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Abstract

Testing slope homogeneity is important in panel data modeling. Existing approaches
typically take the summation over a sequence of test statistics that measure the het-
erogeneity of individual panels; they are referred to as Sum tests. We propose two
procedures for slope homogeneity testing in large panel data models. One is called
a Max test that takes the maximum over these individual test statistics. The other is
referred to as a Combo test, which combines a certain Sum test (i.e., that of Pesaran
and Yamagata in J Econom 142:50-93, 2008) and the proposed Max test together.
We derive the limiting null distributions of the two test statistics, respectively, when
both the number of individuals and temporal observations jointly diverge to infin-
ity, and demonstrate that the Max test is asymptotically independent of the Sum test.
Numerical results show that the proposed approaches perform satisfactorily.
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1 Introduction

In classical panel data analysis, it is often assumed that the slope coefficients of interest
in panel data models are homogeneous across individual units. However, in practice,
they can be individually specific. Ignoring this form of heterogeneity may result in
biased estimation and inference. Thus, a formal test for slope homogeneity is necessary.
When the number of individuals or panels, N, is fixed, and the number of tempo-
ral observations, T, diverges, a simple method is to use the standard F-test, which
assumes exogenous regressors and homoskedastic errors. To eliminate the effect of
heteroscedasticity, Swamay [20] proposed a dispersion test based on generalized least
squares estimators under a random coefficient model. Another type of tests is based
on Hausman’s test [11], where the standard fixed effects estimator is compared to the
mean group estimator; see, for example, Pesaran et al. [17] and Phillips and Sul [19].
However, these methods are not applicable in the case of panel data models that contain
only strictly exogenous regressors and/or in the case of pure autoregressive models
[18]. An early work of [22] proposed the seemingly unrelated regression equation
(SURE) approach to incorporate cross-sectional dependence. The above approaches
assume that N < T, and would lose their efficiency or even fail when N is comparable
to, or even larger than, 7', such as in many micro-econometric applications; the latter
situation is referred to as large or high-dimensional panel data models.

In a high-dimensional setup, the dispersion test proposed by [17] allows N > T.
Pesaran et al. [18] investigated the asymptotic distribution of the test statistic proposed
by [20] in a large N, T scenario, and proposed a modified Swamy-type statistic,
based on different estimators of regression error variances. Under the paradigm of
fixed T but diverging N, Juhl and Lugovskyy [13] proposed a conditional Lagrange
multiplier test based on the conditional Gaussian likelihood function, and [4] proposed
some Lagrange multiplier tests, generalizing the test proposed by [5] against random
individual effects to all regression coefficients.

Most approaches mentioned above are based on the summation of a sequence of test
statistics for individual units, which are referred to as Sum tests. Sum tests turn to be
efficient under dense alternatives, in the sense that the number of individual units with
heterogeneous slope coefficients is large. However, for sparse alternatives when there
are only a few heterogeneous individual units, Sum tests would be inefficient. In the
latter situation, a maximum-based strategy can be more suitable, as widely discussed
in the statistical literature, such as [6] and [21]. Motivated by this, we first propose
a Max test based on the maximum of these individual test statistics. We establish
its asymptotic distribution under the null hypothesis when N, T — o0, and show
that the Max test outperforms a certain Sum test [18] in terms of power under sparse
alternatives.

In practice, we seldomly know whether the alternatives are dense or sparse. Thus,
it is kind of risky to simply apply a single Sum or Max test, if we have no priors on
the sparsity level. This motivates us to develop an adaptive test to different levels of
sparsity. We propose a Combo test, which combines the Sum and Max tests together, by
taking the minimum p-value of these two separate tests. The asymptotic independence
of Sum- and Max-type test statistics has been widely studied in the literature, such as
[7, 12, 15], and [10], to name a few. Under some mild conditions, we show that the
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Sum test statistic is asymptotically independent of the Max test statistic under the null
hypothesis when N, T — oo. Consequently, the Combo test statistic is asymptotically
distributed as the minimum of two independent standard uniform random variables
under the null hypothesis. Theoretical results and simulation studies show that the
Combo test performs very robust to either dense or sparse alternatives.

The rest of this paper is organized as follows. In Sect. 2, we give a brief literature
review of testing procedures for slope homogeneity. We introduce Max and Combo
tests, and establish their theoretical properties in Sect. 3. In Sect. 4, some numerical
studies including real-data examples are conducted to evaluate the performance of the
proposed methods. Some discussions are given in Sect. 5, and all technical details are
deferred to Appendix.

2 The Model and Existing Approaches

We consider the following panel data model with fixed effects and potential heteroge-
neous slopes

yie=a; +x, B +uy, i=1,...,N, t=1,...,T, 2.1

where x;; is a p-dimensional vector of strictly exogenous regressors, «; and B; are
the scalar intercept and p-dimensional slopes, respectively, and u;; are random errors
with mean 0 and variance al.z. Suppose that «; are bounded on a compact set and S;
are bounded in the sense that || ;|| < K for some constant K > 0, where || - || is the
Euclidean norm. Write in a compact form

Yi =oilr +XiB; +ui,

where Y; = (yi1, ..., y,-T)T, 17 is a T-dimensional vector with all elements being
LX; = (xi1,...,xi7) ", and u; = (wir, ..., u;7) . Of interest is to test the null
hypothesis

Ho:B;,=p foralli=1,..., N, 2.2)

against the alternative hypothesis
H) : there exist some 1 <i # j < Nsuch that B; # B;.

A well-known test is the standard F'-test, which is valid for fixed N and diverging
T and when the error variances are homoskedastic, i.e., al.2 =o2. For N > T, [17]
proposed a Hausman-type test [11], by comparing the standard fixed effects estimator
with the mean group estimator, that is,

N —1 N N
A . 1 -
Brg = <§ XiTMX,~> E X/ MY; and By = N E :/’i’
i=1

i=1 i=1
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respectively, where B; = (X MX;) ™' X/ MY;, M = Iy — 17(1}17) "1}, and I
is a T x T identity matrix. However, this test would lack power under a random
coefficient model such that £ (ﬁFE - ﬁMG) = 0. Phillips and Sul [19] proposed a
different Hausman-type test based on

(B-twobs) 37 (B-1ve ).

~ AT AT o . . . . .
where B = (B;,....B N)T, Y is a consistent estimator of the variance matrix of

B -1y ® BFE under Hy. This test is likely to be more powerful than that proposed
by [17], but is still limited for fixed N. In the case of fixed N, Swamay [20] proposed
a test based on

TXI.TMXi(A . )

S = Z(ﬂi _.BWFE> > i — Bwre
i=1 0i
where
N T - N T
N X' MX; X' MY;
Bwre =2 ") L5
i=1 i i=1 i

~N\T ~ ~
and 61'2 =T -p-— 1)_1<Y,~ — Xiﬂi) M (Y[ — Xiﬂ,-). Based on S, Pesaran and
Yamagata [18] showed that, as N, T — oo,

A= NT+1) (——2PS(/TN__])” d 1))

converges to the standard normal distribution in distribution, if N /T 2 5 0. Moreover,
they proposed an adjusted test statistic, that is,

- S/N —
Awij=VN(T + 1) (ﬁ) , 2.3)

to weaken the dimension restriction, where

S = i S;, Si = (ﬁl - BWFE)T XIT;:Xi (Bl — BWFE) , (2.4)
i=1 i

) )
i=1 i i=1 G

—1
N T N T

- X. MX; X.' MY;

Bwre = (E l l) E : -
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~ T ~
and 51.2 =T -1)""! (Yi — XiﬂFE> M (Y,' — X,~/3FE>. In other words, it modifies

the S test by replacing the variance estimators 61'2 by &iz. The authors investigated the
asymptotic normality under Hy for non-normal errors, provided that N/T* — oo.
Notice that for normal errors, both A and Aadj are valid without any restrictions on N
and T.

Under the asymptotic regime of diverging N but fixed 7', [13] proposed a conditional
Lagrange multiplier test based on

N N
Tam =) S/ (Z S8 ) > s (2.5)
i=1 i=1 [

where S; = &, MX; X Mit; — 62tr(X' MX;) and &t; = M(Y; — X; B). By the fact
that

N
§=1"a MX;(0?XMX) "X Mit; + 0,(1),
i=1

the main difference between Tcpm and A is that the statistics S; neglect such terms
(UI-ZXITMX[)_I inS.In fact, both can be regarded as testing the independence of #; and
MX; by the moment conditions E(ul.TMX,- W,-X[TMu,-) = crl.zE(tr(MX,-W,-X[TM))
with properly defined W;; that is, W; = I, for TcLm and W; = (al.inTMX,-)_l for
A. [4] proposed a Lagrange multiplier test under the heteroskedastic errors based on

—1

Tim = (ii@@) (Ziaizi,z;> (Zifmzn) X0

i=11t=2

Tim — X in distribution, as N — oo but keeping 7 fixed.

where ii;; is the ¢-th component of &; and Z;; = x;; Z;fll isXis. They showed that

3 Our Tests
3.1 Methodology

A large value of

S = (B, - BWFE)T (XiTMXi/5i2) (.Bz - BWFE)

(cf. (2.4)) indicates a heterogeneous individual slope, fori = 1, ..., N. Most existing
procedures for slope homogeneity testing are based on the summation of all S; or some
variants. When there are a large proportion of individual units are heterogeneous with
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different slope coefficients (referred to as dense signals), Sum tests can accumulate all
departure information together, thus making a powerful test against Hy. In contrast,
when the number of heterogeneous individuals is very small (i.e., sparse signals), the
summation statistic brings with redundant noises, which greatly decrease the testing
power. Motivated by this, we propose a maximum-based statistic

Tvax = max S, 3.1
1<i<N

and we refer to the associated testing procedure as the Max test. It can be expected
that the Max test would be more powerful against sparse alternatives.

Sometimes, we have some knowledge of the sparsity level, and we can choose
between a Sum or Max test. However, if such priors are unavailable, a new method
that is adaptive to the sparsity is demanded. We propose combining the Sum and Max
tests in the following way

Tcombo = min{ps, pm}, (3.2)

where pys and pg are the p-values of the Max and Sum tests, respectively. To be spe-
cific, pyy = 1 — F {Tvax — 210g(N) — (p — 2) log(log(N)) + 21log(I'(p/2))} and
ps=1—® {Aadj } where F(y) = e is the type-1 extreme distribution func-
tion (i.e., the Gumbel distribution function), and ®(y) denotes the standard normal
distribution function. Here we use Aadj [18] as the Sum test statistic. We refer to this
new test as the Combo test, which is expected to perform well, regardless of whether
the alternatives are sparse or dense.

We summarize some theoretical properties of the Max and Combo tests here; more
details are revealed in the following sections. For the Max test, we show that under
some mild conditions,

Tvax = Tviax — 210g(N) — (p — 2) log(log(N)) + 21og(I'(p/2))

converges to the type-I extreme distribution in distribution under Hy, as N, T — oo.
Hence given a significance level o € (0, 1), we can reject Ho if Typay is larger than the
(1 — «a)-quantile of F(y), say g, = —2log(log(1 — «)~1). We also derive the limiting
null distribution of the Combo test by demonstrating that the Max statistic is asymp-
totically independent of the Sum statistic under Hy, as N, T — oo. Consequently, an
asymptotic level-a test is to reject Hy if Tcombo < 1 — 4/1 — .

3.2 Max Test

To establish theoretical properties of the Max test, we need the following conditions

(C1) uj; ~ N(O, oiz) and or%mx = max|<j<nN aiz is bounded.

(C2) uj; and u j; are independently, for i # j and/or t # s.

(C3) Fori = 1,..., N, ;7 = T~'XMX; is positive definite and bounded, and
converges to a non-stochastic positive definite and bounded matrix X;, as 7 —
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00.X4 =(NT)™! (Z,N:l XTMX,) is positive definite and converges to a non-
stochastic positive definite matrix X, as N, T — oo.
(C4) u;, is independent of x,, forall i, j, ¢, 5.

Condition (C1) is crucial to obtain the asymptotic distribution of the test statistic
Twvax and the asymptotic independence between Tyax and Aadj. An extension to non-
normal errors deserves further studies, see discussions in Section 5. Condition (C2)
assumes the cross-sectional independence, Condition (C3) is used for the consistency
of the least square estimators of B;, and Condition (C4) means that x;, are strictly
exogenous; these conditions are standard in the literature, see, for example, [18].

Theorem 3.1 Suppose conditions (C1)—(C4) hold. Under Hy, if log(N) = (T3,
then

P{ Tyt — 210g(V) = (p = 2) log(log(N) + 210g(T'(p/2)) < x}
— exp(—exp(—x/2)),
as N, T — oc.

According to the limiting null distribution, we can reject Hy if
Tviax = Tax — 210g(N) — (p — 2) log(log(N)) + 210g(I'(p/2)) = qq,

where gy is the (1 — «)-quantile of the type-I extreme value distribution with the
cumulative distribution function exp {— exp (—x/2)}, namely, g, = —2log(log(l —
).

Now, we turn to the power analysis of the Max test. Define

Ale) = {8 ; max TUi_zwiTEiTwi >c log(N)} )

where

-1

N N
w; =38 — (N] Zoi_z):,»T) (N] ZO‘i_ZEiTSi) and §; = B; — B.
i=1 i=1

Notice that [18] considered the following local alternative hypotheses for the Sum test,
thatis, Y1, 0,20, Zirw; = O(T~'N/?).

Theorem 3.2 Suppose conditions (C1)—(C4) hold. If log(N) = o(T'3), then for any
€ >0,

inf PWY,=1) —1,
seA(16+¢) (Yo =1

as N, T — 0o, where ¥, = I(fMaX > qy) is the power function.
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Theorem 3.2 shows that the proposed Max test is consistent if some al._zwlTE,-Twi is
larger than the order log(N)/T.

To make a comparison between the Max and Sum tests, define a class of sparse
alternatives

S(sn, cr,N)

N
=18:) I8 #0) <sn.(16+€)log(N) < max To 0] Tirw; <crnys
i=1 -

with sy = o(ﬁ/cT,N). By observing that S(sy, cr n) C A(16 + €), the Max test
is consistent over S(sy, cr,n), according to Theorem 3.2. In contrast, in Section 3.2
of [18], the authors showed that, under S(sy, cr N), Aadj would suffer from trivial
power. Hence the Max test is more efficient than the Sum test in such situations.

3.3 Combo test

To investigate the limiting null distribution and power property of the proposed Combo
test, we first demonstrate the asymptotic independence between A,gj and Tyiax under
the null hypothesis.

Theorem 3.3 Suppose conditions (C1)~(C4) hold. Under Ho, if log(N) = o(T'/3),
then Aguqgj and Tvax are asymptotically independent in the sense that

P(Bugj = % Tvax — 210g(N) — (p — ) log(log(V) + 2log(I'(p/2)) < y)
— QWF(),

as N, T — oc.
As a corollary, we derive the limiting null distribution of the Combo test.

Corollary 3.4 Assume the conditions in Theorem 3.3 hold. Then Tcombo converges in
distribution to W = min{U, V}, as N, T — oo, where U,V are independent and
identically distributed (iid) as a standard uniform random variable, and thus W has
the density G(w) =2(1 —w)I(0 <w < 1).

By Corollary 3.4, given a significance level o, we can reject Hy if Tcombo <
1 — /1 —a = a/2for a relatively small .

The power function of the Combo testis B¢ (8, @) = P(Tcombo < 1 —+/1 — ). It
can be verified that

IBC(&“)ZP(PM<1—M)+P(p5<1—M)
—P(pM<l—m, p5<]—m>

zmax{P(pS < 1—m>,P(pM < l—ﬂ)}
~max {Bs(8, a/2), Bu (3, a/2)}, (3.3)
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where By (8, o) and Bs(d, ) are the power functions of Ty1ax and Aadj, respectively,
at the significance level «. As shown in [18], Bs(8, ) = ® (—z4 + V), where ¥ =
limy 700 ﬁ ZlN:] To;zwiTZirw,- and z is the upper (1 — «)-quantile of the
standard normal distribution. According to (3.3), we have S¢ (8, o) > @ (—za 2+ 1//).

To compare the power of tests based on Aadj, Tmax and Tcombo, consider a simplified
scenario where X;7 = I, and 012 = 1. Moreover, m elements of §; = (8;1, ..., 81'[,)T
are randomly sampled from U (—y, y) for some y > 0, and the rest are set to be 0,
where U (a, b) is the uniform distribution with the support [a, b].

1. Assume that m — oo. By noticing that m—lzﬁ"zlal.—2z,-T5,-—”>0 and

m= YN yo; wTE,Twl 3py we have

Tmpl/ZyZ)
S, 0) =® | —z4+ — ).
Bs(8, @) ( o 3aN

In addition, we have ey2 < max|<j<nN ai_zw;—EiTwi < pyz, for any positive
constant € < p, with probability approaching one. We consider two special cases:

(1) Dense case y = O(T%)and m = O(NV2T%-1y with some & > 1/2. In
this case, Ty2 = o(1), and it can be verified that B8y (8, «) =~ «. Thus, the
Max test lacks power. Then, B¢ (8, o) ~ Bs(8, «/2) ~ Bs(8, o), if o is small.
Hence, the Combo test performs similarly to Aadj.

(2) Sparse case y = c/log N/T for a sufficient large constant ¢ and m =

o((log N)"IN1/2), In this case, T’;f/lz/%’z — 0 and Bs(8, @) &~ «; in other

words, the Sum test based on Aadj lacks power. According to Theorem 3.2,
Bm (8, ) — 1. Consequently, the Combo test has the power B¢ (8, @) — 1.

2. Assume that m is fixed. By noticing that Zl 10; wTZlTa), Op(yz) and
max|<j<y 0; wi Z,Ta), = Op(y ), we can similarly show that, if y =
c+/log N/T for a sufficient large constant c, then Bs(8, o) ~ a, By (8, o) — 1,
and Bc (8, ) — 1.

4 Numerical studies
4.1 Simulation

In this section, we investigate the finite-sample performance of the proposed Max and
Combo tests based on Tiax and Tcombo, respectively. We choose some benchmark
approaches, i.e., the tests based on Aadj [18], Tcom [13], and Ty [4]; see (2.3), (2.5),
and (2.6), respectively. We consider the following three examples with independent,
correlated, and structured noises, respectively. All simulation results are based on 1000
replications. We set the nominal significance level as « = 5% in all examples.
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Example 4.1 We revisit the model in [18]

P
yz't=06i+zxz'zrﬁiz+uiz, i=1L...,N, t=1...T,
=1

xie = o (1= pir) + pixti—1 + (1 — pi) v, t = —48,...,0,..., T,

where v, X N(0,02,). We fix some pi; ~ U(0.05,0.95) and o2, “ x2(1)

ilx

. . iid .
throughout the simulation study. We generate «; N (1, 1), and discard the first
49 observations to reduce the effect of initial values. Three scenarios to generate
. iid .
uj; = 0;zjs, with Gl_z g % XZ(Z), are considered as follows:

(I) Normal distribution, z;; £ N, 1);
(ID) r-distribution, z;; * 1(3)/+/3:
(III) Mixture of normals, z;; i {0.9N (0, 1) +0.1N(0, 100)}/4/10.9.

Under Hy, Bi; = 1, for alli and [. While under Hy, we set 8;; = i1, forl # 1, and for
{B11, ..., Bn1}, we first randomly choose /1 < --- < [, from {1, ..., N}, and then
generate f;,1 ~ U(1 — 1.1m= 005 1 4+ 1.1m_0'65), fori =1, ..., m, and set the rest
Bit, i ¢ {l1,..., 1}, tobe 1.

Example 4.2 To study the impact of correlated errors on the testing procedures,
we generated u;; = ojzir with z; = (z1r, coovZN) |~ N(O, X;), where X, =
(0~5‘l_”)15i,j§N~ The other settings are the same as in Example 4.1.

Example 4.3 We consider a high-dimensional panel data model with interactive fixed
effects [2]. We generated u;; = f ,T)q + 0;zi; [1], where f, are 2-dimensional factor

vectors with iid N (0, 1) entries, A; N (0, 0.25I) are factor—loadlng vectors, and
2t = (21, ..y 2N T~ N(O, ¥,), with X, = (0.5"_”)151-,]-51\/, are noises. The

. . iid
other settings are the same as in Example 4.1, except that, under Hi, ;1 LU (1 -
2m=06, 1 +2m=09),

Table 1 presents empirical sizes of various slope homogeneity tests under Example
4.1, with the configuration that p € {2, 3,4}, T € {50, 100} and N € {50, 100, 200}.
We can see that the Max test is a little conservative when the sample size is small.
This is not strange, because the convergence rate of the extreme value distribution is
rather slow [16]. In most cases, the Aadj, Tim and Tcombo tests can maintain the sizes
at the nominal level, while the Ty test tends to be fairly conservative.

Figures 1-3 report the power of various tests with p = 2, 3 or 4 under Example 4.1,
respectively, when 7 = 100 and N = 200. We observe that the 71 v and Tcpm tests
perform not very well, in terms of low power. As expected, the Max test outperforms
the Aadj-based Sum test when m is relatively small, and as m becomes large, the Sum
test performs better than the Max test. This is consistent with our theoretical result, that
is, the Sum test is favorable for detecting dense signals, while the Max test is preferred
for sparse scenarios. The proposed Combo test performs similarly to the Max test
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Table 1 Empirical Sizes of various slope homogeneity tests under Example 4.1

Scenarios p= p=3 p=
N N N
T Method 50 100 200 50 100 200 50 100 200
@
50 TMax 1.9 1.7 0.8 32 1.5 1.6 38 3.0 2.3
Aqdi 4.1 3.7 4.7 3.7 4.4 43 3.4 3.6 3.9
Tim 5.5 6.3 5.8 6.6 4.4 4.7 5.3 43 5.9
Toiwm 1.4 1.0 1.3 13 0.7 12 1.1 1.0 1.5
TCombo 4.0 3.5 42 3.6 42 4.1 3.7 3.5 3.8
100 Tax 3.1 3.7 2.6 3.8 42 33 53 6.8 45
Augy 3.4 4.6 49 2.8 42 52 3.0 35 3.7
Tim 5.1 5.8 5.7 5.3 5.8 6.5 5.5 59 52
Tem 0.6 0.8 1.3 0.3 1.8 1.9 12 1.4 1.9
TCombo 3.5 45 4.4 3.3 42 4.6 47 45 3.9
an
50 TMax 2.3 1.1 1.3 13 1.8 1.2 3.9 3.0 1.7
Audj 4.8 45 45 4.0 3.0 3.7 3.0 4.0 2.6
Tim 5.7 43 5.0 4.4 4.4 3.9 5.6 4.7 5
Tcm 0.6 1.6 1.6 1.0 0.7 1.0 1.1 1.1 1.9
TCombo 43 4.1 4.0 3.8 32 3.7 3.9 3.8 2.8
100 TMax 2.9 3 2.5 45 32 3.1 7.3 55 43
Aadj 4.1 5.0 6.0 49 43 4.6 23 4.0 52
Tim 5.8 43 5.6 6.2 49 43 6.7 5.7 5.0
Tcm 1.1 1.2 13 1.1 1.0 1.6 0.9 1.1 2.0
TCombo 4.0 47 48 4.6 4.1 4.1 5.7 5.1 4.8
111))
50 TMax 1.3 1.8 1.0 22 1.4 1.1 4.1 1.8 12
Aqdi 4.0 4.0 3.9 3.4 3.5 3.9 2.7 3.1 4.0
Tim 4.5 32 4.4 3.7 4.0 3.9 45 4.6 3.2
Teiwm 1.1 12 1.7 1.0 1.6 1.4 0.8 13 1.5
TCombo 3.7 3.5 3.8 3.3 32 3.4 3.7 32 3.8
100 TMax 3.1 1.7 2.6 3.9 42 4.8 6.9 6.4 5.3
Aqdi 49 3.5 4.0 3.8 43 45 3.8 3.4 52
Tim 5.1 3.9 4.4 3.4 4.6 53 45 45 3.5
Toiwm 1.1 12 1.9 0.6 1.1 1.4 13 12 1.6
TCombo 43 3.7 4.0 3.6 4.0 4.4 4.7 45 52
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(U] (n (1

Power
Power
Power

m m m
Note: MAX*TMax; PY*Aadj; CLM— TCLM§ LM— TLM; COM— TCombo~

Fig.1 Power of various slope homogeneity tests with p = 2 under Example 4.1

U] () (1

Power
Power
Power

Note: MAX*TIﬂaX; PY*A&dj; CLM— TCLM; LM— TLM; COM— TCOInbO'

Fig.2 Power of various slope homogeneity tests with p = 3 under Example 4.1

for small m, and has a similar performance to the Sum test for large m. Moreover,
it outperforms both the Max and Sum tests for moderate m. Our simulation results
reveal that the Combo test is very efficient in most cases, and it adapts to different
levels of the sparsity. In addition, both the proposed Max and Combo tests, together
with Aadj, are robust to non-normal noises.

Tables 2 and 3 present empirical sizes of various tests under Examples 4.2 and 4.3,
respectively, with a wide range of (p, N, T') configurations. Figures4, 5 depict the
power of each test against the sparsity level m. Similar conclusions can be made as
under Example 4.1. In particular, the Combo test adapts to the sparsity and has very
good power. We also conduct a simulation study regarding some larger dimensions
N =400 and T = 200 under Example 4.2; see Fig. 6. It can be seen from Fig. 6 that
the proposed tests perform satisfactorily.

Having observed that the Max test can be sometimes conservative (see, for example,
Tables 1-3), we provide a bootstrap calibration procedure to accommodate such issues.
Based on the residuals #; = M(Y; —Xiﬁi) = (i1, ..., 0;7) ", fori =1,..., N, we
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Table 2 Empirical Sizes of various slope homogeneity tests under Example 4.2

Scenarios p=2 p=3 p=4
N N N

T Method 50 100 200 50 100 200 50 100 200

50 TMax 14 1.1 1.3 3.8 1.7 2.0 3.7 2.8 1.8
Aadj 5.1 5.1 5.0 4.4 34 3.9 32 3.1 3.9
Tim 6.2 6.2 5.6 5.6 4.0 4.1 5.2 4.5 5.5
TcLm 0.7 1.5 1.2 1.2 1.6 1.2 0.7 1.3 1.5
TCombo 3.0 39 3.1 34 2.6 1.4 33 2.7 2.4

100 TMax 25 2.8 1.9 4.7 4.5 2.4 6.6 6.2 52
Aadj 34 5.4 34 2.8 5.7 4.7 3.7 32 4.4
Tim 6.7 5.1 5.3 6.4 5.3 4.0 6.3 5.8 5.4
Tcm 0.7 1.0 1.2 0.7 1.4 1.6 1.4 1.2 1.1
TCombo 2.7 43 2.8 34 4 3.8 5.2 49 44

Table 3 Empirical Sizes of various slope homogeneity tests under Example 4.3

Scenarios p=2 p=3 p=4

N N N

T Method 50 100 200 50 100 200 50 100 200

50 TMax 1.9 1.7 1.5 22 2.6 1.1 2.7 1.7 1.8
Aadj 59 53 6.4 4.0 6.0 6.3 44 4.7 6.1
Tim 53 5.1 5.6 6.6 4.0 5.1 6.4 4.7 4.7
Tem 0.7 1.2 2.0 0.9 1.5 1.6 1.6 0.8 1.9
Tcombo 3 29 4.1 2.8 45 44 2.6 33 4.0

100 TMax 33 29 34 5.3 33 3.1 72 7.9 4.7
Aadj 5.3 5.2 6.5 4.7 3.8 6.2 35 52 44
Tim 6.1 5.0 5.5 5.7 5.3 4.6 7.4 5.4 5.9
TcLm 0.9 0.9 1.7 1.1 1.0 1.2 0.9 1.3 1.7
TCombo 3.8 4.1 5.4 5 3.8 4.7 5 6.1 5.1

Table 4 Empirical sizes of the proposed tests with their bootstrap calibrations under Example 4.2

Scenarios p=2 p=3 p=4
N N N

T Method 50 100 200 50 100 200 50 100 200

50 Max 1.4 1.1 1.3 3.8 1.7 2.0 3.7 2.8 1.8
Sum 5.1 5.1 5.0 4.4 34 3.9 3.2 3.1 3.9
Combo 3.0 3.9 3.1 34 2.6 1.4 33 2.7 2.4
Max* 5.7 4.7 4.6 3.8 5.0 4.6 3.2 33 33
Combo* 6.1 5.2 53 3.9 4.3 4.7 49 3.8 42
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Fig.3 Power of various slope homogeneity tests with p = 4 under Example 4.1
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Fig.4 Power of various slope homogeneity tests under Example 4.2
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Fig.5 Power of various slope homogeneity tests under Example 4.3
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Fig.6 Power of various slope homogeneity tests under Example 4.2 with N = 400 and 7 = 200

generated N bootstrap samples
Yi* :Xiyo—‘rﬂi,i = 1,...,N,

where yo = (1,..., )T € R? and ;= M1, -, nir) " such that 1.; are bootstrap
samples from {12.,}IT:1 with &, = (@, -+ ,dns) ", and n., is the rth column of
My, ....ny) . Hence, a bootstrap calibrated Max statistic can be computed based on
the bootstrap sample (¥;*, X;), i = 1,---, N. By repeating the sampling procedure
B = 500 times, an empirical p-value can be obtained, say pj,. If p}, < o, then
we can reject the null hypothesis. We refer to this bootstrap calibrated procedure as
Max*. In a similar way, we can define a bootstrap calibrated Combo test, by rejecting
Hyif py, <1 —+/1—aor ps <1—+/1—a,which is referred to as the Combo*
test. Table 4 reports the empirical sizes of the proposed testing procedures, together
with their bootstrap calibrations, under Example 4.2. We observe that both calibrated
procedures perform very well. It is interesting to investigate the asymptotic validity
of these tests for future researches.

4.2 Real data analysis

We study a real-data example of securities in stock markets to assess the performance
of the proposed tests. To model the data, we use the Fama—French three-factor model
[9], which adds size risk and value risk factors to the market risk factor in the capital
asset pricing model. To be specific, assume

Yie =rit —rer = o + Bit (rme — 11) + Bi2SMB, + BisHML; + u;q,

fori € {l,...,N}andt € {r,..., 7 + T — 1}, where r;; is the return of portfolio i
at time ¢, ry, is the risk-free rate at time ¢, rp is the market portfolio return at time ¢,
SMB; is the size premium (small minus big), and HML,; is the value premium (high
minus low). We are interested in testing Hy : B; = B foralli = 1,..., N versus
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Z?fl;liesntlt{e?tzctt';(;nbre?;etsegtfing, r=2 r=30

regarding the China and US N N

stock markets Method 30 50 80 30 50 800
China Stock Market
Tviax 49.3 539 54.9 65.3 73.4 78.9
Aadj 94.3 98.3 99.8 96.1 99.1 100
Tim 48.5 69.3 83.9 53.5 72 87.8
TcLM 63 78.5 87.1 67.4 82.7 924
TCombo 92.6 97.5 99.5 95 99.1 100
US Stock Market
Tviax 49.9 43.1 40.7 66.6 69.6 68.4
Aadj 95.1 98.6 99.5 98.5 99.5 100
Tim 66 83 934 74.5 89.9 95.1
TcLMm 86.6 94.9 97.2 924 97.1 98.9
TCombo 93.3 98 99.3 98.3 99.2 99.9

Hy : B; # B, forsome 1 < i # j < N, where B; = (Bi1. Bi2. Biz) ", for all
i=1,...,N.

Two data sets are investigated. One is the data set of securities in China’s stock
markets. We consider N = 1, 340 securities during the period from June 2005 to
May 2019, measured in percentages per month. Hence, we have a total amount of
T = 144 temporal observations. The rate of China’s 10-year government bond is
chosen as the risk-free rate r¢,, the value-weighted return on the stocks of Shanghai
Stock Exchange and Shenzhen Stock Exchange is used as a proxy for the market return
rmt, the average return on three small portfolios minus that on three big portfolios is
calculated as SMB;,, and the average return on two value portfolios minus that on two
growth portfolios is used as HML,. The other data set is from the S&P 500 index.
We specify the time range from January 2005 to November 2018 with 7 = 165, and
collect N = 374 securities during this period.

We first apply five tests based on Tyax, Aadj, Tceims Tim and Teombo to each data
set with full samples. All tests reject the null hypothesis significantly, which shows that
different stocks have different beta values. Next, we consider a restricted data size by
randomly sampling 7 € {25,30} and N € {30, 50, 80} observations from each data
set, and then repeating the process 1,000 times for each (7', N) combination. Table 5
reports the rejection rates of different tests for each data set. We observe that the Max
test performs not very well, which indicates the signal may be dense. This is further
verified by the fact that the Aadj—based Sum test performs the best among all (7', N)
combinations. The proposed Combo test (i.e., Tcombo) performs very similarly to the
Sum test, consistent with our theoretical and simulation findings.

5 Discussion

In this paper, we propose two approaches for slope homogeneity testing in high-
dimensional panel data models, that is, the Max and Combo tests. The Max is more
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efficient compared to traditional Sum tests under sparse alternatives, while the Combo
is robust to different levels of sparsity. We established the limiting null distributions of
both test statistics. Two limitations of the present work are: (1) the errors are assumed
to be normal; and (2) the cross-sectional units are assumed to be independent. Our
simulation studies show that the proposed tests may perform satisfactorily under non-
normal and/or correlated errors, but the theoretical properties deserve further studies.
Recent developments of slope homogeneity testing with cross-sectional dependence
and/or serially correlated errors, such as [1, 3] and [4], could be extended for our
methods. We leave it as future researches.

6 Appendix
6.1 Some useful lemmas
Lemma 6.1 restates a result in Table 3.4.4 in [8].

Lemma 6.1 Suppose z; i L'k, 0), fori=1,...,n. Thena,(max|<j<p 2i —bn) —d>A,
as n — oo, where A is the Gumbel distribution with P(A < x) = e_e_x, a, =1/0,
and b, = 0(log(n) + (k — 1) log(log(n)) — log(I" (k))).

iid
Lemma 6.2 Suppose &; ~ N(0,1,), fori =1,..., N. Let A; € RP*P be positive
definite matrices, for all i = 1,..., N, and maxXi<j<y Amax(A;) < C, for some
positive constant C. Then, max|<;<n elTAiei = Op(log(N)),as N — oo.

Proof Consider the eigenvalue decomposition A; = SllTDiSli, where D; =
diag(A;1, ..., Ajp), Ajx are the eigenvalues of A;, and ; is an orthogonal matrix.
Then, e/ Aje; = &R/ D;Qe;. Since &; ~ N(0,1,), e; ~ N(0,1,). Thus,
siTAiei equals siTDiei = Z,le Aikel.zk in distribution. Then,

p P
d
max g, A &; = max A,kelk < rnax Amax (A; )Zelk < C max 312,{

1<i<N 1<i<N 1<i<N
k=1 k=1

Obviously, Zle el.zk ~ X,% =T(£,2). Thus, by Lemma 6.1, we have

1<i<N

P ( max Ze 2 < 3log(N)> ~ exp(— exp(—log(N)/2)) — 1,

as N — oo.Then,max <<y Zle ei2k = 0, (log(N)),and thus max;<;<y eiTAie,- =
0, (log(N)). O

Lemma 6.3 restates Lemma 6.1 in [14].

Lemma 6.3 Suppose X ~ sz, we have P(X > k + ~/2kx + 2x) < exp(—x) and
Pk — X > +/2kx) < exp(—x).
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Lemma 6.4 Suppose conditions (C1)—(C4) holds. Under Hp, maxi<;<n |6i2 - oi2| =

0, (/1og(N)/T).

O
Proof According to (A.15) in [18], we have
T
-, _ & Me; 1 Tyl -1 2 T
5= + Y, Xrx +——§&, 3 4E;,
[of T -1 N(T—I)EA A iT AgA «/N(T—I)EA AE!
where §; = T71/?XMe; and £, = N~!/2 Z,NZI &,. Thus,
max |a — 0 | < max E’TMei — 0|+ max 3; 1):' > e
1<i<N 1<isN | T —1 i 1<i<N N(T A oA sa
" S lElTag
max —————— .
1=i=N /N(T — 1) * A5

By Condition (C1), we have Ji_zeiTMsi ~ X%_l. Let a,ﬁax = max|<;<nN al.z. By
Lemma 6.3, we have

I<i<N T —

eiTMe, 2
P | max [ O >30max‘/log(N)/T

eiTMe, 2
<NP 71 i >3amax‘/log(N)/T

T -1

-2_T
o; “e. Mg;
<NP <;’ —1>30 % max\/log(N)/T)

<NP (x%_l (T = 1) = /25(T — 1) log(N) + 2.5\/log(N)>
< Nexp(—1.251log(N)) = N~'/4 - 0.

Similarly, we have

T
€, Me;
P <1r<nl_aixN of — 71‘ — ll > 3a§1axw/log(N)/T) — 0.
Thus,
2 ElTMEi
P 1223(1\/ i > 302,\/1og(N)/T | — 0.

By Condition (C1), we have

— — d — —
30 000 100 Sty FUEF A SR R 0 St her 3
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wherez ~ N(0,1,)and X, = N1 vazl oizE,-T. By Condition (C3), the eigenvalues
of 23/*2 ;' %77 £)/? are bounded. Thus,

T ¢ T

c
Ty-1 ~1

Ty gyl < —— -
X N o peata BirEy A S G MAX T 2= ma a2

1 Ty—1 -1 e
Because zT; ~ X5, Maxj<i<y Na=T A% ZirZ, £y = Op(N Ir=1y,
Next, notice that

max [£) % 48] < x| N~V2ETs 48, |+ x| N~ I/Z|ZEJTZA51|~

1<i<N
J#
By condition (C1), we have
£/ T Ak Loiz 22T 43 e,
N—I/ZZs}rZA&i a4 Ar—1/2 ZUIUJZTZ]/zz 21/2

J# JAi

L0 —1/N) Poie; 2 P2 4322,

where e; ~ N(0,1,) is independent of z; and X 4; = ﬁ Zj#i UJZZjT. By con-
dition (C3) and Lemma 6.2, maxj<;j<ny N_I/ZSITZA&,- = 0,,(N_1/2 log(N)). Note
that

2
—1/2 T )
max N ZE, T Ak,
J#
< max (a,elZl/zzAZl];zz,)
1<i<N
< max (e ) /ZZAZlé e,) max o; (z,El/ZEAEllézz,).
1<i<N 1<i<N

By Lemma 6.2, max <<y <z121/22A Z%%,) = O, (log(N)). Note that

max (elzl/zE 21/2 ,) < C max eTe, C max ¢,

1<i<N 1<i<N 1<i<N
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where ¢; ~ X,%- By Lemma 6.3,

N
P (IQE;XN; > 310g(N)> < ; P(g; > 3log(N))

= NP(x, > 3log(N))

< NP(x, > p +2y/2.5plog(N) + 2.5log(N))
< Nexp(—1.251og(N)) = N~'/4 - 0.

Thus, maxi<;j<y §; = Op(log(N)). Then, we have

—1/2 T _
max | N ;s JZaki| | = 0,00g(V)).
JF1

1
Consequently, max|<j<y ﬁm}mg” =0, ( i’/g%/‘;)).

Combining these facts together, we have

. log(N) 1 log(N)
2 _ 52 = — = 7
a1 = 0, (50 0, (77) + 0 (U52)

which completes the proof. O

6.2 Proof of Theorem 3.1

Under Hy, we have

B; — Bwre = T_l/zzi_rlé'i — TN
-1

N N
NS 6w (MY 6% |
j=1 j=1

Define X4 = N~! Z;V:l &i_zZ,-T and &, = N~/ Z?le &i_z’;',-. Then,

. PO TXMX; /. -
Si = <ﬂi - ﬁWFE) 52 (:Bi - ﬂWFE)
L
- _ 12en Tl iTeole el
=6, 28 B8 — 2NV TS, + NTIE S RS, €y
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By Condition (C1), we have ol._ZEiTZi_TlE,- ~ X127' By Lemma 6.1, we have

PHO{ max o726 2718 — 21og(N) — (p — 2) log(log(N)) + 2 log (r(g)) < x}

— exp(—exp(—x/2)).

By Lemmas 6.2 and Lemma 6.4,

~ 2. Ty—1 —2.Ts—1
max o, “&' X & — max o, D Yy
1<i<N ° §i Ziréi 1<i<N ° §

~ -2 —2eTy—1
0. © max o; D Dy
i 1<i<N i ‘sl 1T'§l

Next, we show that

12T a1 o1z _
max N7'&,3, 578, &, = 0,(N") =0,(1).

I<i<N

By Condition (C1), we have
T a1 o1z d Ta-12 <—1/2
ExZ) ZirZ, 84 =273, TEirE, e
. . «—1/2 <—1/2
and by Condition (C3), the eigenvalues of ¥ , * X;7X, ' are bounded. Thus,

12T el 1=

1<i<N

<N 'Cz'z=0,(N".

By Cauchy’s inequality, we have
- \2
“1 (22T
max N (o. ) )
1<i<N i Ez A EA
< max 672§TE.71§- X max N_lngl_IZ-Tfl_lg
Ta=ien 2P TITEET YN ATA ZEoA SA

= 0,(log(N)O,(N~") = 0p(1).
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Thus,

Py, { max §; — 2log(N) — (p — 2) log(log(N)) + 2log (F (g)) = x}

1<i<N -

— exp(—exp(—x/2)).
6.3 Proof of Theorem 3.2

Under H;, we have

—1

N
Bi— Bwre =T "2, —T7'AN"12 [ NT! 2572)317

j=1
N
—-1/2 -2 A
N /Zai & | +oi,
j=1
where
N -1 N
A -1 ~—2 -1 ~ -2
®=8—|N ZU,- Xir N Zai Xird;
j=1 j=1

By Lemma 6.4 and Condition (C3), we have maxj<;<y |@; — @;| = O, (log(N)/T).
By the triangle inequality,

1
max Ta;” w Z,Tw, > = max To;” co E,Twl

1<i<N 2 1<i<N
— max T6; 2(& — @) Zir (@ — i)
1<i<N
1 ~—2 -2
>= max To; wETw,——max To; wZTw,x max |0; © —o;
1<i<N 2 1<i<N 1<i<N

— max TG (co,- —w[)TZiT((O[ — ®;)
1<i<N

>(8 + 5e)log<zv> — 0,(log>(N)/T~'?) = 0,(log*(N)/T)
1
28 + 7€) log(V),
as N — oo. According to the proof of Theorem 3.1, we have
P{ max 76, 2(B; — Bwre — @) Zir (B; — Bwre — @)

— 2log(N) — (p — 2) log(log(N)) + Zlog(l"(g)) =< X} — exp(—exp(—x/2)).
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Hence,
P{ |max, 76, 2(B; — Bwre — @) Zir(B; — Bwre — @)
<2log(N) + (p— 1) log(loguv))} -1
by setting x = log(log(N)) + 2 log(F(g)). By the triangle inequality, we have

max T6; 2(B; — Bwre) ' Zir (B: — Bwre)

1<i<N
1

> = max To; co Z,Tw, — max To; z(ﬂi
2 1<i<N 1<i<N

— Bwre — @) " Zir(Bi — Bwrr — @)

1
>4+ ge) log(N) —21og(N) — (p — 1) log(log(N))

1
= —€log(N) +210g(N) + (p - 2) log(log(N)) — 2log (F (g)) + Ga,
with probability approaching one, as N — oo. Hence, P(®, = 1) — 1.

6.4 Proof of Theorem 3.3

Lemma 6.5 Suppose Z1, ..., Zy are independent and identically distributed random
sample from X;Z,- SetSy =Z1+---+ZN, uNy = (2pN)1/2 and Ay = {W < x}.
For y € R, denote Iy = 21og(N) + (p — 2) log(log(N)) — 210g(F(§)) + vy and
B; ={Z; > Iy}. Then, for eachn > 1,

— 0

> |P(ANBi -+ Bi,) — P(AN) - P(Bj, -+~ B;,)

1<ij<--<ip, <N

’

as N — oo.

Proof Write

N N n
SN:ZZi = Z Zi+ZZi =Uy + Oy.
i=1 i=n+1 i=1

We will show the last term on the right hand side is negligible. By the definition, we
have Oy ~ xlzm. By Lemma 6.3, for any n > 1 and € > 0, there exists t =ty > 0
with limy_, » t§y = 00 and Ny, depending on #, €, such that

1
POy > €evy) < N
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for N > Ny. Define
1
An(x) = {—(SN —pN) < x}, x eR,
uN

for N > 1. From the fact Sy = Uy + ®p we see that

C 1
P(ANBI B < P(Ax@B1 By oM <o) ¢
UN N?
1 1
< P(——(Wn—pN)x+e Bio-By)+ =
UN N?
P(l(U N)=x+e) P(B B) + —
— _ — X €)- - —_
on N—P = 1 n N

by the independence between Uy and ® y. Now,

1 1 |On| 1
P(——Wy—pN) sxte) < P(—Ux—pN) sxte 0 <)+
UN UN UN N?

1 1
< P(—(UN+®N—pN) §x+2e>+—
UN N?
= P(AN(x+20) + 77
Combining the two inequalities,
2
P(AN(X)By -+ By) < P(An(x 4+ 2¢)) - P(By -+ By) + N 6.1)
Similarly,
1
P(—(Uy=pN)=x—c. Bi--B,)
UN
1 |ON] 1
5P(—(UN—pN)Sx—e,Bl~--Bn,— <e)+—
UN UN N1
1 1
< P(==(Sy—pN) =, B By) + 17
UN N?!

By the independence between Uy and Oy,

1
PANBL -+ B = P(-(Uy = pN) x =) - P(B1--B) = o7
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Furthermore,

1 1
P(—(SN _pN)<x— 26) < P(—(SN _ pN) < x — 2e,
UN UN UN

|

1
<P(—U _pN) < —e) —,
= UN( N —PN) =x +t 5
due to the fact Sy = Uy + © . Combining the two inequalities, we get

2

P(AN(X)By---Bn) = P(AN(x —2€)) - P(B1--- By) =+

This, together with (6.1), concludes
|P(AN(X)B1 -+ By) — P(AN(x)) - P(B1--- By)|

2
SAN,G'P(BI"'Bn)‘I'ﬁ,

for N > Ny, where

|ON|
<

Ane:=|P(AN(X)) — P(AN(x + 2€))| + [P(AN (x)) — P(AN(x — 2¢))].

Similarly, forany 1 <i; <ip < --- <i, < N, we have

|P(AN(x)Bi, -+ B;i,)) — P(AN(x)) - P(Bj, -+~ B;,)

2
< AN, P(B; ---Bj,) + N

for N > Ny. As a result,

¢(N,n):= Z [P(AN(xX)Bi, --- Bi,) = P(AN(x)) - P(Bj, --

1<ij<-<in<N

1<ij<--<ip<N

N
Anye-H(n,N)+ <n>

IA

2
R

IA

where

H(n,N) = > P(Bi-B).

1<ij<--<in <N
First, by the central limit theorem,

SN—pN

UN

— N(0, 1) weakly,

*Bi,)]

(6.2)
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as N — oo, and hence
ANe = |[P(x +2¢) — D) + [P (x — 2¢) — D(x)],

as N — oo, where ®(x) = \/%7 ffoc e”z/2 dt. Thisimplies thatlime o imy 00 Ay e
= 0. Second, by the independence of Z;, we have

Hmn,Ny= Y P(By--B)

1<ij<--<ip<N

N N .
< )P(Bl"'Bn) = < )P(Bl)
n n

N
= ( >{P(x,2, > )"
n

As N — oo,

log P( max Xp <In)=Nlog P(x) <ly) = Nlog(1 — P(x; > Iy)) ~ NP(x; > Iy).
By Lemma 6.1, we have P()(lz7 > Iy) ~ %e‘y/z. Thus,
: 1 —ny/2
lim H(n,N) = —e W/~ (6.3)
N—o0 n!

for each n > 1. By using (2’) < N" and (6.2), for fixed n > 1, sending N — oo
first, then sending € | 0, we get limy_, o (N, n) = 0, for each n > 1. The proof is
completed. O

Lemma 6.6 Suppose Zi, ..., Zyn are independent and identically distributed ran-
YiLi Zi—pN
V2pN
2)log(log(N)) + 2 log(F(%)) are asymptotically independent, as N — oo.

dom sample from X,%, we have and maxi<j<y Z; — 2log(N) — (p —

Proof Define Sy = ZZNZ 1 Z; and vy = 4/2pN. By the central limit theorem, we
have

Sy — pN
UN

— N (0, 1) weakly, (6.4)
as N — oo. By Lemma 6.1, we have

max Z; —21og(N) = (p —2) log(log(N)) + 2 log(I'(5)

— F(y) = exp { - e_y/z} (6.5)
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in distribution, as N — oo. To show the asymptotic independence, it suffices to prove

Sy — pN
P(—F= < v, max Z; —210g(N) — (p — 2)log(log(N)) + 2log(N'(5)) < )
UN 1<i<N 2

— ®(x) - F(y),
as N — oo, forany x € R and y € R, where ®(x) = Qm)~1/2 ffoo e=*12 dr. Set

Ly = max Z; and Iy = 2log(N) + (p — 2) log(log(N)) — 210g(F(§)) + y.

I<i<N

Because of (6.4) and (6.5), it is equivalent to show

lim P(SN_—”N <x, Ly > lN) — o) -[1 - F)l, (6.6)
N—o0 UN

for any x € R and y € R. Define

Sy — pN
Ay = iu 5)6} and B, = {Zl' > IN},
uN
for 1 <i < N. Therefore,
N
1
P(—(SN _pN)<x, Ly > IN> - P(UANB,-). 6.7)

UN

i=1

Here the notation A y B; stands for Ay N B;. By the inclusion—exclusion principle,

N
P(UAvB) = X PANB)— Y PANB By ++

i=l1 1<i|<N I<ij<i<N

Z P(ANBi -+ Biy,) (6.8)

1<ij<---<ip41=<N

and

N
P(UAvB)z Y PAnB)— Y. PAyBi B+ -

i=l1 1<i|<N I<ij<i<N

Z P(ANBil "'BiZk)v

1<ij<--<ip<N

(6.9)
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for any integer k > 1. Define

H(N,my= Y P(Bi--B),

I<ij<--<in<N
for n > 1. From (6.3) we know

lim limsup H(N,n) =0. (6.10)

n— oo N—o00

Set

((N,ny= Y [P(ANBi -+~ Bi,) — P(Ay) - P(Bi, - B;,)],

1<ij<---<iy<N
forn > 1. By Lemma 6.5,

lim £(N.n) =0, 6.11)

for each n > 1. The assertion (6.8) implies that

N
P(UAnB) = Pan)| 3 PB— D P(BBp) +-- -

i=1 1<ii<N 1<ij<ia<N
2k
S PB, - B,-zk)] + [Z (N, n)] +H(N. 2k + 1)
1<ii<--<i)k <N n=1

=

= Paw - P( Bi)+[§:§(N,n)]+H(N,2k+1), 6.12)
n=1

i=1

where the inclusion—exclusion formula is used again in the last inequality, that is,

P(UB)z Y PB— Y PByB+- -

i 1<ii <N 1<iy<ir<N

Z P(Bil "'BiZk)a

1<ij<--<i <N

—

i=

for all k > 1. By the definition of Iy and (6.5),

P(UB) = P(Ly > iy)

-

1

= P( max Z; —2log(N) — (p — 2)log(log(N)) +2log(N' () > y)

— 1= F(y),
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as N — o0. By (6.4), P(Ay) — ®(x),as N — oo. From (6.7), (6.11) and (6.12),
by fixing k first and sending N — oo, we obtain that

lim sup P(—(SN _pN)<x, Ly > zN) < ®0) - (1= F(I+ lim H(N.2k+1).
—00

N—o0

Now, by letting k — oo and using (6.10), we have

lim sup P(U—(SN _pN)<=x, Ly > 1N) <o) -[1=FO). (6.13)

N—o0
By applying the same argument to (6.9), we see that the counterpart of (6.12) becomes

N

P(UanB) z Pan| X PBiO— Y PBiBy +-+

i=l1 1<i1<N 1<ij<ip<N
2k—1

> PGBy B+ [Z (N | = HV. 20

1<ij<--<igp—1<N
N 2k—1

= P - P(|UB)+[ X cvm] - HN. 20,
n=1

i=1

where in the last step we use the inclusion—exclusion principle, i.e.,

N
P(UB)= X PB- Y PByB+-+

i= 1<i1<N 1<ii<ip<N

Z P(Bi1 "'BiZk_])7

1<ij<--<igp-1=N

—_

for all £ > 1. Review (6.7) and repeat the earlier procedure to see

lim inf P(—(SN — pN) <x, Ly > lN) > @) - [1-F(yl,

N—o00

by sending N — oo and then sending k — oo. This and (6.13) yield (6.6). The proof
is completed.

Proof of Theorem 3.3 According to the proof of Theorem 3.2 in [18], we have Aadj =
Sa+ 0p(T712) + 0,(N"172), where S, = CpN)~'2 N (0,726 =18 — p)

log N
Vo)t

According to the proof of Theorem 3.2, we have Tyax = My + Op(
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0 10g3/2N h _ -2 TZ_I : 1 Q .
P(W)’ where M, = maxi<;<yo; “§; X7 &;. Given € € (0, 1), set Qy =

{|Aadj — Sal <€,|M —M,| < e}. Wehave limy 7,00 P(2y) = 1. By Lemma 6.6,

P(Aggj < X, Tvax > In) < P(Aagj < %, Tumax > In, Q) + P(Q5)
<P(Sa<x+e M, >Iy—e€)+ P(QY)
— ®(x +e)(1 — F(y —€)),

as N, T — oo. Similarly, by Lemma 6.6,

P(Augj < x, Tvax > In) = P(Aagj < X, Tviax > v, Q)
>P(Sg<x—e, M, >Iy+¢€)
— Px —€e)(1 = F(y +¢)),

as N, T — oo. So

Px—e)l-F(y+e) = N 1T1m P(Aggj < %, Tvax > IN) < P(x +€)(1 = F(y —€)).
1 —>00

Sending € — 0, the conclusion follows. 0O
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