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Abstract
In this paper, we study continuous frames with symmetries from projective represen-
tations of compact groups. In particular, we study maximal spanning vectors in detail
and we prove the existence of maximal spanning vectors for irreducible projective
representations of compact abelian groups by a dimension counting method.
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1 Introduction

Let G be a locally compact group and α ∈ Z2(G, S) be a multiplier. Let π : G →
U(V ) be an irreducible α-representation of G on a complex Hilbert space V (cf.
Definition 1.2). For x ∈ V , if the map G → V (g �→ π(g)x) is a continuous frame
(cf. Definition 1.5), we call x a frame vector for (π, G, V ) and the associated frame
a (G, α)-frame. Let HS(V ) be the space of Hilbert–Schmidt operators on V , and let
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x ⊗ x ∈ HS(V ) be the one-dimensional projection defined by

x ⊗ x : V → V

v �→ 〈v, x〉x .

From the perspective of frames and cyclic representations, a natural question arises:
which triples (π, G, V ) admit an element x ∈ V , such that

Span{π(g)x ⊗ π(g)x | g ∈ G} = HS(V )?

We call such an x ∈ V amaximal spanning vector for (π, G, V ). If x ∈ V is amaximal
spanning frame vector, then the associated frame is phase retrievable, i.e., the map

Tx : V → L2(G)

v �→ (g �→ |〈v, π(g)x〉|)

is injective modulo S, where S is the set of complex numbers with absolute value 1.
In [18], Li et al. showed that if G is a finite abelian group and (π, V ) is any

irreducible projective representation ofG, then the set ofmaximal spanning vectors for
(π, G, V ) is nontrivial and Zariski open in V . Moreover [18] conjectured that the same
holds for all finite groups (cf. [18, Conjecture]). In [8], Cheng et al. conjectured that
there exist infinitely manymaximal spanning vectors for (π, ̂G ×G, L2(G)), where G
is a Hausdorff and second countable locally compact abelian group and π : ̂G × G →
U(L2(G)) is the Weyl–Heisenberg representation of ̂G × G (cf. [8, Conjecture 1.4]).
Moreover, [8, Theorem 1.5] verified the conjecture for a large class of locally compact
abelian groups. A recent computation [9] showed that [8, Conjecture 1.4] holds for G a
local fieldwith residue characteristic 2, hence removed the characteristic assumption of
[8, Theorem 1.5]; the paper [11] studies the phase retrieval property of representations
of nilpotent Lie groups and certain nilpotent p-groups. In this paper, we study the case
where G is a compact group and π is an irreducible projective representation of G.
The main result of this paper is the following.

Theorem 1.1 Let G be a compact group and π : G → V be an irreducible projective
representation of G.

1. Let V ∗ be the dual representation of V and suppose that each irreducible compo-
nent of V ⊗ V ∗ has multiplicity one. Then, x ∈ V is a maximal spanning vector
for V if and only if the projection of x ⊗ x (as an element in V ⊗V ∗ via the natural
isomorphism HS(V ) ∼= V ⊗ V ∗) in each irreducible component of V ⊗ V ∗ is
nontrivial.

2. Suppose that G is abelian. Then, the set

{v ∈ V | v is maximal spanning for (π, G, V )}

is nontrivial and Zariski open in V .
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By the twisted Peter–Weyl Theorem (cf. Sect. 2), irreducible projective representations
of compact groups are finite dimensional and the following conditions are equivalent:

• x ∈ V is a maximal spanning vector for (π, G, V ).
• g �→ π(g)x ⊗ π(g)x is a continuous frame for HS(V ).
• dim Span{π(g)x ⊗ π(g)x | g ∈ G} = (dim V )2.
• dim Span{cπ

π(g)x,π(g)x | g ∈ G} = (dim V )2, where cπ
u,v : G → C (u, v ∈ V ) is

the matrix coefficient defined by

cπ
u,v(h) = 〈π(h)u, v〉.

Theorem 1.1(1) is then deduced from a structure result for (G, α)-frames (Proposition
3.8), and it provides in some cases a practical method to verify whether a vector is
maximal spanning. As projective representations and linear representations are related
by using the Mackey groups (cf. [16]), some results on (G, α)-frames we obtained in
this paper could be deduced from the results in [14]. But we provide different proofs
which are more explicit and more suitable for our application to the study of maximal
spanning vectors. As an opportunity, for G compact, we deduce several properties of
(G, α)-frames in Sect. 3, in particular we characterize the Gramian of (G, α)-frames
(cf. Proposition 3.10 and Corollary 3.12). Theorem 1.1(2) is proved by dimension
counting after a careful study of α-representations of compact abelian groups. For this
part, considering projective representations of G directly is simpler than considering
linear representations of the attached Mackey group G(α), since we could avoid the
complications from the two-step filtration of G(α). Note that in case G is locally
compact, the representation spaces are usually infinite dimensional and the counting
method we used here does not apply.

Due to the reasons explained above, in this paper we consider projective repre-
sentations directly (which include linear representations as a special case with the
multiplier α = 1). The contents of the paper are as follows. In Sect. 2, we review
the twisted Peter–Weyl Theorem and explicitly compute the Fourier transform for α-
representations. This is the main tool we use in Sect. 3, where we study (G, α)-frames
in detail and obtain the necessary results for the study of maximal spanning vectors.
In Sect. 4, we show that Theorem 1.1(1) is an easy consequence of Proposition 3.8 and
prove Theorem 1.1(2). In Sect. 4.3, we study the spanning dimension in the reducible
situation and justify the irreducibility condition in Conjecture 4.2. This is also related
to [18, Problems C, D].

1.1 Notation and Convention

In the following, we recall the definitions of multipliers, α-representations, continuous
frames, etc. The readers could find more details in [12, 16, 20, 23].

Let G be a compact group. Amultiplier (or 2-cocyle) on G is a measurable function
α : G × G → S, such that

1. α(x, y)α(xy, z) = α(x, yz)α(y, z) for any x, y, z ∈ G;
2. α(x, 1) = α(1, x) = 1 for any x ∈ G.
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Twomultipliersα andα′ are similar if there exists ameasurable functionβ : G → S

such that α′(g, h) = α(g, h)
β(gh)

β(g)β(h)
for all g, h ∈ G.

Definition 1.2 Aprojective representationofGwithmultiplierα (or anα-representation
of G) is a map π : G → U(V ), where V is a complex Hilbert space,U(V ) is the space
of unitary operators on V , such that

1. for all v ∈ V , the map G → V (g �→ π(g)v) is measurable;
2. π(g)π(h) = α(g, h)π(gh) for any g, h ∈ G.

Let π : G → U(V ) be a finite dimensional α-representation of G. The character
of π is the map χπ : G → C given by χπ(g) = Tr(π(g)).

Remark 1.3 Let π : G → U(V ) be an α-representation and π ′ : G → U(V ) be
an α′-representation. We say that π and π ′ are equivalent if there exist a measurable
map β : G → S and a unitary isomorphism � : V → V ′ such that �(π(g)v) =
β(g)π ′(g)(�(v)) for all g ∈ G and v ∈ V . In particular, if π and π ′ are equivalent,
then α and α′ are similar multipliers.

Remark 1.4 Let G be a compact group and α ∈ Z2(G, S) be a multiplier. Let G(α)

be the associated Mackey group. It is the set S × G provided with the group structure

(s, g)(s′, g′) = (ss′σ(g, g′), gg′) for all s, s′ ∈ S, g, g′ ∈ G.

If α is continuous, we equip G(α) with the product topology of S and G. If α is
normalized in the sense that α(g, g−1) = 1 for all g ∈ G, we equip G(α) with a
topology in which a basis for the neighborhoods of the identity is composed of the
sets AA−1, where A is a measurable set of finite positive measure for the product of
right Haar measures on S and G. As explained in [16, Page 218], similar normalized
multipliers give us isomorphic and homeomorphicMackey groups. In both cases,G(α)

is a compact topological group. Moreover, let π : G ∈ U(V ) be an α-representation
of G. Then, πα : G(α) → U(V ) ((s, g) �→ sπ(g)) is a linear representation of
G(α). The map π �→ πα defines a bijection between the set of equivalent classes of
α-representations of G and the set of equivalent classes of linear representations of
G(α) with S acting as scalars (cf. [16, Page 223 Corollary]).

Definition 1.5 Let V be a complex Hilbert space and (�,μ) be a measure space with
positive measure μ. A mapping F : � → V is called a continuous frame with respect
to (�,μ), if

1. F is weaklymeasurable, i.e., for all v ∈ V , themapω �→ 〈v, F(ω)〉 is ameasurable
function on �;

2. there exist constants A, B > 0 such that

A‖v‖2 ≤
∫

�

|〈v, F(ω)〉|2 dμ(ω) ≤ B‖v‖2, for all v ∈ V . (1.1)

The constants A and B are called continuous frame bounds. The frame F is called
tight if A = B. A tight frame F is called Parseval if A = B = 1.
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For simplicity, we also say that the family of vectors {F(ω) | ω ∈ �} is a continuous
frame for V .

Let F : � → V be a continuous frame. The synthesis operator T : L2(�,μ) → V
of F is defined by

〈T φ, v〉 =
∫

�

φ(ω)〈F(ω), v〉 dμ(ω), v ∈ V .

The analysis operator T ∗ : V → L2(�,μ) of F is the adjoint of T , i.e.,

(T ∗v)(ω) = 〈v, F(ω)〉, ω ∈ �.

The frame operator S : V → V of F is given by S = T ∗ ◦ T . By [20, Corollary 2.12],
S is invertible and S−1F is a continuous frame. We call S−1F the standard dual frame
of F .

2 The Twisted Peter–Weyl Theorem for Compact Groups

In this section, G is a compact group and α ∈ Z2(G, S) is a multiplier. Let
∫

G · d g
be the Haar measure on G with vol(G) = 1. Denote by ̂Gα the set of isomorphism
classes of finite dimensional irreducible α-representations of G. Let (π, Vπ , α) be a
representative of an element in ̂Gα and denote by [π ] the corresponding isomorphism
class. Fix a G-invariant Hermitian inner product 〈, 〉 on Vπ , which exists by the aver-
aging argument. Given v,w ∈ Vπ , the function f : g �→ 〈π(g)v,w〉 is called a matrix
coefficient of π . Let Aα(G) be the space spanned by all matrix coefficients of finite
dimensional irreducible α-representations of G.

For 1 ≤ p ≤ ∞, let L p(G) be the L p-Banach space with norm ‖ · ‖p for
(G,

∫

G · d g). Given f , f ′ ∈ L2(G), define an inner product by

〈 f , f ′〉2 =
∫

G
f (g) f ′(g) d g. (2.1)

With this inner product, L2(G) is a Hilbert space. Furthermore, f f ′ ∈ L1(G) and we
have the following inequalities.

‖ f f ′‖1 ≤ ‖ f ‖2‖ f ′‖2,
|〈 f , f ′〉2| ≤ ‖ f ‖2‖ f ′‖2 (Schwarz inequality). (2.2)

If f : G → C and g ∈ G, define R(g) f := Rα(g) f : G → C by

(R(g) f )(g0) = α(g0, g) f (g0g)

for all g0 ∈ G. It is easy to check that R(g) f ∈ L2(G) if f ∈ L2(G) and R(g) is an
element in U(L2(G)). Then, R : G → U(L2(G)) defines an α-representation of G
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(cf. Lemma 2.3). We call it the right α-translation or right regular α-representation of
G on L2(G).

As 〈, 〉2 is G-invariant, the α-representation (R, L2(G), α) decomposes as a direct
sum of irreducible α-representations. We have the following twisted version of the
classical Peter–Weyl Theorem.

Theorem 2.1 (The Peter–Weyl theorem) Let G be a compact group, α ∈ Z2(G, S) a
multiplier of G. Then, the following claims hold.

1. Aα(G) is dense in L2(G).

2. Every irreducible unitary α-representation of G is finite dimensional.
3. Fix an element ρ in each class in ̂Gα and denote by dρ the dimension of ρ. Then,

as α-representations of G,

(R, L2(G), α) ∼= ̂⊕[ρ]∈̂Gα
ρ⊕dρ .

4. If ψ ∈ L2(G), then

‖ψ‖22 =
∑

[ρ]∈̂Gα

dρ · Tr(ρψρ∗
ψ) =

∑

[ρ]∈̂Gα

dρ · ‖ρψ‖HS.

Here, ρψ = ∫

G ψ(g)ρ(g)−1 d g; ‖M‖HS = ∑

i, j |mi j |2 for a matrix M = (mi j )

of finite rank.
5. The characters (χρ)[ρ]∈̂Gα

form an orthonormal basis of Hα (Definition 2.7).

From Sect. 2.2, for π : G → U(Vπ ) a finite dimensional projective representation,
we denote by Vπ the associated Hilbert space and by dπ the dimension of Vπ . We fix
an orthonormal basis of the representation space of π for [π ] ∈ ̂Gα and denote it by
{eπ

i | 1 ≤ i ≤ dπ }. Denote by πi j (1 ≤ i, j ≤ dπ ) the matrix coefficients of π with
respect to the fixed basis, i.e.,

πi j (g) = 〈π(g)eπ
j , eπ

i 〉 for all g ∈ G.

Then, {√dππi j | [π ] ∈ ̂Gα, 1 ≤ i, j ≤ dπ } is an orthonormal basis of L2(G).

2.1 Proof of the Peter–Weyl Theorem

Let α and α′ be two similar multipliers. There exists a measurable function β : G → S

with α′(g, h) = α(g, h)
β(gh)

β(g)β(h)
for all g, h ∈ G. If π : G → U(V ) is an α-

representation of G, then π ′ : G → U(V ) given by π ′(g) = β−1(g)π(g) is an
α′-representation. Hence, multiplication by β−1 induces an isomorphism from the
space of matrix coefficients of π to that of π ′. Therefore, Aα(G) = β · Aα′(G).
Moreover, the right regular α-representation and the right regular α′-representation
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are equivalent, as for g ∈ G, we have the following commutative diagram

L2(G)
β−1·−−−−→ L2(G)

Rα(g)

⏐

⏐

�

⏐

⏐

�
β(g)·Rα′ (g)

L2(G) −−−−→
β−1·

L2(G).

In other words, proving Theorem 2.1 for α is equivalent to proving it for α′. By [16,
Lemma 1 and Corollary], in the following we may and do assume that either α is
continuous or it is normalized and continuous in a neighborhood of (1, 1).

Under the above assumption, parts of Theorem 2.1 are easy consequences of the
classical Peter–Weyl Theorem using the Mackey group of G (cf. Theorem [16, The-
orem 1]). For example, irreducible α-representations of G correspond to irreducible
linear representations of G(α); hence, they are finite dimensional. One could also
deduce Theorem 2.1 from the general Plancherel formula for projective representa-
tions of locally compact groups (cf. [17, Theorem 7.1]). Since we could not locate a
reference where Theorem 2.1 is stated as in the above form, we provide a detail proof
of part (1) of the Theorem. This section is independent of the other parts of this paper.

Proposition 2.2 With the notation as above, if either α is continuous or α is normalized
and continuous in a neighborhood of (1, 1), then Aα(G) is dense in L2(G).

The following proof is adapted from the proof of the classical Peter–Weyl Theorem
(see for example [19]), with an extra attention on the multiplier α. We start with some
lemmas.

Lemma 2.3 Let f ∈ L2(G). Then, the map G → L2(G) (g �→ R(g) f ) is measurable
and it is continuous in a neighborhood of 1 ∈ G.

Proof Note that for any f ∈ L2(G), the usual translation map G → L2(G) (g �→
(h �→ f (hg))) is continuous (e.g., [10, 2.42 Proposition]). The measurability follows
as α is a measurable multiplier.

If α : G × G → S is a continuous multiplier, then g �→ R(g) f is a continuous
map from G to L2(G). Otherwise, the multiplier α is normalized and continuous in a
neighborhood of (1, 1) ∈ G × G, the section from G to the associated Mackey group
G(α) (g �→ (1, g)) is continuous in a neighborhood of 1 ∈ G. The continuity claim
follows from this and [16, Theorem 1]. ��
Lemma 2.4 Let f : g �→ 〈π(g)v,w〉 be a matrix coefficient of π . Then, the functions
g �→ α(g, g−1) f (g−1), g �→ α(g, h) f (gh), g �→ α(h, g)α(h−1, h)−1 f (hg) are
matrix coefficients of π . We call them the adjoint of f , the right translation of f , the
left translation of f , respectively.

Proof Note that

f (g−1) = 〈π(g−1)v,w〉 = 〈w,π(g−1)v〉
= 〈π(g)w, π(g)π(g−1)v〉 = α(g, g−1)−1〈π(g)w, v〉. (2.3)
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This shows that g �→ α(g, g−1) f (g−1) is a matrix coefficient. Similarly, it is easy to
see that

f (gh) = α(g, h)−1〈π(g)(π(h)v), w〉,
f (hg) = α(h, g)−1α(h−1, h)〈π(g)v, π(h−1)w〉. (2.4)

The other claims follow easily. ��
Lemma 2.5 Let f ∈ L2(G). For every ε > 0, there exist finitely many gi ∈ G and
Borel sets Bi ⊂ G such that G is the disjoint union of the Bi ’s and ‖R(g) f −
R(gi ) f ‖2 < ε for all i and g ∈ Bi .

Proof By Lemma 2.3, there exists an open neighborhood U of 1 such that ‖R(g) f −
f ‖2 < ε for all g ∈ U . Note that {hU | h ∈ G} is an open cover of G and G
is compact, there exist finitely many g1, . . . , gn such that G = ∪n

i=1giU . Let Bi =
giU − ∪i−1

j=1g jU . It is easy to check that these objects satisfy the property in the
statement. ��
Lemma 2.6 Let f ∈ L2(G) and f1 ∈ L1(G). Define F : G → C by

F(g′) =
∫

G
α(g′, g) f (g′g) f1(g) d g.

Then, F is an element in L2(G) and it is a limit of a sequence of functions, each of
which is a finite linear combination of right translations of f .

Proof Let ε > 0. Choose gi and Bi as in Lemma 2.5. Set ei = ∫

Bi
f1(g) d g. Then,

‖F −
n

∑

i=1

ei R(gi ) f ‖2 ≤
n

∑

i=1

∫

Bi

| f1(g)| · ‖R(g) f − R(gi ) f ‖2 d g

≤
n

∑

i=1

∫

Bi

| f1(g)|ε d g = ε‖ f1‖1.
(2.5)

The lemma follows. ��
Definition 2.7 A function f : G → C is called an α-class function if for all g, h ∈ G,

f (hgh−1) = α(h, h−1)

α(h, gh−1)α(g, h−1)
f (g) = α(h, h−1)

α(h, g)α(hg, h−1)
f (g).

Let Hα denote the closed subspace of L2(G) spanned by square-integrable α-class
functions on G. The characters of finite dimensional α-representations of G belong to
Hα .
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Lemma 2.8 Let f ∈ L1(G). Set

f ′(g) =
∫

G

α(h, gh−1)α(g, h−1)

α(h, h−1)
f (hgh−1) d h.

Then, f ′ is an α-class function on G.

Proof Note that

f ′(i−1gi) =
∫

G

α(h, i−1gih−1)α(i−1gi, h−1)

α(h, h−1)
f (hi−1gih−1) d h

=
∫

G

α(h′i, i−1gii−1(h′)−1)α(i−1gi, i−1(h′)−1)

α(h′i, i−1(h′)−1)
f (h′g(h′)−1) d h′,

where h′ = hi−1. Then, to show that f ′ is an α-class function, it suffices to show that

α(i−1, i)α(h, gh−1)α(g, h−1)α(hi, i−1h−1)

= α(i−1, gi)α(g, i)α(h, h−1)α(hi, i−1gh−1)α(i−1gi, i−1h−1).
(2.6)

Since α(h, i)α(hi, i−1h−1) = α(h, h−1)α(i, i−1h−1), it suffices to show that

α(i−1, i)α(h, gh−1)α(g, h−1)α(i, i−1h−1)

= α(i−1, gi)α(g, i)α(h, i)α(hi, i−1gh−1)α(i−1gi, i−1h−1).
(2.7)

This follows from the following computation.

RHS = α(i−1, gi)α(g, i)α(h, gh−1)α(i, i−1gh−1)α(i−1gi, i−1h−1)

= α(i−1, gi)α(g, i)α(h, gh−1)α(i, i−1gi)α(gi, i−1h−1)

= α(h, gh−1)[α(i−1, gi)α(i, i−1gi)][α(g, i)α(gi, i−1h−1)]
= α(h, gh−1)α(i, i−1)α(g, h−1)α(i, i−1h−1) = LHS.

(2.8)

The lemma follows. ��
Lemma 2.9 Let f : G → C be an α-class function. Then, f ′(g) = α(g, g−1) f (g−1)

is also an α-class function.

Proof One needs to show that

f ′(hgh−1) = α(h, h−1)

α(h, gh−1)α(g, h−1)
f ′(g).

This is equivalent to

α(hgh−1, hg−1h−1)α(h, g−1h−1)α(g−1, h−1)

α(h, h−1)
= α(h, h−1)α(g, g−1)

α(h, gh−1)α(g, h−1)
.
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Note that

α(hgh−1, hg−1h−1)α(h, g−1h−1)α(g−1, h−1)α(h, gh−1)α(g, h−1)

= α(hgh−1, h)α(hg, g−1h−1)α(g−1, h−1)α(h, gh−1)α(g, h−1)

= α(hgh−1, h)α(hg, g−1)α(h, h−1)α(h, g)α(hg, h−1)

= α(h, h−1)[α(h, g)α(hg, g−1)][α(hg, h−1)α(hgh−1, h)]
= α(h, h−1)α(g, g−1)α(h, h−1).

(2.9)

The lemma follows. ��
Lemma 2.10 Let f : G → C be an α-class function. Then,

f (h−1g)

α(h, h−1g)
= f (gh−1)

α(gh−1, h)
.

Proof Since gh−1 = h(h−1g)h−1, it suffices to prove

α(h, h−1)

α(h, h−1gh−1)α(h−1g, h−1)
= α(gh−1, h)

α(h, h−1g)
.

Note that

α(gh−1, h)α(h, h−1gh−1)α(h−1g, h−1)

= α(gh−1, h)α(h, h−1g)α(g, h−1) = α(h, h−1g)α(h−1, h).
(2.10)

The lemma follows. ��
With the above preparation, we can now prove Proposition 2.2.

Proof of Proposition 2.2 LetAα(G) be the closure ofAα(G) in L2(G). SinceAα(G) is
stable under the operations in Lemma 2.4,Aα(G) is also stable under those operations.

Suppose that Aα(G) �= L2(G). Then, Aα(G)
⊥ �= {0} and it is stable under the

operations in Lemma 2.4. Let f0 ∈ Aα(G)
⊥
and f0 �= 0. Let U be a compact and

symmetric neighborhood base at 1 of G. For each U ∈ U , let IU be the characteristic
function on U , |U | the Haar measure of U , and

fU (g) = |U |−1
∫

G
α(g, g0)IU (g0) f0(gg0) d g0.

Since IU , f0 ∈ L2(G), by the Schwarz inequality, we see that fU is a continuous
function on G. Furthermore, f0 = limU→{1} fU in L2(G) (cf. [10, Proposition 2.44]).
Because f0 �= 0, there exist U such that fU �= 0. Since Aα(G) is G-stable by right

translation and the right translation of G on L2(G) is unitary,Aα(G)
⊥
is alsoG-stable.

Hence, linear combinations of right translations of f0 belong toAα(G)
⊥
. By Lemma

123



Some Remarks on Projective Representations of Compact…

2.6, fU ∈ Aα(G)
⊥
. In particular, Aα(G)

⊥
contains a nonzero continuous function.

Let f1 be such a function with f1(1) ∈ R − {0}. Define

f2(g) =
∫

G

α(h, gh−1)α(g, h−1)

α(h, h−1)
f1(hgh−1) d h.

By Lemma 2.8, f2 is an α-class function. It is easy to see that f2(1) ∈ R−{0}. More-
over, for any f ′ ∈ Aα(G), f ′′(g) = α(h−1, g)α(h, h−1)−1α(h−1g, h) f ′(h−1gh) is
also an element in Aα(G) by Lemma 2.4. Since

〈 f2, f ′〉2 =
∫

G
f2(g) f ′(g) d g

=
∫

G

∫

G

α(h, gh−1)α(g, h−1)

α(h, h−1)
f1(hgh−1) f ′(g) d h d g

=
∫

G

∫

G

α(h, h−1g)α(h−1gh, h−1)

α(h, h−1)
f1(g) f ′(h−1gh) d h d g

=
∫

G

∫

G
f1(g) f ′′(g) d g d h = 0,

(2.11)

we have f2 ∈ Aα(G)
⊥
. Define f3(g) = f2(g) + α(g, g−1) f2(g−1). Then, f3 is in

Aα(G)
⊥
and is an α-class function by Lemma 2.9. Moreover, it is easy to check that

f3(g) = α(g, g−1) f3(g−1). Define

K (g, h) = f3(gh−1)α(gh−1, h)−1.

Since

α(hg−1, g)α(gh−1, h) = α(hg−1, gh−1)α(1, h) = α(hg−1, gh−1),

one gets K (g, h) = K (h, g). Define

(T f )(g) =
∫

G
K (g, h) f (h) d h.

Then, T is a nonzero self-adjoint Hilbert–Schmidt operator on L2(G). Hence, T has a
nonzero real eigenvalue γ and the eigenspace Vγ ⊂ L2(G) is finite dimensional (see
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for example [3, I.8.4.1 and I.8.5.5]). Let f ∈ Vγ . Then,

(T (R(g0) f ))(g) =
∫

G
K (g, g1)α(g1, g0) f (g1g0) d g1

=
∫

G
K (g, g1g−1

0 )α(g1g−1
0 , g0) f (g1) d g1

=
∫

G
f3(gg0g−1

1 )
α(g1g−1

0 , g0)

α(gg0g−1
1 , g1g−1

0 )
f (g1) d g1

=
∫

G
f3(gg0g−1

1 )
α(g, g0)

α(gg0g−1
1 , g1)

f (g1) d g1

=
∫

G
K (gg0, g1)α(g, g0) f (g1) d g1

= α(g, g0)(T f )(gg0) = γ (R(g0) f )(g).

(2.12)

The eigenspace Vγ is stable under right translation. Now, R : G → U(Vγ ) is a
finite dimensional α-representation of G. Let W ⊂ Vγ be an irreducible sub-α-
representation and {e1, . . . , en} an orthonormal basis of W . Then,

g �→ 〈R(g)ei , e j 〉2 =
∫

G
α(g0, g)ei (g0g)e j (g0) d g0

is a matrix coefficient in Aα(G). Since f3 ∈ Aα(G)
⊥
, we have

0 =
∫

G
f3(g)

(∫

G
α(g0, g)e j (g0g)e j (g0) d g0

)

d g

=
∫

G

(∫

G
f3(g)α(g0, g)e j (g0g) d g

)

e j (g0) d g0

=
∫

G

(∫

G
f3(g

−1
0 g)α(g0, g−1

0 g)e j (g) d g

)

e j (g0) d g0

=
∫

G

(∫

G
f3(g

−1
0 g)α(g0, g−1

0 g)e j (g0) d g0

)

e j (g) d g

=
∫

G

(∫

G
f3(gg−1

0 )α(gg−1
0 , g0)e j (g0) d g0

)

e j (g) d g (Lemma 2.10)

=
∫

G
(T e j )(g)e j (g) d g = γ 〈e j , e j 〉2.

(2.13)

Hence, γ = 0, which is a contradiction. Therefore, we must have Aα(G) = L2(G).
��
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2.2 The Fourier Transform and˛-Convolution Operators

Fix a multiplier α ∈ Z2(G, S), we equip L2(G) with a structure of ∗-algebra with
respect to α and study it in detail. First, we define a convolution and an involution on
L2(G) with respect to the multiplier α. Let μ, ν ∈ L2(G), the convolution of μ and
ν is defined by

(ν ∗ μ)(x) =
∫

G

α(x, s)

α(s, s−1)
μ(xs)ν(s−1) d s

=
∫

G

α(t−1, x)

α(t−1, t)
μ(t)ν(t−1x) d t,

(2.14)

and the involution is defined by

(μ∗)(x) = μ(x−1)α(x, x−1). (2.15)

Note that since G is compact, by the Minkowski’s integral inequality (cf. [13, Section
6.13]), ν ∗ μ ∈ L2(G) if μ, ν ∈ L2(G). We denote this ∗-algebra by L2(G, ∗). This
is well-defined by the following lemma.

Lemma 2.11 The following two identities hold.

1. (ν ∗ μ)∗ = μ∗ ∗ ν∗.
2. (ν ∗ μ) ∗ φ = ν ∗ (μ ∗ φ).

Proof Since α is a cocyle, it is easy to see that

α(x, s)α(xs, s−1x−1)α(s−1, x−1) = α(x, x−1)α(s, s−1). (2.16)

The first identity then follows from

(μ∗ ∗ ν∗)(x)¯ =
∫

G

α(s, s−1)

α(x, s)
ν∗(xs)μ∗(s−1) d s

=
∫

G

α(s, s−1)

α(x, s)

1

α(xs, s−1x−1)
ν(s−1x−1)

1

α(s, s−1)
μ(s) d s

= α(x, x−1)−1
∫

G

α(s−1, x−1)

α(s, s−1)
μ(s)ν(s−1x−1) d s (by2.16)

= α(x, x−1)−1(ν ∗ μ)(x−1)

= ((ν ∗ μ)∗(x))¯.

(2.17)
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The second identity follows from

(ν ∗ (μ ∗ φ))(x) =
∫

G
(μ ∗ φ)(h)

α(h−1, x)

α(h, h−1)
ν(h−1x) d h

=
∫

G

∫

G
φ(g)

α(g−1, h)

α(g, g−1)

α(h−1, x)

α(h, h−1)
μ(g−1h)ν(h−1x) d g d h

(h = xs) =
∫

G

∫

G
φ(g)

α(g−1, xs)

α(g, g−1)

α((xs)−1, x)

α(xs, (xs)−1)
μ(g−1xs)ν(s−1) d g d s

=
∫

G

∫

G
φ(g)

α(g−1, x)

α(g, g−1)

α(g−1x, s)

α(s, s−1)
μ(g−1xs)ν(s−1) d g d s

=
∫

G

α(g−1, x)

α(g, g−1)
φ(g)

(∫

G

α(g−1x, s)

α(s, s−1)
μ(g−1xs)ν(s−1) d s

)

d g

=
∫

G

α(g−1, x)

α(g, g−1)
φ(g)(ν ∗ μ)(g−1x) d g

= ((ν ∗ μ) ∗ φ)(x).

(2.18)

��
Definition 2.12 Let η ∈ L2(G). We call the operator Oη : L2(G) → L2(G) (φ �→
η ∗ φ) an α-convolution operator. Hence,

Oη(φ)(h) =
∫

G
φ(g)

α(g−1, h)

α(g, g−1)
η(g−1h) d g.

By the associativity of ∗, we have the following identity.

Lemma 2.13 Oν∗μ = Oν ◦ Oμ.

Denote by M∗ the conjugate transpose of a matrix M . For the vector space Mn(C)

of n × n matrices, we fix an inner product by 〈A, B〉 = n Tr(A∗ B). Fix [π ] ∈ ̂Gα and
an orthonormal basis {eπ

i | 1 ≤ i ≤ dπ } of Vπ . The Fourier transform with respect to
π is the linear map

Fπ : L2(G) → End(Vπ ) ∼= Mdπ (C)

f �→ ̂fπ :=
∫

G
f (g)π(g)∗ d g =

∫

G
f (g)π(g)−1 d g.

(2.19)

Define F : L2(G) → ̂⊕[π ]∈̂Gα
Mdπ (C) by F := ̂⊕[π ]∈̂Gα

Fπ . This is an isometry by
the Peter–Weyl theorem.Moreover, it is an isomorphismof∗-algebras by the following
lemma.

Lemma 2.14 Denote by Rξ the right translation with respect to α. The Fourier trans-
form satisfies the following properties.

1. (Rξ f )̂π = π(ξ) ̂fπ .
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2. ( f ∗)̂π = ( ̂fπ )∗.
3. (ν ∗ μ)̂π = ν̂π μ̂π .

Proof From π(g)π(ξ) = α(g, ξ)π(gξ), we have α(g, ξ)π(g)−1 = π(ξ)π(gξ)−1.
Then,

(Rξ f )̂ =
∫

G
(Rξ f )(g)π(g)−1 d g

=
∫

G
α(g, ξ) f (gξ)π(g)−1 d g

= π(ξ)

∫

G
f (gξ)π(gξ)−1 d g = π(ξ) ̂fπ .

(2.20)

Note that

( f ∗)̂π =
∫

G
f ∗(g)π(g)−1 d g =

∫

G
f (g−1)π(g−1) d g

=
(∫

G
f (g−1)π(g−1)−1 d g

)∗
= ( ̂fπ )∗.

(2.21)

This is the second identity. The third identity follows from

ν̂π μ̂π =
∫

G
ν(g)π(g)−1 d g

∫

G
μ(g)π(g)−1 d g

=
∫

G

∫

G
ν(g)π(g)−1μ(t)π(t)−1 d g d t

=
∫

G

∫

G
ν(t−1g)μ(t)π(t−1g)−1π(t)−1 d g d t

=
∫

G

∫

G
ν(t−1g)μ(t)

1

α(t, t−1g)
π(g)−1 d g d t

=
∫

G
(ν ∗ μ)(g)π(g)−1 d g.

(2.22)

��

As a consequence of Schur’s Lemma (cf. [6, Lemma 2.1] and [21, Chapter 4]), we
have

Fπ ′(πi j ) =
{

1
dπ

Edπ , j i if [π ′] = [π ],
O otherwise.

Here, πi j is the matrix coefficient defined right before Sect. 2.1, Ed,i j is the d × d
matrix with (i, j)-entry 1 and other entries 0. An easy computation shows that the
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inverse of F is given by E = ̂⊕[π ]∈̂Gα
Eπ , where

Eπ : Mdπ (C) → L2(G, α)

A �→ (g �→ Tr(Aπ(g))).

The isomorphism of ∗-algebras L2(G, ∗) → ̂⊕[π ]∈̂Gα
Mdπ (C) allows us to study

L2(G, ∗) via the matrix algebra. An immediate consequence, which is useful in the
study of central frames, is the following result.

Lemma 2.15 The center of L2(G, ∗) is spanned by χπ , where χπ is the character of
[π ] ∈ ̂Gα .

Proof This follows from the fact that the center of Mn(C) is the set of scalar matrices.
��

Remark 2.16 Fix a matrix A ∈ Mdπ (C). Let f : G → C be the function defined by

f (g) = Tr(Aπ(g)) = Tr(π(g)A).

Then,

Fπ ′( f (g)) =
{

A, if [π ′] = [π ],
O, otherwise.

In particular, we may choose A = vv∗, where v ∈ Vπ . Then,

f (g) = Tr(π(g)vv∗) = Tr(v∗π(g)v) = 〈π(g)v, v〉.

This is closely related to maximal spanning vectors (cf. Lemma 4.1).

Remark 2.17 [A remark on the left translation] There is a corresponding left α-
translation as well given by

Lg( f )(g′) = α(g, g−1)

α(g−1, g′)
f (g−1g′).

By Eq. (2.16), L : G → U(L2(G)) is an α-representation.
It is easy to check that left α-translation does not behave nicely under the Fourier

transform Fπ . But it behaves well under the Fourier transformwith multiplier 1/α and
this has important applications (e.g., Lemma 2.18(4), Sect. 3.3).

For our application in frame theory, it is convenient to use another ∗-algebra struc-
ture on L2(G), which is constructed as above with α being replaced by 1/α. More
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precisely, the convolution is defined by

(ν � μ)(x) =
∫

G

α(s, s−1)

α(x, s)
μ(xs)ν(s−1) d s

=
∫

G

α(t−1, t)

α(t−1, x)
μ(t)ν(t−1x) d t,

(2.23)

and the involution is defined by

(μ�)(x) = μ(x−1)α(x, x−1)−1. (2.24)

Denote this ∗-algebra by L2(G,�).
Note that there is a correspondence between ̂Gα and ̂G1/α given by π �→ π∗ ∼= π ,

where π∗ is the dual representation of π , π is the complex conjugation of π , and they
are isomorphic as they have the same character. The Fourier transform with respect to
1/α and π is defined by

Fπ : L2(G) → Mdπ
(C)

f �→ ̂fπ :=
∫

G
f (g)π(g)−1 d g.

(2.25)

We collect the properties of L2(G,�) and Fπ . Denote by R′ the right regular
1/α-representation of G on L2(G).

Lemma 2.18 The following claims hold.

1. (ν � μ)� = μ� � ν�.
2. (ν � μ) � φ = ν � (μ � φ).
3. (R′

ξ f )̂π = π(ξ) ̂fπ .

4. (Lξ f )̂π = ̂fππ(ξ)−1.
5. ( f �)̂π = ( ̂fπ )∗.
6. (ν � μ)̂π = ν̂π μ̂π .
7. F = ̂⊕[π ]Fπ : L2(G,�) → ̂⊕[π ]Mdπ

(C) is an isomorphism. The inverse of F is
given by E = ̂⊕Eπ , where

Eπ : Mdπ
(C) → L2(G,�)

A �→ (g �→ Tr(Aπ(g))).
(2.26)

8. The center of L2(G,�) is spanned by χπ = χπ .

3 The (G,˛)-Frames

In this section, for G compact, we study (G, α)-frames. In particular, we give a char-
acterization of the Gramians of (G, α)-frames and classify tight (G, α)-frames.
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3.1 The Gramian

Let V be a finite dimensional Hilbert space (cf. Remark 3.9). Let � = {φg | g ∈ G}
be a continuous frame for V indexed by elements of G. The Gramian of � is given
by

L2(G) → L2(G)

ϕ �→ (h �→
∫

G
ϕ(g)〈φg, φh〉 d g).

(3.1)

In particular, if� is a (G, α)-frame, i.e.,� = {φg := gφ1 | g ∈ G}, then the Gramian
Gram(�) is the operator given by

L2(G) → L2(G)

ϕ �→ (h �→
∫

G
ϕ(g)

α(g, g−1)

α(g−1, h)
〈φ1, φg−1h〉 d g) = η � ϕ.

(3.2)

Here,η : G → C is defined byη(g) = 〈φ1, φg〉. One sees that theGramian of a (G, α)-
frame is an 1/α-convolution operator. The following result shows that the converse
also holds. It is a projective version of [22, Theorem 4.1]. See also [7, Theorem 2.2],
[24, Theorem 5.2] and [15, Theorem 3.2]. This result gives a crude description of the
Gramians of (G, α)-frames. A more explicit description is given by Proposition 3.10
and Corollary 3.12.

Theorem 3.1 Let G be a compact group and V be a finite dimensional Hilbert space.
Assume that � = {φg | g ∈ G} is a continuous frame for V indexed by elements of
G. If Gram(�) is an 1/α-convolution operator, then there exists an α-representation
π : G → U(V ) such that φg = π(g)φ1.

Proof The proof is similar to that of [7, Theorem 2.2]. Let η : G → C be the function
such that Gram(�)(ϕ) = η � ϕ. It suffices to construct a projective representation
U : G → U(V ) with multiplier α such that Ugφh = α(g, h)φgh .

Let �̃ = {φ̃g := S−1φg | g ∈ G} be the canonical dual frame of � (cf. [5,
Definition 1.19, Proposition 1.13] and [20, Section 3]). Here, S is the frame operator
of �. For any v ∈ V , we have

v =
∫

h1∈G
〈v, φ̃h1〉φh1 d h1 =

∫

h1∈G
〈v, φh1〉φ̃h1 d h1. (3.3)

Define U : G → GL(V ) by

Ug(v) =
∫

h1∈G
〈v, φh1〉α(g, h1)φ̃gh1 d h1.

This U satisfies the following properties.
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1. For any g, h, h1 ∈ G, we have

〈φh, φh1〉 = 〈φgh, φgh1〉α(g, h)α(g, h1)
−1. (3.4)

Indeed, consider both sides as functions on h, it suffices to check that

∫

G
ϕ(h)〈φh, φh1〉 d h =

∫

G
ϕ(h)〈φgh, φgh1〉α(g, h)α(g, h1)

−1 d h (3.5)

for any ϕ ∈ L2(G). Let ϕ′ ∈ L2(G) given by

ϕ′(h) = ϕ(g−1h)α(g, g−1h)α(g, h1)
−1.

Then, the claim follows from

∫

G
ϕ(h)〈φgh, φgh1〉α(g, h)α(g, h1)

−1 d h

=
∫

G
ϕ(g−1h)〈φh, φgh1〉α(g, g−1h)α(g, h1)

−1 d h

= (η � ϕ′)(gh1) =
∫

G

α(i, i−1)

α(gh1, i)
ϕ′(gh1i)η(i−1) d i

=
∫

G

α(i, i−1)

α(gh1, i)

α(g, h1i)

α(g, h1)
ϕ(h1i)η(i−1) d i

=
∫

G

α(i, i−1)

α(h1, i)
ϕ(h1i)η(i−1) d i

= (η � ϕ)(h1) =
∫

G
ϕ(h)〈φh, φh1〉 d h.

2. We have

Ug(φh) =
∫

G
〈φh, φh1〉α(g, h1)φ̃gh1 d h1

=
∫

G
〈φgh, φgh1〉α(g, h)φ̃gh1 d h1 = α(g, h)φgh .

3. For any φh1, φh2 ∈ �,

〈Ugφh1, Ugφh2〉 = α(g, h1)

α(g, h2)

α(gh1, (gh1)
−1)

α((gh1)−1, gh2)
η(h−1

1 h2).

We claim that Ug ∈ U(V ), i.e., 〈Ugφh1, Ugφh2〉 = 〈φh1 , φh2〉. To prove this, it
suffices to check that

α(g, h1)

α(g, h2)

α(gh1, (gh1)
−1)

α((gh1)−1, gh2)
= α(h1, h−1

1 )

α(h−1
1 , h2)

.
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Note that

α(g, h1)α(gh1, (gh1)
−1) = α(g, g−1)α(h1, h−1

1 g−1)

and

α((gh1)
−1, gh2)α(g, h2) = α(h−1

1 g−1, g)α(h−1
1 , h2),

it suffices to check that

α(g, g−1)α(h1, h−1
1 g−1) = α(h−1

1 g−1, g)α(h1, h−1
1 ). (3.6)

Multiplying both sides with α(h−1
1 , g−1), it is easy to see that Eq. (3.6) holds,

hence, the claim follows.
4. For any φh ∈ �,

Ug1(Ug2φh) = Ug1(α(g2, h)φg2h)

= α(g2, h)α(g1, g2h)φg1g2h

= α(g1, g2)(α(g1g2, h)φg1g2h) = α(g1, g2)Ug1g2φh .

5. For any v ∈ V , the map g �→ Ug(v) is a measurable function on G as � is a
continuous frame.

Hence, U : G → U(V ) defines a projective representation with multiplier α. It is the
desired projective representation and the theorem follows. ��

3.2 The Tight (G,˛)-Frames

Let � = {φg | g ∈ G} be a (G, α)-frame. Let η : G → C be the function g �→
〈φ1, φg〉. Let Oη := Gram(�) : L2(G) → L2(G) be the associated Gramian and
Fπ (η) ∈ Mdπ (C) be the associated matrix. We have the following result.

Lemma 3.2 With the notation as above, the following conditions are equivalent.

1. � is a tight (G, α)-frame.
2. η � η = λη. Here, λ ∈ R>0.
3. Oη ◦ Oη = λOη. Here, λ ∈ R>0.
4. (Fπ (η))2 = λFπ (η) for any [π ] ∈ ̂Gα . Here, λ ∈ R>0.

Proof Let T : L2(G) → V and T ∗ : V → L2(G) be the synthesis operator and
analysis operator, respectively. Then, the frame operator S is T ◦ T ∗ and the Gramian
is T ∗ ◦ T . Note that � is tight if and only if S = T ◦ T ∗ = λ id for some λ ∈ R>0,
the equivalence between (1) and (3) is obvious. The other equivalences follow from
Lemmas 2.13, 2.14, 2.18. ��

As the projective representations of compact groups behave as the projective rep-
resentations of finite groups, the argument in [7, Sections 2.2, 2.3], which uses the
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equivalence of the first condition and the third condition in Lemma 3.2, works well for
(G, α)-frames with G compact. Let (π, V , α) be a finite dimensional α-representation
of G. Write V = ⊕i∈I Vi as an orthogonal direct sum of irreducible α-representations.
Let v ∈ V be a nonzero vector. Write v = ∑

i∈I vi with vi ∈ Vi (i ∈ I ). We then
have the following result (cf. [7, Section 2], [14, Corollary 5.8]). To ease notation, in
the rest of this section, we write gv for π(g)v.

Theorem 3.3 With the notation as above, Gv = {gv | g ∈ G} is a tight (G, α)-frame
for V if and only if the following two conditions hold:

1. ‖vi ‖2
‖v j ‖2 = dim Vi

dim Vj
for all i, j ∈ I ;

2. 〈σvi , v j 〉 = 0 for any σ ∈ HomRepα
G
(Vi , Vj ) and i �= j .

We adapt the idea in [7, Section 2] and divide the proof of Theorem 3.3 into several
lemmas.Weprovide a complete proof for completeness and for the proof of Proposition
3.8. Note that by using the equivalence of the first condition and the fourth condition
in Lemma 3.2, one may obtain another proof by arguing as [24, Theorem 8.1].

Lemma 3.4 Let (πi , Vi ) (i = 1, 2) be α-representations of G. Let vi ∈ Vi be a nonzero
vector (i = 1, 2). Define S : V1 → V2 by

S := Sv1,v2 : V1 → V2

u �→
∫

G
〈u, gv1〉gv2 d g.

Then, S(hu) = hS(u) for all h ∈ G and u ∈ V1, i.e., S ∈ HomRepα
G
(V1, V2).

Proof The lemma follows from the following computation.

S(hu) =
∫

G
〈hu, gv1〉gv2 d g

=
∫

G
〈h−1(hu), h−1(gv1)〉gv2 d g

=
∫

G

α(h−1, h)

α(h−1, g)α(h, h−1g)
〈u, (h−1g)v1〉h((h−1g)v2) d g

= h

(∫

G
〈u, (h−1g)v1〉(h−1g)v2 d g

)

= h(S(u)).

��
Lemma 3.5 Let (π, V ) be an irreducible α-representation of G and v ∈ V be a
nonzero vector. Then, the family {gv | g ∈ G} (in other words, the map g �→ gv) is a

tight (G, α)-frame for V with frame bounds A = B = ‖v‖2
dim V .

Proof The map g �→ gv is measurable by the definition of α-representations. Define

Sv : V → V

u �→
∫

G
〈u, gv〉gv d g.
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By Lemma 3.4, Sv ∈ HomRepα
G
(V , V ). By Schur’s Lemma, Sv = λv idV . Moreover,

for any u ∈ V ,

∫

G
|〈u, gv〉|2 d g =

∫

G
〈u, gv〉〈gv, u〉 d g

=
∫

G
〈〈u, gv〉gv, u〉 d g

=
〈∫

G
〈u, gv〉gv d g, u

〉

= λv‖u‖2.

(3.7)

To finish the proof, it suffices to show that λv = ‖v‖2
dim V . Fix an orthonormal basis

{w j } j∈J of V . By Eq. (3.7), λv = ∫

G |〈w j , gv〉|2 d g for all j ∈ J . Therefore,

λv dim V =
∑

j∈J

∫

G
|〈w j , gv〉|2 d g

=
∫

G

∑

j∈J

|〈w j , gv〉|2 d g =
∫

G
‖gv‖2 d g = vol(G)‖v‖2 = ‖v‖2.

The lemma then follows and Sv is the frame operator of the attached frame. ��
Lemma 3.6 In the situation as in Theorem 3.3, Gv = {gv | g ∈ G} is a tight (G, α)-
frame for V if and only if the following two conditions hold:

1. ‖vi ‖2
‖v j ‖2 = dim Vi

dim Vj
for all i, j ∈ I ;

2.
∫

G〈vi , gvi 〉gv j d g = 0 for all i �= j .

Proof Note that Gv is tight if and only if there exists λ ∈ R>0 with
∫

g∈G〈 f , gv〉gv =
λ f for all f ∈ V . Assume that Gv is tight. Take fi ∈ Vi , then

∫

G
〈 fi , gv〉gv d g =

∫

G
〈 fi , gvi 〉gv d g

=
∫

G
〈 fi , gvi 〉gvi d g +

∫

G

∑

j �=i

〈 fi , gvi 〉gv j d g.
(3.8)

We must have
{

∫

G〈 fi , gvi 〉gvi d g = λi fi ,
∫

G〈 fi , gvi 〉gv j d g = 0 for any j �= i .
(3.9)

The second condition holds by taking fi = vi . Since Vi is irreducible and vi �= 0, by

Lemma 3.5, we have λi = ‖vi ‖2
dim Vi

. Moreover, λi = λ = λ j . Hence,
‖vi ‖2
‖v j ‖2 = dim Vi

dim Vj
for

all i, j ∈ I . We obtain the first condition as well.
Conversely, assume that conditions (1) and (2) hold. From Eqs. (3.8) and (3.9), to

show that Gv = {gv | g ∈ G} is a tight (G, α)-frame for V , it suffices to show that
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∫

G〈 fi , gvi 〉gv j d g = 0 for any fi ∈ Vi and j �= i . First, take fi = hvi for h ∈ G, by
Lemma 3.4,

∫

G
〈 fi , gvi 〉gv j d g =

∫

G
〈hvi , gvi 〉gv j d g = h(

∫

G
〈vi , (h

−1g)vi )〉(h−1g)v j d g) = 0.

The lemma then follows since
∫

G〈 fi , gvi 〉gv j d g is linear as a map on fi . ��
Lemma 3.7 Let (πi , Vi ) (i = 1, 2) be two irreducible α-representations of G. Let
vi ∈ Vi be a nonzero vector (i = 1, 2). Define S : V1 → V2 by

S := Sv1,v2 : V1 → V2

f �→
∫

G
〈 f , gv1〉gv2 d g.

Then, S = 0 if V1 and V2 are not isomorphic in Repα
G. If σ : V1 → V2 is an

isomorphism in Repα
G , then

S( f ) = ‖v1‖2
(dim V1)‖σv1‖2 〈v2, σv1〉σ( f ) for all f ∈ V1.

Proof By Lemma 3.4, S ∈ HomRepα
G
(V1, V2). By Schur’s Lemma, S = 0 if V1 and

V2 are not isomorphic. Now, suppose that σ : V1 → V2 is an isomorphism of α-
representations. Then, S must be λ · σ for some constant λ. Take f = v1, we have

λ‖σv1‖2 = 〈Sv1, σv1〉 =
〈∫

G
〈v1, gv1〉gv2 d g, σv1

〉

=
∫

G
〈v1, gv1〉〈gv2, σv1〉 d g

=
∫

G
〈v1, gv1〉α(g−1, g)〈v2, g−1(σv1)〉 d g

=
∫

G
〈g−1v1, v1〉〈v2, σ (g−1v1)〉 d g

=
〈

v2, σ

(∫

G
〈v1, gv1〉gv1 d g

)〉

= ‖v1‖2
dim V1

〈v2, σv1〉 (by Lemma 3.5).

The lemma follows. ��
Theorem 3.3 follows easily from Lemmas 3.6 and 3.7. This result is stronger than

[14, Corollary 5.8], which treats the multiplicity free case. Here, an α-representation
is multiplicity free if all of its irreducible components have multiplicity one.

Using the above idea, we prove a result for general (G, α)-frames (not necessarily
tight), which has an application in the study of maximal spanning vectors in Sect. 4.

Proposition 3.8 Let V be a finite dimensional α-representation of G. Write V =
⊕i∈I Vi as an orthogonal direct sum of irreducible α-representations. Let v ∈ V be a
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nonzero vector. Write v = ∑

i∈I vi with vi ∈ Vi (i ∈ I ). Assume that V is multiplicity
free, i.e., Vi and Vj are not isomorphic for any i �= j . Then, v is a frame vector for V
if and only if vi is a frame vector for Vi .

Proof Assume that v is a frame vector for V . Let S be the frame operator of the frame
{gv | g ∈ G}. Then, by Lemma 3.4, S ∈ HomRepα

G
(V , V ). In particular, for each

i ∈ I , S|Vi = λi idVi (λi �= 0). Then, for fi ∈ Vi , we have

λi fi = S( fi ) =
∫

G
〈 fi , gv〉gv d g

=
∫

G
〈 fi , gvi 〉gvi d g +

∑

j �=i

∫

G
〈 fi , gvi 〉gv j d g.

We then have λi = ‖vi ‖2
dim V and vi is a frame vector for Vi .

Conversely, assume that vi is a frame vector for Vi (i ∈ I ). By Lemma 3.7, we have
∫

G〈vi , gvi 〉gv j d g = 0 for all i �= j . The argument in Lemma 3.6 then shows that
∫

G〈 fi , gvi 〉gv j d g = 0 for all fi ∈ Vi and i �= j . Then, for any f ∈ V , let fi be the
projection of f in Vi , we have

∫

G
|〈 f , gv〉|2 d g =

∫

G
|
∑

i∈I

〈 fi , gvi 〉|2 d g

=
∑

i∈I

∫

G
|〈 fi , gvi 〉|2 d g +

∑

i �= j

∫

G
〈 fi , gvi 〉〈gv j , f j 〉 d g

=
∑

i∈I

∫

G
|〈 fi , gvi 〉|2 d g +

∑

i �= j

〈∫

G
〈 fi , gvi 〉gv j d g, f j

〉

=
∑

i∈I

∫

G
|〈 fi , gvi 〉|2 d g.

Then, g �→ gv is a frame for V with frame bounds A = mini∈I { ‖vi ‖2
dim V } and B =

maxi∈I { ‖vi ‖2
dim V }. ��

Remark 3.9 We give an explanation that justifies the assumption dim V < ∞ (cf. [14,
Theorem 5.2]). Let (π, V ) be an α-representation and v ∈ V be a (G, α)-frame vector
with lower frame bound A. Assume that V = ⊕i∈I V ⊕ri

i , where I ⊂ ̂Gα , ri ∈ Z>0,
Vi is an irreducible α-representation with dimension di , Vi � Vj if i �= j . Let vi j

(i ∈ I , 1 ≤ j ≤ ri ) be the projection of v in the j-th component of V ⊕ri
i . We claim

that ri ≤ di for all i ∈ I and I is a finite set.
Indeed, as v is a (G, α)-frame vector, we know that Span{gv | g ∈ G} = V .

Suppose that ri > di for some i ∈ I , then vi1, vi2, . . . , viri are linearly dependent.
Therefore, the projection of Span{gv | g ∈ G} to V ⊕ri

i is not onto and this is a
contradiction.
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Moreover, let f be any element in the j-th component of V ⊕ri
i . Then,

A‖ f ‖2 ≤
∫

G
|〈 f , gv〉|2 d g =

∫

G
|〈 f , gvi j 〉|2 d g = ‖vi j‖2

di
‖ f ‖2.

Therefore, inf{‖vi j‖2 | i ∈ I , 1 ≤ j ≤ ri } ≥ A > 0. Hence, I is a finite set.

3.3 Gramian and Left Regular Translation

Combining the results in Sects. 3.1 and 3.2, in this section we show that an α-
representation (π, G, V ) admits a frame vector if and only if it is a finite dimensional
sub-representation of the left regular α-representation. Let (π, V , α) be a sub-α-
representation of the left regular representation (L, L2(G), α). Let v ∈ V be a nonzero
element. For any u ∈ L2(G), we have

〈u, Lξ v〉 =
∫

G
u(g)(Lξ v)(g) d g

=
∫

G
u(g)

α(ξ−1, g)

α(ξ, ξ−1)
v(ξ−1g) d g

=
∫

G

α(ξ−1, g)α(g−1ξ, ξ−1g)

α(ξ, ξ−1)
u(g)v�(g−1ξ) d g

=
∫

G

α(g−1, g)

α(g−1, ξ)
u(g)v�(g−1ξ) d g (Eq. 2.16)

= (v� � u)(ξ).

(3.10)

We then have the following result, which is more precise than the description in
Sect. 3.1.

Proposition 3.10 Let (π, V , α) be a sub-α-representation of the left regular α-
representation (L, L2(G), α). Let v ∈ V be a nonzero element. If �v = {π(g)v |
g ∈ G} is a (G, α)-frame, then the Gramian of �v is Oη with η = v� � v ∈ L2(G).

Assume that η = v� � v for some v ∈ L2(G) and v �= 0. Consider the space
V = Span{Lξ v | ξ ∈ G} ⊂ L2(G). This is clearly a sub-α-representation of the left
regular representation (L, L2(G), α). Consider the family {Lξ v ∈ V | ξ ∈ G}, if this
is a compact (G, α)-frame for V with frame vector v, then Eq. (3.10) tells us that the
Gramian of this frame is Oη. We provide a characterization of such frame vectors in
L2(G) via Fourier transform with respect to 1/α. Let ed

i be the i-th standard basis in
the vector space C

d . Recall that the Fourier transform F gives us an isometry

F := ̂⊕[π ]∈̂G1/α
Fπ : L2(G) → ̂⊕[π ]∈̂G1/α

Mdπ
(C).
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For each π , let J (π) be the subspace of C
dπ spanned by the columns of the matrices

Fπ (u) with u ∈ V , i.e.,

J (π) = Span{Fπ (u)edπ

i | 1 ≤ i ≤ dπ , u ∈ V }.

By Lemma 2.18(4), we have J (π) = Span{Fπ (v)edπ

i | 1 ≤ i ≤ dπ }. For the vector
space C

dπ , we write an element as a column vector and fix an inner product by
〈u, v〉 = dπ (v∗u). Note that V is finite dimensional if and only if dim J (π) = 0 for
all but finitely many π . We then have the following result.

Theorem 3.11 Let v ∈ L2(G) be a nonzero element and V = Span{Lξ v | ξ ∈
G} ⊂ L2(G). Assume that V is finite dimensional. The following two conditions are
equivalent.

1. The family �v = {Lξ v | ξ ∈ G} is a (G, α)-frame for V with frame bounds
(A, B).

2. For each [π ] ∈ ̂G1/α with dim J (π) > 0, the finite family �v,π = {Fπ (v)edπ

i |
1 ≤ i ≤ dπ } is a frame for J (π) with frame bounds (A, B).

Proof Assume that condition (1) holds. Fix [π] ∈ ̂G1/α . For any w ∈ J (π), define
u ∈ L2(G) by

Fσ (u) =
{

d−1/2
π (w w · · · w) if [σ ] = [π ],

O otherwise.

Then, ‖u‖ = ‖d−1/2
π (w w · · · w)‖ = ‖w‖. Note that

∫

G
|〈u, Lξ v〉|2 d g = ‖v� � u‖2 (Eq. 3.10)

=
∑

[σ ]∈̂G1/α

‖Fσ (v�)Fσ (u)‖2

= ‖Fπ (v�)Fπ (u)‖2 =
dπ
∑

i=1

|〈w,Fπ (v)edπ

i 〉|2.

(3.11)

Condition (2) then follows from

A‖w‖2 = A‖u‖2 ≤
∫

G
|〈u, Lξ v〉|2 =

dπ
∑

i=1

|〈w,Fπ (v)edπ

i 〉|2

≤ B‖u‖2 = B‖w‖2.

Conversely, suppose that condition (2) holds. For every u ∈ V ⊂ L2(G),

‖u‖2 = ‖F(u)‖2 =
∑

[σ ]∈̂G1/α

‖Fσ (u)‖2 =
∑

[σ ]∈̂G1/α

dσ
∑

i=1

‖Fσ (u)edσ

i ‖2.
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Then, condition (1) follows from

A‖u‖2 =
∑

[σ ]∈̂G1/α

dσ
∑

i=1

A‖Fσ (u)edσ

i ‖2

≤
∑

[σ ]∈̂G1/α

dσ
∑

i=1

dσ
∑

j=1

|〈Fσ (u)edσ

i ,Fσ (v)edσ

j 〉|2

=
∫

G
|〈u, Lξ v〉|2 d ξ (Eq. 3.10)

≤
∑

[σ ]∈̂G1/α

dσ
∑

i=1

B‖Fσ (u)edσ

i ‖2 = B‖u‖2.

The theorem follows. ��

Combining with Remark 3.9 and the Peter–Weyl theorem, we obtain the following
result.

Corollary 3.12 1. Let v ∈ L2(G) be a nonzero element and V = Span{Lξ v | ξ ∈ G}.
Then, �v = {Lξ v | ξ ∈ G} is a (G, α)-frame for V if and only if V is finite
dimensional.

2. Let π : G → U(V ) be an α-representation. Then, π admits a frame vector if and
only if π is isomorphic to a finite dimensional sub-representation of the left regular
α-representation (L, L2(G), α). Therefore, π admits a frame vector if and only if
π admits a Parseval frame vector.

4 Maximal Spanning Vectors

In this section, we study maximal spanning vectors for α-representations of compact
groups.

4.1 Basic Properties

Let π : G → U(V ) be a finite dimensional α-representation of G over a complex
Hilbert space V . Denote by d the dimension of V . Let (π∗, V ∗) be the dual projective
representation of (π, V ) and (π, V = V ) be the complex conjugation of (π, V ). Then,
π∗ ∼= π as they have the same character.

For any x ∈ V , denote by x∗ ∈ V ∗ the linear functional defined by u �→ 〈u, x〉.
For any u, v ∈ V , we have a matrix coefficient cπ

u,v : G → C defined by

cπ
u,v(h) = v∗(π(h)u) = 〈π(h)u, v〉.
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Denote by Cπ ⊂ L2(G), the spanning space of matrix coefficients of V , i.e.,

Cπ = Span{cπ
u,v | u ∈ V , v ∈ V } ⊂ L2(G).

Fix a basis {ui | 1 ≤ i ≤ d} of V , then {cπ
ui ,u j

| 1 ≤ i, j ≤ d} is a spanning set of Cπ .
Define

Cu,v = Span{cπ
π(g)u,π(g)v | g ∈ G} ⊂ L2(G).

Certainly, every element cπ
π(g)u,π(g)v is a matrix coefficient of V . Hence, dim Cu,v ≤

(dim V )2. If the equality holds, we say that (u, v) is a maximal spanning pair for V .
The following lemma is an easy consequence of the results in Sects. 2 and 3.

Lemma 4.1 With the above notation, the following conditions are equivalent.

1. x ∈ V is a maximal spanning vector for (π, G, V ).
2. g �→ π(g)x ⊗ π(g)x is a continuous frame for HS(V ).
3. dim Span{π(g)x ⊗ π(g)x | g ∈ G} = (dim V )2.
4. Fix an isomorphism V ∼= C

d , Span {π(g)x(π(g)x)∗ | g ∈ G} = Md(C).

5. dim Span{cπ
π(g)x,π(g)x | g ∈ G} = (dim V )2.

A maximal spanning vector x ∈ V is automatically phase retrievable in the sense
that the function g �→ |〈v, π(g)x〉| in L2(G) uniquely (up to a unimodular scalar)
determines v. We refer to [1, 2, 4, 18] for more information on the relation between
maximal spanning vectors and the phase retrieval problems. In this section, we focus
on a generalized version of [18, Conjecture].

Conjecture 4.2 Let G be a compact group and α ∈ Z2(G, S) be a multiplier. If π :
G → U(V ) is an irreducible α-representation, then there exists a maximal spanning
vector for V .

Remark 4.3 If π : G → U(V ) is an irreducible α-representation, V ⊗ V ∗ is a sub-
representation of the linear left regular representation. From Corollary 3.12, V ⊗ V ∗
admits frame vectors. The conjecture claims that it admits a frame vector of the form
x ⊗ x∗. Moreover, if x ∈ V is a maximal spanning vector for V , then for any g ∈ G,
π(g)x is also a maximal spanning vector for V .

In [18], Li et al. verified this conjecture for finite abelian groups and certain meta-
cyclic groups.We remark that the irreducibility condition inConjecture 4.2 is necessary
(cf. Section4.3).

Denote by ̂G(= ̂G1) the dual space of G. If V ⊗ V ∗ is multiplicity free, then for
each [ρ] ∈ ̂G, we have a canonical projection V ⊗ V ∗ → Vρ given by

Pρ =
∫

t∈G
χρ(t−1)π ⊗ π∗(t) d t .

Here, χρ is the character of ρ. The following result and Theorem 1.1(1) follow imme-
diately from Proposition 3.8 and Lemma 4.1.
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Proposition 4.4 If V ⊗ V ∗ is multiplicity free, then (u, v) ∈ V ⊕ V is a maximal
spanning pair for (π, V ) if and only if Pρ(u⊗v∗) �= 0 for any ρ ∈ ̂G with Hom (ρ, π⊗
π∗) �= 0.

4.2 The Abelian Case

We show that Conjecture 4.2 holds for compact abelian groups. In the following,
G is a compact abelian group, (π, V , α) is an irreducible α-representation of G, ̂G
is the dual group of G. Assume further that the cohomology class [α] ∈ H2(G, S)

is nontrivial. Otherwise, α-representations are equivalent to linear representations;
hence, the irreducible ones are all one-dimensional and the conjecture is obviously
true. We introduce two subgroups of G.

Group Hα Let (π ′, V ′, α) be another irreducible α-representation of G. The tensor
product V ⊗ V

′
is a projective representation of G with trivial multiplier;

hence, it is a linear representation. In particular, V ⊗ V
′
is a direct sum

of one-dimensional linear representations. If χ is one of the direct sum-
mands, then we must have V ∼= V ′ ⊗ χ and χ has multiplicity one in
V ⊗V

′
. (Indeed, as explained in [21, Chapter 4], the properties of charac-

ters of finite groups hold for compact groups as well. Hence, for any linear
character ψ of G, dim Hom(ψ, V ⊗ V

′
) = dimHom(V ′ ⊗ ψ, V ) ≤ 1.)

Denote the dimension of V (which depends only on α) by dα . Let us take
V ′ = V and define

H(V ) = {χ | dimHom(χ, V ⊗ V ) = 1}.

Then,H(V ) is a finite subgroup of ̂G and it is independent of V . Denote
this group by Hα . Define

Hα = H⊥
α := {g ∈ G | χ(g) = 1 for all χ ∈ Hα}.

Then, Hα is a closed subgroup of G with index d2
α .

Group Kα Consider

G × G → S

(g, h) �→ α(g, h)

α(h, g)
.

(4.1)

SinceG is abelian, thismap is a bi-homomorphism. It induces amorphism

λ : G → ̂G

g �→ λg = α(g, ·)
α(·, g)

(4.2)
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Let Kα be the kernel of λ. Then, Kα �= {1} as [α] ∈ H2(G, S) is nontrivial
and it is an open subgroup of G with finite index as λ is continuous and
̂G is discrete.

By adapting the argument in [7, Lemmas 3.9, 3.10], we prove the following result,
which is the key ingredient of our proof of Theorem 1.1(2).

Proposition 4.5 With the notation as above, Hα = Kα .

Proof First, for any k ∈ Kα and g ∈ G, we have

π(k)π(g) = α(k, g)π(kg) = α(g, k)π(gk) = π(g)π(k).

Hence, π(k) ∈ HomRepα
G
(V , V ). By Schur’s lemma, π(k)must be a scalar. Therefore,

(π ⊗ π)|Kα is trivial. By construction, Hα is the maximal subgroup of G with this
property, and we obtain one inclusion Kα ⊂ Hα .

Now, we prove the other inclusion. By the same argument of [7, Lemma 3.9],
α|Hα×Hα is a coboundary. Then, the set {B ≤ G closed : α|B×B is a coboundary and
Hα ⊂ B} is nonempty. Let K be a maximal element in this set. Therefore, [G : K ] <

∞ and V |K ∼= ⊕σi is a direct sum of one-dimensional α-representations. Let σ ∈ {σi }
be a fixed element and α IndG

K σ be the α-induction of σ . We claim that α IndG
K σ is

irreducible, hence V ∼= α IndG
K σ by Frobenius reciprocity.

Indeed, fix a subset S ⊂ G of representatives of G/K , then (α IndG
K σ)|K =

⊕s∈Sσ s , where σ s is the α-twist of σ , i.e., σ s(k) = α(s−1,k)

α(k,s−1)
σ (k) for all k ∈ K .

By Mackey’s criterion, α IndG
K σ is irreducible if and only if σ � σ s for s /∈ K .

Suppose that σ ∼= σ s for some s ∈ S − K , then σ ∼= σ si
for i ∈ Z. Therefore,

α(s−i , k) = α(k, s−i ) for all k ∈ K and i ∈ Z. By [6, Lemmas 2.12, 2.13], α|K ′×K ′ is
a coboundary, where K ′ = 〈K , s〉 ≤ G. This contradicts to the fact that K is maximal.
The claim then follows.

As (V ⊗ V )|K = ⊕s,t∈S(σ s ⊗ σ t ) and Hα ⊂ K , we have

(V ⊗ V )|Hα = ⊕s,t∈S(σ s |Hα ⊗ σ t |Hα ).

Thus, σ s |Hα ⊗ σ t |Hα is trivial. In particular, let t be the representative of the unity
of G/K , we obtain σ(s−1, h) = α(h, s−1) for all h ∈ Hα and s ∈ S. Then, Hα ⊂
Ker(λ) = Kα . The proposition follows. ��
Corollary 4.6 The following claims hold.

1. [G : Kα] = d2
α .

2. dim Cu,v = d2
α if and only if cu,v(g) �= 0 for all g ∈ G.

Proof We have [G : Kα] = [G : Hα] = |Hα| = d2
α . The first claim holds.

For any u, v ∈ V , we have

cπ(g)u,π(g)v(h) = 〈π(h)(π(g)u), π(g)v〉
= α(g, g−1)−1α(g−1, h)α(g−1h, g)cu,v(g

−1hg).
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Since G is abelian, it is easy to see that Cu,v = Span{λgcu,v | g ∈ G}. By the
orthogonality of characters, if cu,v(g) �= 0 for all g ∈ G, then dim Cu,v = |Im(λ)| =
d2
α.

Suppose that dim Cu,v = d2
α and cu,v(g) = 0 for some g ∈ G. Then,

cπ(h)u,π(h)v(g) = 0 for all h ∈ G. This implies π(g) = O , which is impossible.
The second claim then follows. ��

Remark 4.7 From the construction of Hα , we see that V ⊗ V ∗ is multiplicity free.
Therefore, we may apply Proposition 4.4 to verify whether (u, v) is a maximal span-
ning pair. An interesting consequence is that cu,v(g) �= 0 for all g ∈ G if and only if
∫

t∈G χ(t−1)π ⊗ π∗(t)(u ⊗ v∗) d t �= 0 for all χ ∈ Hα .

Theorem 4.8 Let G be a compact abelian group and α ∈ Z2(G, S) be a multiplier. If
π : G → U(V ) is an irreducible α-representation, then the set {x ∈ V | x is maximal}
is open dense in V . In particular, Conjecture 4.2 holds for compact abelian groups.

Proof We show that {x ∈ V | cx,x (g) �= 0 for all g ∈ G} is open dense in V . As
explained in the proof of Proposition 4.5, π(k) is a scalar for k ∈ Kα . Let S ⊂ G
be a set of representatives of G/Kα . Let Vs ⊂ V be the set {v ∈ V | cv,v(s) �= 0}.
Since cv,v(s) = 0 is given by a nontrivial quadratic equation, Vs is open dense in V .
Moreover,

{x ∈ V | cx,x (g) �= 0 for all g ∈ G} =
⋂

s∈S

Vs .

By Corollary 4.6, the theorem follows since S is a finite set. ��

Remark 4.9 From the knowledge on Kα , we may reduce the compact group case to
finite group case, hence obtain a slightly different proof of Theorem4.8. Indeed, for any
t ∈ G/Kα , fix a lifting t̃ ∈ G of t . Define a map ω : G/Kα → GL(V ) by t �→ π(t̃).
We obtain a map Pω : G/Kα → PGL(V ), which is a homomorphism as π(k) is scalar
for k ∈ Kα . Hence, Pω induces a projective representation Pω : G/Kα → GL(V )

with respect to some multiplier. Moreover, it is irreducible as π is irreducible.

4.3 Some Remarks on the Reducible Case

This part is related to [18, Problem D]. We show that, if π : G → U(V ) is a reducible
and finite dimensional projective representation, there is no maximal spanning vector
in the sense of [18]. More precisely, write π = ⊕ j∈J π j as a direct sum of irreducible
sub-representations, for any v ∈ V , we show that

dim Span{π(g)v ⊗ π(g)v | g ∈ G} <
∑

j∈J

n2
j , (4.3)
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where n j is the degree of the irreducible projective representation π j . Equation (4.3)
is equivalent to

dim Span{cπ
π(g)v,π(g)v | g ∈ G} <

∑

j∈J

n2
j . (4.4)

We call dim Span{π(g)v ⊗ π(g)v | g ∈ G} the spanning dimension of (π, V , v).

Proposition 4.10 Let G be a compact group and (π = π1 ⊕ π2, V = V1 ⊕ V2)

be a direct sum of two irreducible projective representations of G. Here, Vi is the
representation space of πi with dimension ni (i = 1, 2). Assume that v = v1 ⊕ v2 ∈
V1 ⊕ V2 is a frame vector for (π, V ). Then,

dim Span{cπ
π(g)v,π(g)v | g ∈ G} < n2

1 + n2
2.

Proof Choose a finite subset H of G such that 1 ∈ H and

Span{π(g)v ⊗ π(g)v | g ∈ G} = Span{π(g)v ⊗ π(g)v | g ∈ H}.

By enlarging H , we may assume that

Span{cπ
u,v | g ∈ G} → C

|H |

cπ
u,v �→ (cπ

u,v(h))h∈H

is injective.
Fix an ordering of the elements of H with the identity at the first place and define�i

to be the |H | × |H | matrix, whose (g, h)-entry is given by cπi
πi (g)vi ,πi (g)vi

(h). Denote
by C(M) the column space of a matrix M . Then, C(�1)∩C(�2) contains a nontrivial
vector from the identity element. Moreover, dim C(�i ) ≤ dim Span{cπi

πi (g)vi ,πi (g)vi
|

g ∈ G} ≤ n2
i . As

cπ
π(g)v,π(g)v(h) = 〈π(h)π(g)v, π(g)v〉

= 〈π1(h)π1(g)v1, π1(g)v1〉 + 〈π2(h)π2(g)v2, π2(g)v2〉
= cπ1

π1(g)v1,π1(g)v1
(h) + cπ2

π2(g)v2,π2(g)v2
(h),

we have

dim Span{cπ
π(g)v,π(g)v | g ∈ G} = rank(�1 + �2)

= dim C(�1 + �2)

≤ dim(C(�1) + C(�2))

= dim C(�1) + dim C(�2) − dim(C(�1) ∩ C(�2))

< dim C(�1) + dim C(�2)

≤ n2
1 + n2

2.
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The proposition follows.
��

We thank the referee for the simple proof of the proposition. For (π, V ) as in Propo-
sition 4.10, we compute the spanning dimensions for two examples in the following
and the computation shows that the invariant

max
v∈V

{dim Span{π(g)v ⊗ π(g)v | g ∈ G}}

depends on not only the degrees n1 and n2, but also the structures of π1 and π2.

4.3.1 G is Abelian

In this part, G is a compact abelian group. Let (π1, V1) and (π2, V2) be two irreducible
α-representations of G and π = π1 ⊕ π2. Then, π2 = π1 ⊗ χ , where χ is a linear
character. Let v = v1 + v2 be a frame vector for (π, V = V1 ⊕ V2), where v1 ∈ V1
and v2 ∈ V2. Then,

cπ
π(g)v,π(g)v(h) = 〈π(h)π(g)v, π(g)v〉

= 〈π1(h)π1(g)v1, π1(g)v1〉 + 〈π2(h)π2(g)v2, π2(g)v2〉
= α(g, g−1)−1α(g−1, h)α(g−1h, g)(〈π1(h)v1, v1〉 + 〈π2(h)v2, v2〉)

= α(g−1, h)

α(h, g−1)
(cπ1

v1,v1
(h) + χ(h)cπ1

v2,v2
(h)).

As G is abelian, h �→ α(g−1,h)

α(h,g−1)
is a character of G. Denote this character by λg . By

Sect. 4.2 or [7, Section 3.2],

dim Span{λg | g ∈ G} = (dim V1)
2.

Hence,

dim Span{cπ
π(g)v,π(g)v | g ∈ G} ≤ dim Span{λg | g ∈ G}

= (dim V1)
2 < (dim V1)

2 + (dim V2)
2.

Note that dim Span{cπ
π(g)v,π(g)v | g ∈ G} = (dim V1)

2 if cπ1
v1,v1(h)+χ(h)cπ1

v2,v2(h) �=
0 for all h ∈ G, and this is true for infinitely many v ∈ V .

4.3.2 G = D6

In this part, G = D6 is the dihedral group with 6 elements. Fix a presentation of G,
say

G = 〈a, b | a3 = 1, b2 = 1, ab = ba−1〉.
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Let ρ : G → U(C2) be the two-dimensional irreducible representation of G given by

1 �→
(

1 0
0 1

)

, a �→
(

ζ 0
0 ζ−1

)

, a2 �→
(

ζ−1 0
0 ζ

)

,

b �→
(

0 1
1 0

)

, ba �→
(

0 ζ−1

ζ 0

)

, ba2 �→
(

0 ζ

ζ−1 0

)

.

Here, ζ = e2π i/3. Let v = (x y)′ ∈ C
2 be a nontrivial vector. Let α = x x̄ + y ȳ, β =

ζ x x̄ +ζ−1y ȳ, γ = ζ−1x x̄ +ζ y ȳ, δ = x̄ y+x ȳ, ε = ζ−1 x̄ y+ζ x ȳ, η = ζ x̄ y+ζ−1x ȳ.
Let �v be the 6 × 6 matrix, whose (g, h)-entry is given by cρ

ρ(g)v,ρ(g)v(h). Direct
computation shows that

�v =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α β γ δ ε η

α β γ η δ ε

α β γ ε η δ

α γ β δ η ε

α γ β η ε δ

α γ β ε δ η

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Making the following operations r2 − r1, r3 − r1, r5 − r4, r6 − r4, c4 + (c5 + c6),
r4 − r1, r4 ↔ r3, r3 ↔ r2, r6 + r3, r5 + r4, we obtain the matrix

�̃v =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α β γ δ + ε + η ε η

0 γ − β β − γ 0 η − ε ε − η

0 0 0 0 δ − ε ε − η

0 0 0 0 η − ε δ − η

0 0 0 0 ε − η δ − ε

0 0 0 0 δ − η η − ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

It is easy to see that rank�v ≤ 4. There are infinitely many v with rank�v = 4;
hence, each of those v ∈ C

2 is maximal spanning and the frame {ρ(g)v | g ∈ G}
is phase retrievable (cf. [18, Conjecture]). For example, this happens if β �= γ and
2δ − ε − η �= 0.

For π = triv⊕ρ : G → U(C3), let u = (w x y)′ ∈ C
3. Then,

dim Span{cπ
π(g)u,π(g)u | g ∈ G} = rank�v , where �v is obtained from �v by replac-

ing each entry z with z + c, and c = ww̄ is the constant from the trivial character.
Making the same operations as above on �v , we obtain the matrix

�̃v =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c + α c + β c + γ 3c + δ + ε + η c + ε c + η

0 γ − β β − γ 0 η − ε ε − η

0 0 0 0 δ − ε ε − η

0 0 0 0 η − ε δ − η

0 0 0 0 ε − η δ − ε

0 0 0 0 δ − η η − ε

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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whose rank is at most four. Hence,

dim Span{cπ
π(g)u,π(g)u | g ∈ G} ≤ 4.

The equality holds if for example β �= γ and 2δ − ε − η �= 0.

Remark 4.11 There is no phase retrievable frame vector for the (π, C
3) above. Indeed,

let v = (w x y)′ ∈ C
3 be a frame vector for (π, C

3), then w(|x | + |y|) �= 0. Consider
the two vectors φ1 = (e 1 1)′ and φ2 = ( 12e 2 2)′ ∈ C

3, where |e|2|w|2 = 3(|x |2 +
|y|2 + x̄ y + x ȳ). It is straightforward to check that |〈φ1, π(g)v〉| = |〈φ2, π(g)v〉| for
all g ∈ G.
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