mation to the models with different settings of autocorrelation parameters, using AIC
and BIC (3.3) for model selection, and investigate the results. Consider eight models
in Table 3, where the model for data generation can be model O1 (when γ1 = 0.5) or
model O2 (γ1 = 0), μ j = eβ0/(1 + eβ0), μ̃ j = eβ0+β1z j /(1 + eβ0+β1z j ). Besides the
correct settings, for the autocorrelation parameters in Table 3, we also consider the
case where the parameter is zero if outside the circle and the case where the parameter
is always zero. For the covariance term, we also consider the case where zi is included.
The number of replicates is 200 here in this simulation.

First, we inspect one generated data for each case where n = 502, β0 =
log(0.6/0.4), γ0 ∈ {0.5, 1.0}, γ1 ∈ {0, 0.5}. The results are shown in Fig. 4, where the
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Fig. 4 Illustration of four generated data in simulations where the autocorrelation parameter is dependent
on a circular region

first row represents the case with the autocorrelation parameter being independent of
space (Model O2) and γ0 being 0.5 or 1.0; the second row represents the case with the
autocorrelation parameter being dependent on a circular region (Model O1), γ0 being
0.5 or 1.0 and γ1 = 0.5. Red curves show the circular region. Figure4 shows that
when the autocorrelation parameter is independent of the space, the white or black
parts are more concentrated when the autocorrelation parameter is larger. When the
autocorrelation parameter depends on a circular region, the patterns inside and outside
the circle differ. The difference can be more drastic when γ0 is large. Also, note that
the data have more zero-valued observations inside the circle when γ0 = 1. Thus we
add an extra zi , rendering Models E1–E4 in Table 3.

Next, we investigate the performance of the maximum pseudolikelihood estimation
when β0 = log(0.6/0.4). The results are shown in Tables 4 and 5, where the correct
models are in bold. The bias of β0 is calculated as the sample means of the estimates of
β0 minus its true value, and n is the number of observations. Table 4 shows that when
the autocorrelation parameter is dependent on a circular region (the correct model
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Table 4 Sample mean and standard deviation (in parentheses) of the MPL estimates for fitting Models O1
and O2 in the simulation when the autocorrelation parameter is dependent on a circular region

True model n Fitting model O1 Fitting model O2
Bias of β0 γ0 γ1 Bias of β0 γ0

O1,
γ0 = 0.5

900 0.0088 0.5007 0.4727 −0.0268 0.6506

(0.1255) (0.1182) (0.1901) (0.1428) (0.0967)

O1,
γ0 = 0.5

1600 −0.0037 0.5012 0.4938 −0.0556 0.6546

(0.0794) (0.0891) (0.1444) (0.0926) (0.0680)

O1,
γ0 = 0.5

2500 −0.0029 0.5007 0.4852 −0.0536 0.6544

(0.0747) (0.0659) (0.1047) (0.0787) (0.0558)

O1,
γ0 = 1.0

900 −0.0320 1.0235 0.5187 0.0636 1.1908

(0.3680) (0.1114) (0.2175) (0.6772) (0.0867)

O1,
γ0 = 1.0

1600 0.0394 1.0079 0.5023 0.2139 1.1760

(0.3268) (0.0767) (0.1782) (0.4785) (0.0543)

O1,
γ0 = 1.0

2500 −0.0113 0.9957 0.5265 0.1165 1.1721

(0.2875) (0.0648) (0.1570) (0.6095) (0.0476)

O2,
γ0 = 0.5

900 0.0028 0.4976 0.0048 0.0045 0.4983

(0.0974) (0.1175) (0.1984) (0.0995) (0.1036)

O2,
γ0 = 0.5

1600 0.0027 0.4991 0.0166 0.0039 0.5032

(0.0786) (0.0933) (0.1599) (0.0761) (0.0818)

O2,
γ0 = 0.5

2500 −0.0089 0.4957 0.0098 −0.0074 0.4979

(0.0614) (0.0749) (0.1323) (0.0600) (0.0616)

O2,
γ0 = 1.0

900 −0.1377 1.0063 0.0024 −0.1180 1.0068

(0.4201) (0.1099) (0.1995) (0.4563) (0.0943)

O2,
γ0 = 1.0

1600 −0.1361 0.9990 0.0095 −0.0843 1.0016

(0.3782) (0.0789) (0.1568) (0.4152) (0.0639)

O2,
γ0 = 1.0

2500 −0.1403 1.0052 −0.0085 −0.1054 1.0030

(0.3532) (0.0666) (0.1251) (0.3754) (0.0569)

The results in bold mean that the fitted model is the correct one

123



Spatial Autologistic Model with Generalized Dependent…

Ta
bl
e
5

Sa
m
pl
e
m
ea
n
an
d
st
an
da
rd

de
vi
at
io
n
(i
n
pa
re
nt
he
se
s)

of
th
e
M
PL

es
tim

at
es

fo
r
fit
tin

g
M
od
el
s
E
1
an
d
E
2
in

th
e
si
m
ul
at
io
n
w
he
n
th
e
au
to
co
rr
el
at
io
n
pa
ra
m
et
er

is
de
pe
nd

en
to

n
a
ci
rc
ul
ar

re
gi
on

T
ru
e
m
od

el
n

Fi
tti
ng

m
od
el
E
1

Fi
tti
ng

m
od
el
E
2

B
ia
s
of

β
0

β
1

γ
0

γ
1

B
ia
s
of

β
0

β
1

γ
0

O
1,

γ
0

=
0.
5

90
0

0.
00

85
−0

.0
87

6
0.
50

15
0.
48

07
0.
02

32
−0

.2
26

6
0.
64

10

(0
.1
25

5)
(0
.5
07

9)
(0
.1
18

1)
(0
.2
00

5)
(0
.1
42

3)
(0
.3
20

8)
(0
.0
99

8)

O
1,

γ
0

=
0.
5

16
00

−0
.0
04

0
−0

.0
19

9
0.
50

18
0.
50

52
0.
00

57
−0

.2
64

2
0.
64

57

(0
.0
80

4)
(0
.5
11

2)
(0
.0
89

3)
(0
.1
46

4)
(0
.0
94

1)
(0
.2
49

8)
(0
.0
69

8)

O
1,

γ
0

=
0.
5

25
00

−0
.0
03

1
−0

.0
67

4
0.
50

11
0.
48

99
0.
01

77
−0

.2
89

4
0.
64

54

(0
.0
74

5)
(0
.3
96

0)
(0
.0
65

9)
(0
.1
08

3)
(0
.0
83

1)
(0
.1
91

6)
(0
.0
56

5)

O
1,

γ
0

=
1.
0

90
0

−0
.0
20

2
0.
12

10
1.
02

62
0.
52

77
−0

.1
19

1
−0

.0
83

1
1.
18

21

(0
.4
46

3)
(0
.6
62

6)
(0
.1
12

2)
(0
.2
24

3)
(0
.7
21

4)
(0
.8
91

1)
(0
.1
21

5)

O
1,

γ
0

=
1.
0

16
00

0.
05

60
0.
07

38
1.
00

98
0.
51

23
−0

.0
08

4
−0

.0
81

3
1.
17

56

(0
.3
67

1)
(0
.5
49

3)
(0
.0
76

8)
(0
.1
89

1)
(0
.7
09

3)
(0
.8
33

7)
(0
.0
78

5)

O
1,

γ
0

=
1.
0

25
00

−0
.0
11

4
0.
07

61
0.
99

60
0.
52

71
−0

.0
60

7
−0

.0
65

3
1.
17

19

(0
.3
27

4)
(0
.4
30

8)
(0
.0
65

3)
(0
.1
60

6)
(0
.7
32

4)
(0
.8
11

0)
(0
.0
77

6)

123



L. Fang et al.

Ta
bl
e
5

co
nt
in
ue
d

T
ru
e
m
od

el
n

Fi
tti
ng

m
od
el
E
1

Fi
tti
ng

m
od
el
E
2

B
ia
s
of

β
0

β
1

γ
0

γ
1

B
ia
s
of

β
0

β
1

γ
0

O
2,

γ
0

=
0.
5

90
0

0.
00

49
0.
00

64
0.
49

73
0.
00

40
0.
00

34
0.
00

20
0.
49

68

(0
.1
16

0)
(0
.2
26

8)
(0
.1
17

2)
(0
.2
04

3)
(0
.1
16

7)
(0
.2
00

8)
(0
.1
03

9)

O
2,

γ
0

=
0.
5

16
00

0.
00

23
0.
01

36
0.
49

86
0.
01

49
0.
00

23
0.
00

50
0.
50

18

(0
.0
85

5)
(0
.1
77

0)
(0
.0
93

7)
(0
.1
62

9)
(0
.0
84

9)
(0
.1
60

7)
(0
.0
83

2)

O
2,

γ
0

=
0.
5

25
00

−0
.0
07

6
0.
00

75
0.
49

54
0.
00

87
−0

.0
08

2
0.
00

20
0.
49

70

(0
.0
67

0)
(0
.1
43

2)
(0
.0
75

0)
(0
.1
34

6)
(0
.0
66

2)
(0
.1
29

5)
(0
.0
61

9)

O
2,

γ
0

=
1.
0

90
0

−0
.1
20

6
−0

.0
61

6
1.
00

87
0.
00

81
−0

.1
33

5
−0

.0
59

0
1.
01

14

(0
.4
34

3)
(0
.5
61

0)
(0
.1
08

6)
(0
.2
01

9)
(0
.4
43

5)
(0
.5
57

4)
(0
.0
93

5)

O
2,

γ
0

=
1.
0

16
00

−0
.1
20

9
−0

.0
33

2
1.
00

07
0.
01

43
−0

.1
07

1
−0

.0
32

0
1.
00

50

(0
.4
11

0)
(0
.5
12

0)
(0
.0
79

8)
(0
.1
59

9)
(0
.4
01

6)
(0
.4
99

8)
(0
.0
63

9)

O
2,

γ
0

=
1.
0

25
00

−0
.1
26

1
−0

.0
43

5
1.
00

61
−0

.0
06

1
−0

.1
15

0
−0

.0
32

9
1.
00

47

(0
.3
72

0)
(0
.4
77

3)
(0
.0
66

2)
(0
.1
26

6)
(0
.3
65

5)
(0
.4
50

7)
(0
.0
56

3)

123



Spatial Autologistic Model with Generalized Dependent…

is Model O1 in Table 3), the maximum pseudolikelihood estimation performs well,
for it is unbiased with a small standard deviation for a large number of observations.
When we fit the misspecified model (Model O2 in Table 3), β0 has a larger bias, and
γ0 is overestimated. When the autocorrelation parameter is independent of the space
(Model O2), the maximum pseudolikelihood estimation of γ0 for the correct model
works well. The estimation for β0 in this case also performs well if γ0 = 0.5 but can be
underestimated if γ0 = 1. When we fit Model O1, which has an excessive parameter,
the estimation of β0 and γ0 is similar to that of Model O2, and the estimation of β1 is
close to zero with a small standard deviation for a large number of observations. Thus,
if the model we fit is correct, the maximum pseudolikelihood estimation performs well
unless for Model O2 and γ0 = 1.0.

Then, we investigate the performance of themaximumpseudolikelihood estimation
for the model with an excessive covariance term β1zi . Table 5 shows that when the
true model is Model O1. The fitted model is Model E1; the estimation results of β0,
γ0 and γ1 are similar to the case of fitting the correct model, whereas the estimation
results of β1 are close to zero with a large variance.When the fittedmodel isModel E2,
the estimation of β0 is slightly larger than that of Model O2 when the autocorrelation
parameter is small; and smaller when the autocorrelation parameter is large. The
estimation of β1 is likely to be smaller than zero, with a large standard deviation. The
estimation of γ0 behaves similarly to the case of fittingModel O2, with a large standard
deviation when the autocorrelation parameter is large. When the true model is Model
O2, and the fitted model is Model E2, the estimation results of β0 and γ0 are similar to
the case of fitting the correct model. The mean value of the estimates of β1 is close to
zero, but the standard deviation is larger when γ0 = 1.0. When fitting Model E1, the
estimation results of β0, γ0, and γ1 are similar to the case of fittingModel O1; themean
value of the estimates for β1 is slightly smaller than zero, with the standard deviation
larger when γ0 = 1.0. Thus, if the covariance term has an excessive parameter, such
as β1 in Models E1 and E2, then the estimates of this excessive parameter may have
a large variance, making the model selection necessary for fitting.

For the case when β0 = log(0.4/0.6) ≈ −0.4055, the estimation results are similar
to the case stated above, except for the true model being Model O2 and γ0 = 1.0. In
this latter case, β0 is overestimated.

Note that the data generation andMPL estimation are also computationally efficient
in the simulation in this section. The maximum generation time for the 50 × 50 non-
stationary dataset is 52.82 s, and the maximum MPL estimation time for all cases is
31.85 s. The model with lesser parameters also has a shorter computational time.

Finally, we investigate how AIC and BIC (3.3) perform the model selection. The
results are shown in Tables 6 and 7. Here n is the number of observations, and the
correct selection results are in bold. Tables 6 and 7 show that if the correct model
is Model O1, then the frequencies of correct selections are large for a large n. If the
correct model is Model O2, then such frequencies are nearly invariant to n. Since the
frequency of choosing the correct model via the BIC is larger than that of the AIC, we
recommend the BIC for model selection. When β0 = log(0.4/0.6) ≈ −0.4055, the
AIC and BIC simulation results are similar to the case of β0 ≈ 0.4055.

In conclusion, simulation results show that the distribution of the generated data
from our proposed model significantly differs from the standard autologistic model,
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Table 6 The frequencies of model selection results obtained via the AIC in the simulation where the
autocorrelation parameter is dependent on a circular region

True model n Frequency of correct results obtained via AIC
O1 E1 O2 E2 O3 E3 O4 E4

O1,
γ0 = 0.5

900 0.760 0.140 0.080 0.020 0.000 0.000 0.000 0.000

1600 0.785 0.200 0.015 0.000 0.000 0.000 0.000 0.000

2500 0.855 0.145 0.000 0.000 0.000 0.000 0.000 0.000

O1,
γ0 = 1.0

900 0.760 0.155 0.030 0.055 0.000 0.000 0.000 0.000

1600 0.785 0.200 0.005 0.010 0.000 0.000 0.000 0.000

2500 0.820 0.175 0.000 0.005 0.000 0.000 0.000 0.000

O2,
γ0 = 0.5

900 0.260 0.020 0.670 0.050 0.000 0.000 0.000 0.000

1600 0.245 0.020 0.685 0.050 0.000 0.000 0.000 0.000

2500 0.290 0.040 0.640 0.030 0.000 0.000 0.000 0.000

O2,
γ0 = 1.0

900 0.220 0.030 0.650 0.100 0.000 0.000 0.000 0.000

1600 0.165 0.085 0.630 0.120 0.000 0.000 0.000 0.000

2500 0.205 0.050 0.645 0.100 0.000 0.000 0.000 0.000

The results corresponding to the correct selections are in bold

Table 7 The frequencies of model selection results obtained via the BIC in the simulation where the
autocorrelation parameter is dependent on a circular region

True model n Frequency of correct results obtained via BIC
O1 E1 O2 E2 O3 E3 O4 E4

O1,
γ0 = 0.5

900 0.550 0.005 0.425 0.010 0.010 0.000 0.000 0.000

1600 0.860 0.015 0.125 0.000 0.000 0.000 0.000 0.000

2500 0.990 0.000 0.010 0.000 0.000 0.000 0.000 0.000

O1,
γ0 = 1.0

900 0.670 0.015 0.275 0.040 0.000 0.000 0.000 0.000

1600 0.905 0.000 0.085 0.010 0.000 0.000 0.000 0.000

2500 0.990 0.000 0.005 0.005 0.000 0.000 0.000 0.000

O2,
γ0 = 0.5

900 0.030 0.000 0.970 0.000 0.000 0.000 0.000 0.000

1600 0.045 0.000 0.950 0.005 0.000 0.000 0.000 0.000

2500 0.045 0.000 0.955 0.000 0.000 0.000 0.000 0.000

O2,
γ0 = 1.0

900 0.015 0.000 0.975 0.010 0.000 0.000 0.000 0.000

1600 0.030 0.000 0.945 0.025 0.000 0.000 0.000 0.000

2500 0.015 0.005 0.980 0.000 0.000 0.000 0.000 0.000

The results corresponding to the correct selections are in bold
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Fig. 5 Illustrations of the Bur Oak and White Oak species’ existence data

where the autocorrelation parameter is a constant. Thus, for the data with the spatial
autocorrelation being spatially dependent, we recommend fitting our proposed spatial
autologistic model with generalized dependence parameters (2.2) and (2.3). The max-
imum pseudolikelihood estimation performs well for most cases in our simulation.
For model selection, we recommend the BIC in (3.3).

6 Spatial Distribution of the Bur Oak PresenceWithin the Driftless
Area

In this section, we fit the Bur Oak (Quercus macrocarpa) presence data within the
Driftless Area of the Mississippi River, Midwestern USA, introduced by Caragea and
Berg [7]. The data are collected from the Public Land Survey System (PLSS) dataset
[6], which includes the forest competition information in an area of about 2500 square
mile. In this section, we investigate the data within a 40 × 40 regular grid, where the
area of one grid is one square mile. Figure5 illustrates the observed data of two oak
species, where black indicates presence and white indicates absence. We aim to fit the
presence of the Bur Oak using the information of the White Oak (Quercus alba) and
the locations.

6.1 Fitting theModel with Spatial Heterogeneity

Let Yi and Wi be the presence data of the Bur Oak and the White Oak, respectively,
observed on a regular grid within [0, 1]2. More precisely, the observation locations
are ((i1 − 0.5)/40, (i2 − 0.5)/40), i1, i2 ∈ {1, . . . , 40}, which are ordered lexico-
graphically. Denote si = (si,1, si,2) as the observation location of Yi . We will fit
the following spatial autologistic model with spatial heterogeneity:
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Fig. 6 Illustrations of the fitted approximated mean and the autocovariance term of the Bur Oak presence
data

logit{ Pr(Yi = 1 | Y j , j �= i)} = x�
j β +

∑
i∼ j

ηi j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}
, (6.1)

ηi j = 1

2
γ �(zi + z j )I {i ∼ j}, (6.2)

where β = (β0, β1, β2, β3), γ = (γ0, γ1, γ2, γ3),

x�
i β = β0 + β1si,1 + β2si,2 + β3Wi , γ �zi = γ0 + γ1si,1 + γ2si,2 + γ3Wi ,

Wi is the White Oak presence data, and i ∼ j means that i ∈ A j and
j ∈ Ai , where Ai is the set of neighbors defined in Sect. 2, following the
nearest neighborhood setting. The MPL estimation result of this model is β̂ =
(−0.2092,−2.4866, 0.5768,−0.6805), γ̂ = (0.2119, 0.6474, 0.2294, 0.1838), and
the computational time of this fitting is 57.45 s.

We also adopt the BIC criterion and the forward selection to reduce redundant
parameters in our proposed autologistic model. The fitted model is also defined by
(6.1) and (6.2), where

x�
i β = β1si,1 + β3Wi , γ �zi = γ1si,1 + γ2si,2.

The estimation values are (β̂1, β̂3) = (−2.4448,−0.6518), (γ̂1, γ̂2) =
(0.9076, 0.5244). The computational time of the forward selection procedure is 109.34
seconds.

Figure6 illustrates the fitted approximated mean β̂1si,1 + β̂3Wi and the fitted auto-
covariance γ̂1si,1 + γ̂2si,2. Results show that the approximated mean of the Bur Oak
presence is larger when si,1 is small, and the presence of the White Oak has a negative
impact on the mean. The Bur Oak presence is more closely related to its neighborhood
when si,1 is large.
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Table 8 BIC and Brier skill scores of the fitted models for the Bur Oak presence data

Model type BIC Brier skill score

Proposed model (full) 1629.816 0.1314

Proposed model (BIC selected) 1603.503 0.1302

CK model (full) 1615.707 0.1252

CK model (BIC selected) 1609.795 0.1206

6.2 Comparison of Caragea and Kaiser’s Model

Next, we fit the data to Caragea and Kaiser’s [8] centered model (CK model) and
compare the corresponding BIC value and the prediction performance, assessed by
the Brier skill score. Let p̂i be the estimated conditional probability of Yi = 1 with
respect to its neighbors. The Brier score is defined by

BS = 1

n

n∑
i=1

(Yi − p̂i )
2,

whereas the Brier skill score is defined by comparing BS to the Brier score for a
constant mean model, or more precisely,

BSS := 1 − BS/{Ȳ (1 − Ȳ )},

where Ȳ is the mean value of Y1, . . . ,Yn . A larger BSS indicates a better model
prediction performance.

In this section, the fitted CK model is

logit{ Pr(Yi = 1 | Y j , j �= i)} = x�
i β + η

∑
i∼ j

{
Y j − exp(x�

j β)

1 + exp(x�
j β)

}
,

where
x�
i β = β0 + β1si,1 + β2si,2 + β3Wi ,

and i ∼ j is defined similarly to model (6.1). The MPL estimate of this model is
β̂ = (−0.3898,−2.5096, 1.1114,−0.6196) and η̂ = 0.6778, and the computational
time is 21.04 s. We also use the BIC criterion and the forward selection procedure to
reduce the number of parameters of this model. The reduced x�

i β is

x�
i β = β1si,1 + β3Wi ,

where the parameter estimates are (β̂1, β̂3) = (−2.1983,−0.5974), η̂ = 0.6847. The
computational time of this selection procedure is 43.67 s.

Table 8 shows the BIC and the Brier skill score of different fitted models for the
Bur Oak presence data, where “BIC selected" and “full" mean the model fitting results
with and without the forward selection, respectively. Results show that our proposed
model outperforms the CK model counterparts in the BIC and the Brier skill score,
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indicating that our model has a better prediction performance compared to the CK
model in this dataset.

In conclusion, our proposed spatial autologistic model is suitable for fitting the
data in which the spatial dependency varies with space. Our model provides a better
prediction performance in the sense of the Brier skill score compared to Caragea and
Kaiser’s [8] model for the Bur Oak dataset. The final fitting model of this dataset is
model (6.1), where

x�
i β = −2.4448si,1 − 0.6518Wi , γ �zi = 0.9076si,1 + 0.5244si,2.

7 Conclusion and Discussion

In this article, we have generalized the centered spatial autologistic model by allowing
the autocorrelation parameter to vary with space. This model can be used to fit the
spatial binary dataset where the dependency varies with space. Simulation shows that
whether the autocorrelation parameter varies with space can significantly affect the
pattern of the generated spatial dataset. The maximum pseudolikelihood estimation
performs well in estimating unknown parameters in most cases. Our suggested BIC
can select the correct spatial autologisticmodels, verifyingwhether the autocorrelation
parameter is dependent on space.

The results of stochastic simulations reveal the excellent properties of maximum
pseudo-likelihood estimation. In the future, we could derive some asymptotic prop-
erties of the estimation, such as asymptotic normality, to provide further theoretical
support for estimating spatial logistic models with spatial heterogeneity. Moreover,
the maximum pseudolikelihood estimation may be biased when the autocorrelation
parameter is large and independent of space, so an estimation method with a smaller
bias may be called for. Future studies can also extend the model to fit observations
with respect to time and space and spatial data with an unknown correlation structure
of observed locations.
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