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Abstract
Causal inference andmissing data have attracted significant research interests in recent
years, while the current literature usually focuses on only one of these two issues. In
this paper, we develop two multiply robust methods to estimate the quantile treatment
effect (QTE), in the context of missing data. Compared to the commonly used average
treatment effect, QTE provides a more complete picture of the difference between the
treatment and control groups. The first one is based on inverse probability weighting,
the resulting QTE estimator is root-n consistent and asymptotic normal, as long as
the class of candidate models of propensity scores contains the correct model and so
does that for the probability of being observed. The second one is based on augmented
inverse probability weighting, which further relaxes the restriction on the probability
of being observed. Simulation studies are conducted to investigate the performance
of the proposed method, and the motivated CHARLS data are analyzed, exhibiting
different treatment effects at various quantile levels.
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1 Introduction

Causal inference has attracted more and more attention, which aims to identify the
extent and nature of cause-and-effect relationships. For example, in the motivated
Chinese Health and Retirement Longitudinal Study (CHARLS) in Sect. 5, we aim to
study the causal effect of social activities on cognitive functions, among middle-aged
and older adults in China. Due to possible heterogeneity in the data, it is necessary to
provide a complete picture of the relationship between social activities and cognitive
functions, rather than the conditional mean relationship. Furthermore, approximately
24% of the responses are missing, which further challenges the analysis.

In causal analysis, one most popular technique is the potential outcome model [19,
20], where the average treatment effect (ATE) is an important measurement, which
measures the average difference between the treatment group and control group; see
fruitful studies on ATE, Rosenbaum and Rubin [19, 20], Lunceford and Davidian
[17], Tan [23], Imbens and Rubin [14], Hernan and Rubins [12]. However, the ATE
is not informative enough when there is heterogeneity in the data and is sensitive to
the outliers. The quantile treatment effect (QTE) gives a more complete picture of
the causal effect and is robust to the heavy tails of the responses, thus is of growing
interests. To estimate the QTE in the absence of randomization, classical methods to
deal with the confounding effect include propensity score, outcome regression, and
doubly robust methods (e.g., [7, 8, 18, 27]).

As in the motivated CHARLS data, response missing is often encountered in real
applications, particularly in observational studies. Among various missing mecha-
nisms, the most useful one is missing at random (MAR), which assumes that the
missingness only depends on the observed values. To avoid inconsistent estimation
by simply ignoring the missing data, several classes of methods are proposed, say
inverse probability weighting (IPW, [22]), augmented IPW (AIPW, [1]), imputation
[21]. Recently, double robust and multiply robust methods are developed under the
MAR assumption [3, 9–11, 15], to provide robustness against model misspecification.
Xie et al. [25] further extended the multiply robust method to handle QTE estimation.

Current literature for quantile regression focuses on either causal inference [8, 27]
or missing data [9, 24]. To our best knowledge, there is no literature which studies
both issues simultaneously, possibly due to the complexity introduced by both the
confounding effects and response missing. However, in practice, the combination of
these two issues is frequently encountered, such as the motivated CHARLS data in
Sect. 5. To handle both issues, we need to correctly specify the propensity score (PS)
model for confounding adjustment and the probability of being observed (PO) or the
outcome regression (OR) to deal with missing data, which is challenging in practice.

In this paper, we develop two multiply robust methods to estimate the QTEs with
responses being MAR. The first method is that, based on multiply robust estimations
of the PS and PO, the IPW approach is utilized to develop a weighted objective
function to estimate the QTEs. The second approach, multiply robust AIPW, is to
make further resistance to the model misspecification, which relaxes the restriction
on the PO. The contributions can be summarized as follows. Firstly, the proposed
methods provide a complete picture of the causal effects, which is helpful to identify
possible heterogeneity and thusmakepersonalized intervention; thismerit is confirmed
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in the motivated CHARLS data. Secondly, the proposed methods are able to adjust
the confounding effect and deal with missing data, which are commonly encountered
in the real applications, providing consistent QTE estimates. Finally, the proposed
two estimators are multiply robust. For the IPW method, the resulting estimator is
consistent if the class of candidate models of PS contains the correct model and so
does that for the PO. For the AIPW method, the restriction on the PO can be relaxed
to that either PO or OR contains a correct specified model. Furthermore, the proof
of consistency and asymptotic normality properties is not trivial, especially for the
proposed AIPW estimator, which is mainly from the cumulative challenges of the
augmentation and confounding adjustment.

The rest parts are organized as follows. In Sect. 2, we introduce the potential out-
come framework and some key assumptions, and propose the multiply robust IPW and
AIPWestimators ofQTEwithmissing responses.Wepresent the asymptotic properties
in Sect. 3. Simulation studies are conducted to investigate the finite-sample perfor-
mance in Sect. 4. Finally, the proposed method is applied to the motivated CHARLS
data, showing that the causal effects of social activities on cognitive functions vary
across different quantile levels of the responses. All technical proofs are provided in
Section S2 of the online Supplementary Materials.

2 The ProposedMethod

2.1 Notation and Identification

Let Y (1) and Y (0) be the potential outcomes for the treated and control groups, X
be the covariate vector, and T be the treatment status where T = 1 means treated
and T = 0 means untreated. Under the consistency assumption [25], we observe the
outcome Yi = TiYi (1)+ (1− Ti )Yi (0). Let η(X) = Pr(T = 1 | X) be the propensity
score (PS), satisfying 0 < η(X) < 1 for all X.

We are interested in the τ -quantile treatment effect (τ -QTE), defined as

�q(τ ) = q1(τ ) − q0(τ ),

where τ ∈ (0, 1) is a quantile index, and q1(τ ) and q0(τ ) are the τ -quantile of random
variables Y (1) and Y (0), respectively.

Assuming that the treatment assignment is strongly ignorable, i.e., (Y (1),Y (0))
are independent of T conditional on X. Under this assumption, q1(τ ) and q0(τ ) are
identified based on the following moment equalities,

E

(
T

η(X)
[τ − I {Y ≤ q1(τ )}]

)
= 0, E

(
1 − T

1 − η(X)
[τ − I {Y ≤ q0(τ )}]

)
= 0.

(2.1)

Let α0(τ ) = q0(τ ) and α1(τ ) = q1(τ ) − q0(τ ), thus α1(τ ) is our interested τ -QTE.
Equation (2.1) is equivalent to
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E

(
T̃�

η(X)
[τ − I {Y ≤ T̃�α̃0(τ )}] − (1 − T , 0)�

1 − η(X)
[τ − I {Y ≤ T̃�α̃0(τ )}]

)
= 0,

where T̃ = (1, T )�, α̃0(τ ) = (α0(τ ), α1(τ ))�. Then, α1(τ ) can be identified.
In practice, the responses are possiblymissing. Let R be an indicator of observing Y

with R = 1 if Y is observed and R = 0 otherwise. TheMARmechanism is considered
herewhich assumes Pr(R = 1 | Y ,X, T ) = Pr(R = 1 | X, T ). Denote the probability
of being observed (PO) by π(X, T ) = Pr(R = 1 | X, T ).

2.2 Multiply Robust IPW Estimator

To simultaneously handle both confoundedness and missingness, we introduce PS
η(X) = Pr(T = 1 | X) to account for the confoundedness and PO π(X, T ) =
Pr(R = 1 | X, T ) to deal with the missingness, estimating the τ -QTE by minimizing

Qn,τ (a;π, η)

= 1

n

n∑
i=1

Ri

π(Xi , Ti )

{ Ti
η(Xi )

ρτ (Yi − T̃�
i a) + 1 − Ti

1 − η(Xi )
ρτ (Yi − T̃�

i a)
}
, (2.2)

with respect to a = (a0, a1)� where ρτ (u) = u{τ − I (u < 0)} corresponds to
the check loss function. To deal with the missingness, we use 1/π(Xi , Ti ) to weight
each observed subject, which helps to recover the population information based on
the biased sample {i : Ri = 1}. To handle the confounding effect, η(Xi ) is used to
balance the weighted distribution of the covariates in the two groups.

In practice, η(X) and π(X, T ) are unknown, and need to be estimated. Generally,
we can use parametric methods to estimate η(X) and π(X, T ), assuming that PS and
PO follow a generalized linear model, say the logistic model, and then obtain their
maximum likelihood estimates. However, the parametric methods require to specify
the models for PS and PO correctly, which is usually infeasible in practice, and we
need some robustness against model misspecifications. In this paper, we follow the
idea in Han [11] and Han et al. [9], obtaining the estimates through the multiply robust
approach.

We first present the estimator for π(·). Let Pπ = {π j (X, T ; θ j ) : j = 1, . . . , J }
denote the set of candidate models for π(X, T ), where θ j is the corresponding param-

eter vector.We use θ̂
j
to denote the estimator of θ j , usually taking to be the maximizer

of the binomial likelihood

n∏
i=1

{π j (Xi , Ti ; θ j )}Ri {1 − π j (Xi , Ti ; θ j )}1−Ri .

Let m = ∑n
i=1 Ri be the number of subjects observed, and without loss of generality,

we assume that R1 = · · · = Rm = 1, Rm+1 = · · · = Rn = 0. Let ω1(X, T ) =
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1/π(X, T ), then it is easy to verify that

E
(
ω1(X, T )[π j (X, T ; θ j ) − E{π j (X, T ; θ j )}] | R = 1

)
= 0 ( j = 1, . . . , J ).

(2.3)

Therefore, we define the weights ω1,i , i = 1, . . . ,m, subject to

ω1,i ≥ 0 (i = 1, . . . ,m),
1

n

m∑
i=1

ω1,i = 1,

1

n

m∑
i=1

ω1,i {π j (Xi , Ti ; θ̂
j
) − ζ̂ 1, j (̂θ

j
)} = 0 ( j = 1, . . . , J ), (2.4)

where ζ̂ 1, j (θ j ) = n−1 ∑n
i=1 π j (Xi , Ti ; θ j ). We obtain the empirical likelihood esti-

mate of ω1,i by maximizing
∏m

i=1 ω1,i subject to the constraints in (2.4). We then
give

π̂(Xi , Ti ) = 1

ω̂1,i
, i = 1, . . . ,m.

Next, we obtain the PS estimates for the treatment group and the control group,
respectively. Let Pη = {ηl(X; γ l) : l = 1, . . . , L} denote the set of candidate models
for η(X), where γ l is the corresponding parameter vector. We use γ̂ l to denote the
estimator of γ l , usually taking to be the maximizer of the binomial likelihood

n∏
i=1

{ηl(Xi ; γ l)}Ti {1 − ηl(Xi ; γ l)}1−Ti .

Step 1, we get the PS estimates for the treatment group. Denote Tn = {i : Ti = 1},
and let

η̂Tn (Xi ) = 1

ω̂2,i
, i ∈ Tn,

where {ω̂2,i , i ∈ Tn} are obtained by maximizing
∏

i∈Tn ω2,i , subject to

ω2,i ≥ 0 (i ∈ Tn),
1

n

∑
i∈Tn

ω2,i = 1,

1

n

∑
i∈Tn

ω2,i {ηl(Xi ; γ̂ l) − ζ 2,l(γ̂ l)} = 0 (l = 1, . . . , L),

with ζ 2,l(γ l) = n−1 ∑n
i=1 ηl(Xi ; γ l).
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Step 2, we get the PS estimates for the control group. Let T c
n = {1, . . . , n}\Tn and

let

1 − η̂T c
n
(Xi ) = P̂r(Ti = 0 | Xi ) = 1

ω̂3,i
, i ∈ T c

n ,

where {ω̂3,i , i ∈ T c
n } are obtained by maximizing

∏
i∈T c

n
ω3,i , subject to

ω3,i ≥ 0 (i ∈ T c
n ),

1

n

∑
i∈T c

n

ω3,i = 1,

1

n

∑
i∈T c

n

ω3,i [{1 − ηl(Xi ; γ̂ l)} − {1 − ζ 2,l(γ̂ l)}] = 0 (l = 1, . . . , L).

Given {̂η(Xi ), i = 1, . . . , n} = {̂ηTn (Xi ) : i ∈ Tn} ∪ {̂ηT c
n
(Xi ) : i ∈ T c

n } and
{π̂(Xi , Ti ), i = 1, . . . ,m}, we propose to estimate the τ -QTE by minimizing

Qn,τ (a; π̂ , η̂)

= 1

n

n∑
i=1

Ri

π̂(Xi , Ti )

{ Ti
η̂(Xi )

ρτ (Yi − T̃�
i a) + 1 − Ti

1 − η̂(Xi )
ρτ (Yi − T̃�

i a)
}
, (2.5)

with respect to a. Denote the minimizer as â(τ ) = (̂a0(τ ), â1(τ ))�, then â1(τ ) is the
proposed estimator for the τ -QTE α1(τ ), while â0(τ ) is the estimator for α0(τ ), the
marginal τ -th quantile of the control group. In Sect. 3, we will prove that, if Pπ and
Pη contain the correct PO and PS models, respectively, â1(τ ) is root-n consistent to
the τ -QTE and asymptotic normal.

2.3 Multiply Robust AIPW Estimator

In our objective function (2.2), we only specify themodel for PO to address themissing
issues. To gain more resistance against the model misspecification, we develop an
augmented inverse probability weighted (AIPW) method to estimate the τ -QTE by
solving

1

n

n∑
i=1

Ri
π(Xi , Ti )

{
(Ti , Ti )

�
η(Xi )

ψτ (Yi − T̃�
i a) + (1 − Ti , 0)

�
1 − η(Xi )

ψτ (Yi − T̃�
i a)

}
−

{
Ri

π(Xi , Ti )
− 1

}

×
⎧⎨
⎩

(Ti , Ti )
�

η(Xi )

1

S

S∑
s=1

ψτ (Y s
Xi ,Ti

− T̃�
i a) + (1 − Ti , 0)

�
1 − η(Xi )

1

S

S∑
s=1

ψτ (Y s
Xi ,Ti

− T̃�
i a)

⎫⎬
⎭

≈ 0,

where the set {Y s
X,T }Ss=1 is a random sample of size S from the conditional density

fY |X,T (·). The first term is the score function of the IPW estimator [see expression
(2.2)], the augmentation term is motivated by the imputation estimator, which is added
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to obtain more information from the outcome regression (OR) and provide double
protection against model misspecifications.

Note that fY |X,T (·) is unknown, we need estimate fY |X,T (·) to draw random sam-
ples. To gain some resistance against the model misspecifications, we also adopt the
multiply robust idea. Let P f = { f kY |X,T (y; ξ k) : k = 1, . . . , K } denote the set of can-
didate models for fY |X,T (·), where ξ k is the corresponding parameter vector. We use

ξ̂
k
to denote the estimator of ξ k , usually taking to be the maximizer of the likelihood

function

n∏
i=1

f kY |Xi ,Ti (Yi ; ξ k)Ri . (2.6)

Let ω(X, T ) = 1/π(X, T ), it is easy to verify that

E
(
ω(X, T )[π j (X, T ; θ j ) − E{π j (X, T ; θ j )}] | R = 1

)
= 0, ( j = 1, . . . , J ),

E

⎧⎨
⎩ω(X, T )

⎛
⎝
⎡
⎣ (T , T )�

η(X)

1

S

S∑
s=1

ψτ {Y s (ξk ) − T̃�a}

+ (1 − T , 0)�
1 − η(X)

1

S

S∑
s=1

ψτ {Y s (ξk ) − T̃�a}
⎤
⎦

−E

⎡
⎣ (T , T )�

η(X)

1

S

S∑
s=1

ψτ {Y s (ξk ) − T̃�a}

+ (1 − T , 0)�
1 − η(X)

1

S

S∑
s=1

ψτ {Y s (ξk ) − T̃�a}
⎤
⎦
⎞
⎠ | R = 1

⎫⎬
⎭

� E
(
ω(X, T )

[
Uk (X, T ; ξk , η(X), a) − E{Uk (X, T ; ξk , η(X), a)}

]
| R = 1

)
= 0,

(k = 1, . . . , K ), (2.7)

where {Y s(ξ k)}Ss=1 denotes a random sample of size S from f kY |X,T (y; ξ k).
Based on the sample versions of the above two equations, we use the empirical

likelihood method to estimate τ -QTE by solving

m∑
i=1

ŵi

{ (Ti , Ti )
�

η̂(Xi )
ψτ (Yi − T̃�

i a) + (1 − Ti , 0)
�

1 − η̂(Xi )
ψτ (Yi − T̃�

i a)
}

� Mn,τ (a; ω̂, η̂) ≈ 0, (2.8)

where the weighted estimating equation is solved by converting it into the weighted
quantile regression and call the package quantreg, and η̂(Xi ) is obtained by themultiply
robust method in Sect. 2.2 and ŵi ’s are calculated by the following steps.

• We first calculate ξ̂
k
, k = 1, 2, . . . , K , by maximizing the expression (2.6). And

we draw a random sample {Y s (̂ξ
k
)}Ss=1 from f kY |X,T (y; ξ̂

k
).

• Based on the estimator η̂(Xi ), calculate âkS(τ ), k = 1, 2, . . . , K , by solving

1

n

n∑
i=1

Ri
{ (Ti , Ti )

�
η̂(Xi )

ψτ (Yi − T̃�
i a) + (1 − Ti , 0)

�
1 − η̂(Xi )

ψτ (Yi − T̃�
i a)

}
+ (1 − Ri )
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×
[

(Ti , Ti )
�

η̂(Xi )

1

S

S∑
s=1

ψτ {Y s
i (̂ξ

k
) − T̃�

i a} + (1 − Ti , 0)
�

1 − η̂(Xi )

1

S

S∑
s=1

ψτ {Y s
i (̂ξ

k
) − T̃�

i a}
]

≈ 0,

where the weighted estimating equation is solved by converting it into the weighted
quantile regression and call the package quantreg.

• Finally, ŵi can be obtained by maximizing
∏m

i=1 ωi subject to

ωi ≥ 0 (i = 1, . . . ,m),

m∑
i=1

ωi = 1,

m∑
i=1

ωi {π j (Xi , Ti ; θ̂
j
) − ζ̂ 1, j (̂θ

j
)} = 0 ( j = 1, . . . , J ),

m∑
i=1

ωi {Uk(Xi , Ti ; ξ̂
k
, η̂(Xi ), âkS(τ )) − ζ̂ k (̂ξ

k
, η̂(Xi ), âkS(τ ))} = 0

(k = 1, . . . , K ), (2.9)

where ζ̂ 1, j (θ j ) is defined in (2.4) and

ζ̂ k(ξ k, η(X), akS(τ )) = n−1
n∑

i=1

Uk(Xi , Ti ; ξ k, η(X), akS(τ )).

Denote the solution of Eq. (2.8) as ă(τ ) = (ă0(τ ), ă1(τ ))�, then ă1(τ ) is the
proposed multiply robust AIPW estimator of the τ -QTE α1(τ ). In Sect. 3, we will
prove that, as long as Pη contains the correct model for PO, and so does either Pπ for
PS or P f for OR, the τ -QTE ă1(τ ) is root-n consistent and asymptotic normal.

3 Asymptotic Properties

In this section, we present the asymptotic properties of the proposed two QTE esti-
mators. Without loss of generality, let π1(X, T ; θ1), η1(X; γ 1) and f 1Y |X,T (y; ξ1) be

the correctly specified models for π(X, T ), η(X) and fY |X,T (y), respectively, with θ10,
γ 1
0 and ξ10 being the true parameter vectors. Let �1 and �2 be the score functions for

θ1 and γ 1, respectively, �1,i and �2,i be the score functions evaluated at i th subject.
The following conditions are needed for the asymptotic properties of the proposed
estimators.

A1. The treatment assignment is strongly ignorable: (Y (1),Y (0)) are independent of
T conditional on X. We also assume that

∑n
i=1 Ti/n → c1 for some 0 < c1 < 1.

A2. The response ismissing at random, Pr(Ri = 1 | Xi , Ti ,Yi ) = Pr(Ri = 1 | Xi , Ti ).
We also assume that

∑n
i=1 Ri/n → c2 for some 0 < c2 < 1.
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A3. The α0(τ ) and α0(τ )+α1(τ ) are the unique τ quantile of potential outcomes Y (0)
and Y (1), respectively. The density functions of Y (0) and Y (1), fY (0)(·), fY (1)(·)
atα0(τ ) andα0(τ )+α1(τ ) are bounded away fromzero.Assume that E‖X‖4 < ∞.

A4. For j = 1, . . . , J , l = 1, . . . , L ,π j (X, T ; θ j ) andηl(X; γ l)haveboundedderiva-
tives in X up to the second order, and are continuously differentiable in θ j and γ l ,
respectively. Assume that inf

X,T
inf
θ j

π j (X, T ; θ j ) > 0, inf
X

inf
γ l

ηl(X; γ l) > 0.

A5. The matrices D and G1,G2,G3,G4, defined in Section S1 of the online Supple-
mentary Materials, are invertible.

Regularity assumptions A1–A5 for the major results are mild. Assumptions A1 and
A2 are commonly used in literatures of causal inference andmissing data, respectively.
Assumptions A3 and A4 are similar to the conditions adopted in Han et al. [9], in order
to ensure the consistency of the proposed estimator. Assumption A5 is a technical
assumption needed for the asymptotic normality.

Before presenting the asymptotic properties of the proposed estimators, we first
give a lemma which shows that the IPW estimation is consistent when the true η(X)

and π(X, T ) are given.

Lemma 3.1 Let ã(τ ) = (̃a0(τ ), ã1(τ ))� be the minimizer of (2.2) with true η(X) and
π(X, T ). Under assumptions A1 and A2, we have that ã(τ ) is a consistent estimator
of α̃0(τ ).

Theorem 3.2 Assume thatPπ contains a correctly specified model for π(X, T ) and so

doesPη for η(X). Under assumptions A1–A4,we have that â(τ )
P→ α̃0(τ ) as n → ∞.

Theorem 3.3 Assume that the conditions in Theorem 3.2 hold. Under the additional
assumption A5, we have that

n1/2 {̂a(τ ) − α̃0(τ )}

= D−1n−1/2
n∑

i=1

[
V1,i (θ

1
0, γ

1
0) + E

{ ∂V1(θ
1
0, γ

1
0)

∂θ1
,
∂V1(θ

1
0, γ

1
0)

∂γ 1

}(
{E(�⊗2

1 )}−1�1,i
{E(�⊗2

2 )}−1�2,i

)]
+ op(1),

whereD and V1,i (θ
1
0, γ

1
0) are defined in Section S1 of the online Supplementary Mate-

rials, A⊗2 = AA� for a vector/matrix A. Furthermore, we can derive that

n1/2{̂a(τ ) − α̃0(τ )} d→ N (0,�1),

where

�1 = D−1Cov

[
V1(θ

1
0, γ

1
0) + E

{ ∂V1(θ
1
0, γ

1
0)

∂θ1
,
∂V1(θ

1
0, γ

1
0)

∂γ 1

}(
{E(�⊗2

1 )}−1�1
{E(�⊗2

2 )}−1�2

)]
(D−1)�.

Finally, for the τ -QTE, let e1 = (1, 0)�, we have

n1/2{̂a1(τ ) − α1(τ )} d→ N (0, e�
1 �1e1).
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Theorem 3.2 proves that the proposed IPW estimator is consistent, as long as Pπ

contains a correctly specified model for π(X, T ) and so does Pη for η(X), which
implies the robustness of â(τ ). Theorem 3.3 gives the representation of the estimated
QTE, where the first part in V1,i (θ

1
0, γ

1
0) is the representation as if the true π(X, T )

and η(X) were known, and the rest parts account for the multiple robust estimation of
π(X, T ) and η(X). The expression of the covariance matrix in Theorem 3.3 is compli-
cated, thus resampling bootstrap would be a good choice for uncertainty quantification
of the QTE.

Theorem 3.4 Assume that Pη contains the correct model for PO, and so does either

Pπ for PS or P f for OR. Under assumptions A1–A4, we have ă(τ )
P→ α̃0(τ ) as

n → ∞.

Theorem 3.5 Assume that the conditions in Theorem 3.4 hold. Under the additional
assumption A5, we have

n1/2{ă1(τ ) − α1(τ )} d→ N (0, e�
1 �2e1),

where e1 = (1, 0)� and

�2 = D−1Cov

[
V2(θ

1
0, γ

1
0) + E

{ ∂V2(θ
1
0, γ

1
0)

∂θ1
,
∂V2(θ

1
0, γ

1
0)

∂γ 1

}(
{E(�⊗2

1 )}−1�1
{E(�⊗2

2 )}−1�2

)]
(D−1)�,

where D and V2(θ
1
0, γ

1
0) are defined in Section S1 of the online Supplementary Mate-

rials.

Theorem 3.4 demonstrates that the proposed AIPW estimator is multiply robust,
i.e., as long asPη contains the correctmodel for PO, and so does eitherPπ for PS orP f

for OR, the resulting estimator ă(τ ) is consistent. Theorem 3.5 gives the asymptotic
normality of the proposed AIPW estimator. In fact, just as in Theorem 3.3, we first get
the representation of ă(τ ), and we only present the asymptotic distribution of ă1(τ )

for brevity. The proof of Theorem 3.5 is more challenging than Theorem 3.3 due to the
additional outcome regression model. Compared with the literature of missing data,
Theorem 3.5 is challenging due to confounding adjustment.

4 Simulation Study

In this section, simulation studies are conducted to evaluate the finite performance
of the proposed τ -QTE estimators. On the one hand, simulation studies are used to
illustrate the effectiveness of the proposed estimators in dealing with the confounding
effect and missingness. On the other hand, the proposed multiply robust IPW and
AIPW estimators have a certain level of resistance to the model misspecifications.

The data are generated as follows. First, we generate the covariates as Xi,1 ∼
Unif(−0.25, 0.25), Xi,2 ∼ Binom(0.5), Xi,3 ∼ Unif(−0.5, 0.5), Xi,4 ∼ Binom(0.5)×
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0.6. Second, the treatment indicator Ti is generated from a logistic regression model
as

logit{η(Xi ; γ )} = γ0 + γ1Xi,1 + γ2Xi,2,

where γ = (γ0, γ1, γ2)
� = (0.5,−1.5,−1)�. Third, the response is generated from

the outcome regression model

Yi = α0 + α1Ti + α2Xi,1 + α3Xi,2 + α4Xi,3 + α5Xi,4 + εi , i = 1, . . . , n,

where (α0, α1, . . . , α5)
� = (3.5, 2, 1, 1, 0.5, 2)�, εi ’s are random errors. Finally, the

missing mechanism follows

logit{π(Xi , Ti ; θ)} = θ0 + θ1Xi,3 + θ2Xi,4 + θ3Ti ,

where θ = (θ0, θ1, θ2, θ3)
�. For the random errors, we consider two cases: (1)

εi ∼ N (0, 1), (2) εi ∼ t(3), both leading to τ -QTE α1 = 2. To investigate the
impact of different missing probabilities, we choose θ = (2.5, 0.5,−3, 1)� and
(1.5, 0.5,−3, 1)�, which on average result in 15% and 30% missing proportions,
respectively.

According to the data generating process, the correct workingmodels for PS and PO
are given by logit{η1(Xi ; γ 1)} = γ 1

0 + γ 1
1 Xi,1 + γ 1

2 Xi,2 and logit{π1(Xi , Ti ; θ1)} =
θ10 +θ11 Xi,3+θ12 Xi,4+θ13 Ti , respectively; for the AIPWestimator, the correct working
model for fY |X,T (·) is given by the probability density function of N (ξ10 + ξ11 Ti +
ξ12 Xi,1 + ξ13 Xi,2 + ξ14 Xi,3 + ξ15 Xi,4, 1) or non-central t(3) distribution with non-
centrality parameter ξ10 + ξ11 Ti + ξ12 Xi,1 + ξ13 Xi,2 + ξ14 Xi,3 + ξ15 Xi,4. The additional
incorrect models for PS and PO are logit{η2(Xi ; γ 2)} = γ 2

0 + γ 2
1 exp(Xi,1) and

logit{π2(Xi , Ti ; θ2)} = θ20 + θ21 exp(Xi,3), respectively, and N (ξ20 + ξ21 Ti , 1) for OR
with normal errors and non-central t(3) distribution with non-centrality parameter
ξ20 + ξ21 Ti for OR with t(3) errors, respectively. The parameters in OR are derived by
the quasi-maximum likelihood estimate, that is, the ordinary least squares regression,
based on complete-case analysis; we also tried to estimate those parameters by the
maximum likelihood method, but it heavily depends on initial value and converges
very slowly. We consider two imputation sample sizes S = 10 and 50, and only report
the results based on S = 10, as those from S = 50 are similar.

To the best of our knowledge, this is the first work discussing causal inference on
quantiles with missing responses, so we only compare the proposed IPW and AIPW
estimators, denoted as IPW.1111 and AIPW.111111, with four different classes of
estimates, and the descriptions of all estimators are summarized in Table 1. (I) TM-type
estimators, the minimizer of the objective function (2.5), where η̂(Xi ) and π̂(Xi , Ti )
are obtained by the empirical likelihood method similarly to those in IPW.1111, but
including only one model for P(Ti = 1 | Xi ) and P(Ri = 1 | Xi , Ti ). (II) TMO-type
estimators, the solution of the estimation Eq. (2.8), where the weights are obtained by
the empirical likelihood method similarly to those in AIPW.111111, and we include
five representative TMO-type estimators. The TMO-type estimators provide double
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protection for missing issues and only require that either PO or OR model is correct.
(III) T-type estimators, the minimizer of an objective function similar to (2.5), where
η̂(Xi ) is obtained in the same way as the TM-type estimator, while π̂(Xi , Ti ) = 1
if Ri = 1. The T-type estimators consider the causal effect but ignores the feature
of missingness. (IV) Naive estimator, denoted as Naive.0000, the minimizer of an
objective function similar to (2.5), where η̂(Xi ) = Ti and π̂(Xi , Ti ) = 1 if Ri = 1.
The naive estimator ignores the features of causal effect and missingness.

A sample size of n = 400 and two quantile levels τ = 0.3, 0.5 are considered, and
all simulation results are summarized based on 1000 replicates. Table 2 summarizes the
finite-sample performances of the QTE estimators, including the bias (BIAS), the root
mean squared error (RMSE), as well as the empirical coverage probabilities (ECP) and
the empirical mean lengths (EML) with nominal level 95%. The confidence intervals
are constructed by the bootstrap method, which is implemented by the summary.rq
function of the R package quantreg, and the number of resampling replicates is 500.
From Table 2, we have the following findings. First, when both PS and PO candidate
models include a correctly specified model, the obtained estimates TM.1010 have
apparently small BIAS and RMSE than the estimators under model misspecification.
The proposed IPW.1111 has almost the same performance as TM.1010, and performs
even better in some scenarios. Second, when the PS model is correctly specified, the
estimators are reasonably good even if the POmodel is misspecified, though the BIAS
and RMSE are relatively larger than IPW.1111 and TM.1010, see the performances
of TM.1001, T.1100, and T.1000. However, if the PS model is misspecified, no matter
whether the POmodel is correctly specified, the BIAS and RMSE aremuch larger than
IPW.1111. Third, the proposed AIPW estimator has lower RMSE than the IPW esti-
mator. As long as Pη contains the correct model for PO, and so does either Pπ for PS
or P f for OR, the resulting estimators are close to TMO.101010 and AIPW.111111,
which reflects that the AIPW estimator provides more protection for model specifi-
cation. Similar to the TM-type estimator, if the PS model is misspecified, even if the
models for PO and OR are correct, the BIAS and RMSE are much larger than other
estimators. Fourth, the ECPs of IPW.1111,AIPW.111111, TM.1010 andTMO.11$$$$
estimator (except TMO.110101), are close to the nominal level, while others lead to
low ECPs. Table 3 summarizes the results for t(3) error, and the comparison results
are similar.

Finally,wewould like to give a comment on the comparisons betweenAIPW.111111
and IPW.1111. From the view of theory, the AIPW approach is more efficient than the
IPW approach, as we use more information in the AIPW. However, even if the true
outcome model is included, there are several sources that lead to additional variation
in the estimator: (i) the estimation of the parameters in the true outcome model; (ii)
the inclusion of the misspecified outcome model in the empirical likelihood approach;
(iii) sampling from the outcome models. Therefore, the AIPW approach does not ben-
efit from augmentation when the missing rate is low (say 15%), but performs slightly
better when the missing rate achieves 30%.
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Table 2 BIAS(×100), RMSE(×100), ECP(%) and EML for normal error, with n = 400, based on 1000
replicates

τ Methods 15% missing 30% missing
BIAS RMSE ECP EML BIAS RMSE ECP EML

0.3 IPW.1111 −1.03 18.31 0.95 0.78 −0.35 21.55 0.95 0.88

TM.1010 −1.05 18.35 0.95 0.78 −0.48 21.51 0.95 0.88

TM.1001 4.46 19.16 0.96 0.79 8.12 22.91 0.94 0.86

TM.0110 −26.39 32.00 0.72 0.75 −25.59 32.55 0.77 0.84

TM.0101 −21.01 27.90 0.80 0.75 −17.48 27.19 0.85 0.82

AIPW.111111 −1.30 18.21 0.96 0.79 −0.02 21.32 0.95 0.88

TMO.111010 −1.23 18.16 0.95 0.78 −0.13 21.23 0.95 0.88

TMO.111001 −1.11 18.37 0.95 0.78 −0.36 21.58 0.95 0.88

TMO.110110 −0.69 18.08 0.96 0.77 −0.25 20.96 0.94 0.84

TMO.110101 4.61 19.33 0.96 0.79 8.69 23.52 0.94 0.86

TMO.011010 −26.39 31.95 0.71 0.75 −25.38 32.36 0.78 0.84

T.1100 4.50 19.11 0.96 0.79 8.27 23.22 0.93 0.86

T.1000 4.43 19.12 0.96 0.78 8.28 23.21 0.94 0.86

T.0100 −20.92 27.78 0.80 0.75 −17.40 27.04 0.85 0.82

Naive.0000 −23.81 29.90 0.75 0.74 −20.27 28.87 0.82 0.81

0.5 IPW.1111 −0.23 17.63 0.96 0.76 0.18 20.23 0.96 0.87

TM.1010 −0.28 17.67 0.96 0.76 0.19 20.18 0.96 0.87

TM.1001 5.56 18.38 0.95 0.75 9.78 21.87 0.94 0.83

TM.0110 −26.00 31.79 0.71 0.73 −25.61 32.49 0.77 0.83

TM.0101 −20.07 26.87 0.82 0.72 −16.24 25.25 0.87 0.79

AIPW.111111 −0.37 17.62 0.96 0.76 0.37 19.97 0.96 0.87

TMO.111010 −0.27 17.70 0.96 0.76 0.38 19.77 0.96 0.87

TMO.111001 −0.27 17.65 0.96 0.76 0.11 20.52 0.96 0.87

TMO.110110 0.24 17.50 0.96 0.75 −0.18 19.98 0.96 0.84

TMO.110101 5.65 18.40 0.95 0.75 9.81 21.94 0.94 0.83

TMO.011010 −26.10 31.86 0.71 0.73 −25.16 31.93 0.77 0.83

T.1100 5.56 18.30 0.95 0.75 9.89 22.12 0.93 0.83

T.1000 5.57 18.31 0.95 0.75 9.82 22.03 0.94 0.83

T.0100 −19.98 26.78 0.82 0.72 −16.12 25.19 0.87 0.79

Naive.0000 −23.78 29.72 0.76 0.72 −20.01 27.89 0.82 0.79

The nominal level of the confidence interval is 95%
aThe description of different methods are given in Table 1

5 Analysis of CHARLS Data

Cognitive function is a critical dimension of the life quality in later life, the decline
of which disrupts daily life function and happiness. It is thus important to study the
determinants of cognitive function in order to know how to delay and/or slow down
its eventual decline. A growing body of research suggested that social activities or
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Table 3 BIAS(×100), RMSE(×100), ECP(%) and EML for t(3) error, with n = 400, based on 1000
replicates

τ Methods 15% missing 30% missing
BIAS RMSE ECP EML BIAS RMSE ECP EML

0.3 IPW.1111 0.61 22.23 0.96 0.91 0.48 25.34 0.94 1.01

TM.1010 0.60 22.27 0.95 0.90 0.44 25.41 0.94 1.01

TM.1001 5.98 22.81 0.95 0.90 8.69 26.31 0.92 0.99

TM.0110 −24.28 32.50 0.80 0.87 −24.17 34.47 0.82 0.97

TM.0101 −19.32 29.04 0.84 0.86 −16.53 29.55 0.88 0.94

AIPW.111111 0.63 22.24 0.95 0.90 0.59 25.02 0.94 1.02

TMO.111010 0.62 22.33 0.95 0.90 0.68 24.89 0.94 1.01

TMO.111001 0.60 22.29 0.95 0.90 0.36 25.52 0.94 1.02

TMO.110110 1.71 21.97 0.96 0.89 1.58 24.40 0.95 0.98

TMO.110101 6.28 22.94 0.95 0.90 9.25 26.89 0.92 0.99

TMO.011010 −24.41 32.56 0.80 0.87 −24.17 34.31 0.84 0.97

T.1100 5.90 22.88 0.95 0.90 8.58 26.27 0.92 0.98

T.1000 5.90 22.85 0.95 0.90 8.59 26.29 0.93 0.98

T.0100 −19.15 28.96 0.85 0.87 −16.58 29.37 0.87 0.94

Naive.0000 −22.19 31.00 0.82 0.86 −19.32 30.84 0.85 0.94

0.5 IPW.1111 0.18 20.08 0.96 0.85 0.04 23.74 0.96 0.98

TM.1010 0.14 20.10 0.96 0.85 0.03 23.75 0.95 0.98

TM.1001 6.02 21.01 0.95 0.84 9.85 25.10 0.92 0.93

TM.0110 −25.32 31.93 0.79 0.82 −25.31 33.92 0.82 0.94

TM.0101 −19.55 27.55 0.85 0.81 −15.31 27.23 0.89 0.89

AIPW.111111 0.19 20.12 0.97 0.85 0.38 23.58 0.96 0.98

TMO.111010 0.04 20.09 0.97 0.85 0.29 23.56 0.95 0.98

TMO.111001 0.17 20.12 0.96 0.85 0.09 23.84 0.96 0.98

TMO.110110 0.46 19.84 0.96 0.84 0.34 22.90 0.95 0.94

TMO.110101 6.40 21.20 0.95 0.84 10.60 25.73 0.92 0.93

TMO.011010 −25.45 32.00 0.78 0.82 −25.22 33.85 0.83 0.94

T.1100 6.00 21.03 0.95 0.84 9.76 25.00 0.93 0.93

T.1000 6.03 21.07 0.95 0.84 9.75 25.08 0.92 0.92

T.0100 −19.57 27.56 0.85 0.81 −15.42 27.27 0.89 0.89

Naive.0000 −23.15 30.23 0.81 0.80 −19.17 29.42 0.86 0.88

The nominal level of the confidence interval is 95%
aThe description of different methods are given in Table 1

social engagement among the elderly have a positive effect on cognitive function [13,
16]. In this section, we apply the proposed method to the motivated data set from the
Chinese Health and Retirement Longitudinal Study (CHARLS), collected in 2018,
and we aim to study the causal effect of social activities on cognitive functions among
middle-aged and older adults in China.
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Following the analysis of Hu et al. [13], we use episodic memory, a necessary com-
ponent of reasoning in many cognitive dimensions, as the outcome variable. Episodic
memory was evaluated through the means of scores in the immediate and delayed
word recall, with scores ranged from 0 to 10. After discarding participants who are
either younger than 45 years old, or social activity information (the covariates) miss-
ing, 7818 participants are included in our study, with 1889 whose outcome variables
are not observed completely, yielding around 24% missingness. The treatment vari-
able is whether to participate in certain common specified activities in China, such
as playing chess, card games or Mahjong, interacting with friends, and other social
activities. Other covariates (confounders) in the analysis are composed of sociodemo-
graphic characteristics and health status related to cognitive function, including age,
gender, resident areas (urban or rural), education levels (illiterate, primary education,
secondary or above), marital status (currently married or not), smoke (yes or no),
hypertension (yes or no), diabetes (yes or no), cardiopathy (yes or no), apoplexy (yes
or no), where age is standardized and education levels introduce two dummy variables,
educationa (primary education as 1, otherwise 0) and educationb (secondary and above
as 1, otherwise 0). The QTE is defined as the quantile difference of cognitive distri-
butions between the treatment (participate in at least one social activity) and control
(not participate in any social activities) groups.

To apply our method, we need specify candidate models. For PS η(X), we consider
two candidate models: logit{η1(Xi ; γ 1)} = γ 1

0 + γ �
1 Xi and logit{η2(X∗

i ; γ 2)} =
γ 2
0 + γ �

2 X
∗
i , where Xi only contains all covariates we mentioned above, while X∗

i
includes Xi and the interactions between the age and other covariates. For PO, we
consider logit{π1(Xi , Ti ; θ1)} = θ10 + θ�

1 Xi + θ11Ti and logit{π2(X∗
i , Ti ; θ2)} =

θ20 + θ�
2 X

∗
i + θ21Ti . For AIPW estimator, the two models specified for fY |X,T (·)

are given by the probability density functions of N (ξ10 + ξ11Ti + ξ�
1 Xi , σ

2
1 ) and

N (ξ20 + ξ21Ti + ξ�
2 X

∗
i , σ

2
2 ). We compare the proposed IPW (IPW.1111) and AIPW

(AIPW.111111) estimators with four different classes of estimators as in Sect. 4.
Table 4 summarizes the point estimators, the bootstrap standard error (BSE), and

95% confidence intervals at quantile levels τ = 0.3, 0.5 and 0.7. The confidence inter-
vals are constructed by 500 bootstrap samples. We have the following findings. First,
the positive estimates from all the methods indicate that the social activities have posi-
tive effects on cognition, and the effect is significant since none of the 95% confidence
intervals includes zero, which is consistent with previous literature [6, 13]. Second, the
causal effects of social activities on cognitive functions vary across different quantiles.
The QTE at lower quantile is larger than those at the median or higher quantile, which
indicates that social activities have greater effects on cognitive improvement of indi-
viduals with low cognitive function. This new finding provides important personalized
intervention evidence for improving cognitive function. Third, the proposed estima-
tor has a certain discrepancy with T.$$$$ and Naive.0000, showing the necessity of
dealing with the confoundedness and missingness. Finally, the proposed IPW.1111 is
very close to TM.0101, which indicates the suitability of logit{η2(X∗

i ; γ 2)} for PS and
logit{π2(X∗

i , Ti ; θ2)} for PO; the proposed AIPW.111111 deviates from IPW.1111 in
some extent, and according to our theory, the inclusion of the augmentation term plays
a role, producing more trustworthy results.
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Table 4 Analysis results of for
the effects of social activities on
cognition (n = 7818)

τ Methods Est BSE Lbd Ubd

0.3 IPW.1111 0.650 0.133 0.389 0.911

TM.1010 0.649 0.126 0.402 0.897

TM.1001 0.649 0.132 0.391 0.908

TM.0110 0.639 0.133 0.379 0.900

TM.0101 0.654 0.139 0.382 0.926

AIPW.111111 0.498 0.094 0.313 0.682

TMO.111010 0.501 0.098 0.309 0.693

TMO.111001 0.507 0.099 0.314 0.701

TMO.110110 0.498 0.091 0.320 0.676

TMO.110101 0.498 0.098 0.307 0.690

TMO.011010 0.501 0.098 0.309 0.693

T.1100 0.592 0.115 0.366 0.819

T.1000 0.629 0.110 0.413 0.844

T.0100 0.592 0.117 0.363 0.822

Naive.0000 1.567 0.093 1.385 1.750

0.5 IPW.1111 0.575 0.093 0.392 0.757

TM.1010 0.610 0.093 0.427 0.793

TM.1001 0.603 0.097 0.412 0.793

TM.0110 0.586 0.091 0.408 0.765

TM.0101 0.584 0.096 0.395 0.773

AIPW.111111 0.438 0.083 0.275 0.602

TMO.111010 0.462 0.080 0.306 0.619

TMO.111001 0.438 0.080 0.282 0.595

TMO.110110 0.441 0.082 0.280 0.601

TMO.110101 0.432 0.081 0.273 0.590

TMO.011010 0.462 0.084 0.297 0.628

T.1100 0.437 0.097 0.248 0.627

T.1000 0.496 0.100 0.300 0.691

T.0100 0.437 0.099 0.244 0.631

Naive.0000 1.303 0.087 1.131 1.474

0.7 IPW.1111 0.424 0.087 0.253 0.595

TM.1010 0.488 0.080 0.330 0.645

TM.1001 0.476 0.079 0.322 0.630

TM.0110 0.440 0.087 0.268 0.611

aEst: point estimators of QTE; BSE: bootstrap standard error; Lbd:
lower bound; Ubd: upper bound. Refer the descriptions of the estima-
tors to Table 1
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Table 4 continued
τ Methods Est BSE Lbd Ubd

TM.0101 0.431 0.082 0.269 0.592

AIPW.111111 0.313 0.071 0.175 0.452

TMO.111010 0.320 0.060 0.202 0.438

TMO.111001 0.309 0.062 0.186 0.431

TMO.110110 0.316 0.067 0.184 0.448

TMO.110101 0.305 0.069 0.170 0.441

TMO.011010 0.320 0.066 0.190 0.450

T.1100 0.336 0.075 0.189 0.484

T.1000 0.367 0.083 0.205 0.529

T.0100 0.336 0.078 0.184 0.489

Naive.0000 0.935 0.073 0.792 1.078

aEst: point estimators of QTE; BSE: bootstrap standard error; Lbd:
lower bound; Ubd: upper bound. Refer the descriptions of the estima-
tors to Table 1

6 Discussion

In this paper, we proposedmultiply robust IPWandAIPWestimators for theQTEwith
missing responses. The proposed IPW estimator is robust against model misspecifi-
cation for PS and PO, and the proposed AIPW estimator further strengthens this
robustness. Further research topics can be proposed. First, the methods proposed can
be generalized to estimate QTE at extreme quantile levels [26] withmissing responses.
Second, under memory constraint, we can extend our method to distributed comput-
ing [4, 5]. Third, we can further consider the statistical inference of the QTE [2] with
missing responses, testing whether the QTE is zero, or heterogeneous to covariates,
or varies across quantiles.
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