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Abstract
Testing slope homogeneity is important in panel data modeling. Existing approaches
typically take the summation over a sequence of test statistics that measure the het-
erogeneity of individual panels; they are referred to as Sum tests. We propose two
procedures for slope homogeneity testing in large panel data models. One is called
a Max test that takes the maximum over these individual test statistics. The other is
referred to as a Combo test, which combines a certain Sum test (i.e., that of Pesaran
and Yamagata in J Econom 142:50-93, 2008) and the proposed Max test together.
We derive the limiting null distributions of the two test statistics, respectively, when
both the number of individuals and temporal observations jointly diverge to infin-
ity, and demonstrate that the Max test is asymptotically independent of the Sum test.
Numerical results show that the proposed approaches perform satisfactorily.
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1 Introduction

In classical panel data analysis, it is often assumed that the slope coefficients of interest
in panel data models are homogeneous across individual units. However, in practice,
they can be individually specific. Ignoring this form of heterogeneity may result in
biased estimation and inference. Thus, a formal test for slope homogeneity is necessary.
When the number of individuals or panels, N , is fixed, and the number of tempo-
ral observations, T , diverges, a simple method is to use the standard F-test, which
assumes exogenous regressors and homoskedastic errors. To eliminate the effect of
heteroscedasticity, Swamay [20] proposed a dispersion test based on generalized least
squares estimators under a random coefficient model. Another type of tests is based
on Hausman’s test [11], where the standard fixed effects estimator is compared to the
mean group estimator; see, for example, Pesaran et al. [17] and Phillips and Sul [19].
However, thesemethods are not applicable in the case of panel datamodels that contain
only strictly exogenous regressors and/or in the case of pure autoregressive models
[18]. An early work of [22] proposed the seemingly unrelated regression equation
(SURE) approach to incorporate cross-sectional dependence. The above approaches
assume that N < T , and would lose their efficiency or even fail when N is comparable
to, or even larger than, T , such as in many micro-econometric applications; the latter
situation is referred to as large or high-dimensional panel data models.

In a high-dimensional setup, the dispersion test proposed by [17] allows N > T .
Pesaran et al. [18] investigated the asymptotic distribution of the test statistic proposed
by [20] in a large N , T scenario, and proposed a modified Swamy-type statistic,
based on different estimators of regression error variances. Under the paradigm of
fixed T but diverging N , Juhl and Lugovskyy [13] proposed a conditional Lagrange
multiplier test based on the conditional Gaussian likelihood function, and [4] proposed
some Lagrange multiplier tests, generalizing the test proposed by [5] against random
individual effects to all regression coefficients.

Most approachesmentioned above are based on the summation of a sequence of test
statistics for individual units, which are referred to as Sum tests. Sum tests turn to be
efficient under dense alternatives, in the sense that the number of individual units with
heterogeneous slope coefficients is large. However, for sparse alternatives when there
are only a few heterogeneous individual units, Sum tests would be inefficient. In the
latter situation, a maximum-based strategy can be more suitable, as widely discussed
in the statistical literature, such as [6] and [21]. Motivated by this, we first propose
a Max test based on the maximum of these individual test statistics. We establish
its asymptotic distribution under the null hypothesis when N , T → ∞, and show
that the Max test outperforms a certain Sum test [18] in terms of power under sparse
alternatives.

In practice, we seldomly know whether the alternatives are dense or sparse. Thus,
it is kind of risky to simply apply a single Sum or Max test, if we have no priors on
the sparsity level. This motivates us to develop an adaptive test to different levels of
sparsity.Wepropose aCombo test, which combines the SumandMax tests together, by
taking theminimum p-value of these two separate tests. The asymptotic independence
of Sum- and Max-type test statistics has been widely studied in the literature, such as
[7, 12, 15], and [10], to name a few. Under some mild conditions, we show that the
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Sum test statistic is asymptotically independent of the Max test statistic under the null
hypothesis when N , T → ∞. Consequently, the Combo test statistic is asymptotically
distributed as the minimum of two independent standard uniform random variables
under the null hypothesis. Theoretical results and simulation studies show that the
Combo test performs very robust to either dense or sparse alternatives.

The rest of this paper is organized as follows. In Sect. 2, we give a brief literature
review of testing procedures for slope homogeneity. We introduce Max and Combo
tests, and establish their theoretical properties in Sect. 3. In Sect. 4, some numerical
studies including real-data examples are conducted to evaluate the performance of the
proposed methods. Some discussions are given in Sect. 5, and all technical details are
deferred to Appendix.

2 TheModel and Existing Approaches

We consider the following panel data model with fixed effects and potential heteroge-
neous slopes

yit = αi + x�
i t β i + uit , i = 1, . . . , N , t = 1, . . . , T , (2.1)

where xi t is a p-dimensional vector of strictly exogenous regressors, αi and β i are
the scalar intercept and p-dimensional slopes, respectively, and uit are random errors
with mean 0 and variance σ 2

i . Suppose that αi are bounded on a compact set and β i
are bounded in the sense that ‖β i‖ < K for some constant K > 0, where ‖ · ‖ is the
Euclidean norm. Write in a compact form

Y i = αi1T + Xiβ i + ui ,

where Y i = (yi1, . . . , yiT )�, 1T is a T -dimensional vector with all elements being
1, Xi = (xi1, . . . , xiT )�, and ui = (ui1, . . . , uiT )�. Of interest is to test the null
hypothesis

H0 : β i = β for all i = 1, . . . , N , (2.2)

against the alternative hypothesis

H1 : there exist some 1 ≤ i �= j ≤ Nsuch that β i �= β j .

A well-known test is the standard F-test, which is valid for fixed N and diverging
T and when the error variances are homoskedastic, i.e., σ 2

i = σ 2. For N > T , [17]
proposed a Hausman-type test [11], by comparing the standard fixed effects estimator
with the mean group estimator, that is,

β̂FE =
(

N∑
i=1

X�
i MXi

)−1 N∑
i=1

X�
i MY i and β̂MG = 1

N

N∑
i=1

β̂ i ,
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respectively, where β̂ i = (X�
i MXi

)−1
X�

i MY i , M = IT − 1T (1�
T 1T )−11�

T , and IT

is a T × T identity matrix. However, this test would lack power under a random
coefficient model such that E(β̂FE − β̂MG) = 0. Phillips and Sul [19] proposed a
different Hausman-type test based on

(
β̂ − 1N ⊗ β̂FE

)�
�̂

−1
(
β̂ − 1N ⊗ β̂FE

)
,

where β̂ = (β̂
�
1 , . . . , β̂

�
N )�, �̂ is a consistent estimator of the variance matrix of

β̂ − 1N ⊗ β̂FE under H0. This test is likely to be more powerful than that proposed
by [17], but is still limited for fixed N . In the case of fixed N , Swamay [20] proposed
a test based on

Ŝ =
N∑

i=1

(
β̂ i − β̂WFE

)� X�
i MXi

σ̂i
2

(
β̂ i − β̂WFE

)
,

where

β̂WFE =
(

N∑
i=1

X�
i MXi

σ̂ 2
i

)−1 N∑
i=1

X�
i MY i

σ̂ 2
i

and σ̂ 2
i = (T − p − 1)−1

(
Y i − Xi β̂ i

)�
M
(
Y i − Xi β̂ i

)
. Based on Ŝ, Pesaran and

Yamagata [18] showed that, as N , T → ∞,

�̂ = √N (T + 1)

(
Ŝ/N − p√

2p(T − p − 1)

)

converges to the standard normal distribution in distribution, if N/T 2 → 0.Moreover,
they proposed an adjusted test statistic, that is,

�̃adj = √N (T + 1)

(
S̃/N − p√

2p(T − p − 1)

)
, (2.3)

to weaken the dimension restriction, where

S̃ =
N∑

i=1

S̃i , S̃i =
(
β̂ i − β̃WFE

)� X�
i MXi

σ̃i
2

(
β̂ i − β̃WFE

)
, (2.4)

β̃WFE =
(

N∑
i=1

X�
i MXi

σ̃ 2
i

)−1 N∑
i=1

X�
i MY i

σ̃ 2
i

,
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and σ̃ 2
i = (T − 1)−1

(
Y i − Xi β̂FE

)�
M
(
Y i − Xi β̂FE

)
. In other words, it modifies

the Ŝ test by replacing the variance estimators σ̂ 2
i by σ̃ 2

i . The authors investigated the
asymptotic normality under H0 for non-normal errors, provided that N/T 4 → ∞.
Notice that for normal errors, both �̂ and �̃adj are valid without any restrictions on N
and T .

Under the asymptotic regimeof diverging N but fixed T , [13] proposed a conditional
Lagrange multiplier test based on

TCLM =
N∑

i=1

S�
i

(
N∑

i=1

Si S�
i

)−1 N∑
i=1

Si , (2.5)

where Si = û�
i MXiX�

i Mûi − σ̂ 2
i tr(X

�
i MXi ) and ûi = M(Y i −Xi β̂FE). By the fact

that

Ŝ =
N∑

i=1

û�
i MXi (σ

2X�
i MXi )

−1X�
i Mûi + op(1),

the main difference between TCLM and �̂ is that the statistics Si neglect such terms
(σ 2

i X
�
i MXi )

−1 in Ŝ. In fact, both can be regarded as testing the independence of ui and
MXi by the moment conditions E(u�

i MXiW iX�
i Mui ) = σ 2

i E(tr(MXiW iX�
i M))

with properly defined W i ; that is, W i = Ip for TCLM and W i = (σ 2
i X

�
i MXi )

−1 for
�̂. [4] proposed a Lagrange multiplier test under the heteroskedastic errors based on

TLM =
(

N∑
i=1

T∑
t=2

ũi t z̃i t

)� ( N∑
i=1

T∑
t=2

ũ2
i t z̃i t z̃

�
i t

)−1 ( N∑
i=1

T∑
t=2

ũi t z̃i t

)
, (2.6)

where ũi t is the t-th component of ûi and z̃i t = xi t
∑t−1

s=1 ũisxis . They showed that
TLM → χ2

p in distribution, as N → ∞ but keeping T fixed.

3 Our Tests

3.1 Methodology

A large value of

S̃i =
(
β̂ i − β̃WFE

)� (
X�

i MXi/σ̃i
2
) (

β̂ i − β̃WFE

)

(cf. (2.4)) indicates a heterogeneous individual slope, for i = 1, . . . , N . Most existing
procedures for slope homogeneity testing are based on the summation of all S̃i or some
variants. When there are a large proportion of individual units are heterogeneous with
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different slope coefficients (referred to as dense signals), Sum tests can accumulate all
departure information together, thus making a powerful test against H0. In contrast,
when the number of heterogeneous individuals is very small (i.e., sparse signals), the
summation statistic brings with redundant noises, which greatly decrease the testing
power. Motivated by this, we propose a maximum-based statistic

TMax = max
1≤i≤N

S̃i , (3.1)

and we refer to the associated testing procedure as the Max test. It can be expected
that the Max test would be more powerful against sparse alternatives.

Sometimes, we have some knowledge of the sparsity level, and we can choose
between a Sum or Max test. However, if such priors are unavailable, a new method
that is adaptive to the sparsity is demanded. We propose combining the Sum and Max
tests in the following way

TCombo = min{pS, pM }, (3.2)

where pM and pS are the p-values of the Max and Sum tests, respectively. To be spe-
cific, pM = 1 − F {TMax − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(p/2))} and

pS = 1 − �
{
�̃adj

}
, where F(y) = e−e−y/2

is the type-I extreme distribution func-

tion (i.e., the Gumbel distribution function), and �(y) denotes the standard normal
distribution function. Here we use �̃adj [18] as the Sum test statistic. We refer to this
new test as the Combo test, which is expected to perform well, regardless of whether
the alternatives are sparse or dense.

We summarize some theoretical properties of the Max and Combo tests here; more
details are revealed in the following sections. For the Max test, we show that under
some mild conditions,

T̃Max ≡ TMax − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(p/2))

converges to the type-I extreme distribution in distribution under H0, as N , T → ∞.
Hence given a significance level α ∈ (0, 1), we can reject H0 if T̃Max is larger than the
(1−α)-quantile of F(y), say qα ≡ −2 log(log(1−α)−1). We also derive the limiting
null distribution of the Combo test by demonstrating that the Max statistic is asymp-
totically independent of the Sum statistic under H0, as N , T → ∞. Consequently, an
asymptotic level-α test is to reject H0 if TCombo < 1 − √

1 − α.

3.2 Max Test

To establish theoretical properties of the Max test, we need the following conditions

(C1) uit ∼ N (0, σ 2
i ) and σ 2

max = max1≤i≤N σ 2
i is bounded.

(C2) uit and u js are independently, for i �= j and/or t �= s.
(C3) For i = 1, . . . , N , �iT ≡ T −1X�

i MXi is positive definite and bounded, and
converges to a non-stochastic positive definite and bounded matrix �i , as T →
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∞. �A ≡ (N T )−1
(∑N

i=1 X
�
i MXi

)
is positive definite and converges to a non-

stochastic positive definite matrix �, as N , T → ∞.
(C4) uit is independent of x js , for all i, j, t, s.

Condition (C1) is crucial to obtain the asymptotic distribution of the test statistic
TMax and the asymptotic independence between TMax and �̃adj. An extension to non-
normal errors deserves further studies, see discussions in Section 5. Condition (C2)
assumes the cross-sectional independence, Condition (C3) is used for the consistency
of the least square estimators of β i , and Condition (C4) means that xi t are strictly
exogenous; these conditions are standard in the literature, see, for example, [18].

Theorem 3.1 Suppose conditions (C1)–(C4) hold. Under H0, if log(N ) = o(T 1/3),
then

P
{

TMax − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(p/2)) ≤ x
}

→ exp(− exp(−x/2)),

as N , T → ∞.

According to the limiting null distribution, we can reject H0 if

T̃Max ≡ TMax − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(p/2)) ≥ qα,

where qα is the (1 − α)-quantile of the type-I extreme value distribution with the
cumulative distribution function exp {− exp (−x/2)}, namely, qα = −2 log(log(1 −
α)−1).

Now, we turn to the power analysis of the Max test. Define

A(c) =
{
δ : max

1≤i≤N
T σ−2

i ω�
i �iT ωi ≥ c log(N )

}
,

where

ωi = δi −
(

N−1
N∑

i=1

σ−2
i �iT

)−1 (
N−1

N∑
i=1

σ−2
i �iT δi

)
and δi = β i − β.

Notice that [18] considered the following local alternative hypotheses for the Sum test,
that is,

∑N
i=1 σ−2

i ω�
i �iT ωi = O(T −1N 1/2).

Theorem 3.2 Suppose conditions (C1)–(C4) hold. If log(N ) = o(T 1/3), then for any
ε > 0,

inf
δ∈A(16+ε)

P(	α = 1) → 1,

as N , T → ∞, where 	α = I (T̃Max ≥ qα) is the power function.
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Theorem 3.2 shows that the proposed Max test is consistent if some σ−2
i ω�

i �iT ωi is
larger than the order log(N )/T .

To make a comparison between the Max and Sum tests, define a class of sparse
alternatives

S(sN , cT ,N )

=
{

δ :
N∑

i=1

I (δi �= 0) ≤ sN , (16 + ε) log(N ) ≤ max
1≤i≤N

T σ−2
i ω�

i �iT ωi ≤ cT ,N

}
,

with sN = o(
√

N/cT ,N ). By observing that S(sN , cT ,N ) ⊂ A(16 + ε), the Max test
is consistent over S(sN , cT ,N ), according to Theorem 3.2. In contrast, in Section 3.2
of [18], the authors showed that, under S(sN , cT ,N ), �̃adj would suffer from trivial
power. Hence the Max test is more efficient than the Sum test in such situations.

3.3 Combo test

To investigate the limiting null distribution and power property of the proposed Combo
test, we first demonstrate the asymptotic independence between �̃adj and TMax under
the null hypothesis.

Theorem 3.3 Suppose conditions (C1)–(C4) hold. Under H0, if log(N ) = o(T 1/3),
then �̃adj and TMax are asymptotically independent in the sense that

P
(
�̃adj ≤ x, TMax − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(p/2)) ≤ y

)
→ �(x)F(y),

as N , T → ∞.

As a corollary, we derive the limiting null distribution of the Combo test.

Corollary 3.4 Assume the conditions in Theorem 3.3 hold. Then TCombo converges in
distribution to W = min{U , V }, as N , T → ∞, where U , V are independent and
identically distributed (iid) as a standard uniform random variable, and thus W has
the density G(w) = 2(1 − w)I (0 ≤ w ≤ 1).

By Corollary 3.4, given a significance level α, we can reject H0 if TCombo <

1 − √
1 − α ≈ α/2 for a relatively small α.

The power function of the Combo test is βC (δ, α) = P(TCombo < 1− √
1 − α). It

can be verified that

βC (δ, α) =P
(

pM < 1 − √
1 − α
)

+ P
(

pS < 1 − √
1 − α
)

− P
(

pM < 1 − √
1 − α, pS < 1 − √

1 − α
)

≥max
{

P
(

pS < 1 − √
1 − α
)

, P
(

pM < 1 − √
1 − α
)}

≈max {βS(δ, α/2), βM (δ, α/2)} , (3.3)
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where βM (δ, α) and βS(δ, α) are the power functions of TMax and �̃adj, respectively,
at the significance level α. As shown in [18], βS(δ, α) = �(−zα + ψ), where ψ =
limN ,T →∞ 1√

2pN

∑N
i=1 T σ−2

i ω�
i �iT ωi and zα is the upper (1 − α)-quantile of the

standard normal distribution.According to (3.3), we haveβC (δ, α) ≥ �
(−zα/2 + ψ

)
.

To compare the power of tests based on �̃adj, TMax and TCombo, consider a simplified
scenario where �iT = Ip and σ 2

i = 1. Moreover, m elements of δi = (δi1, . . . , δi p)
�

are randomly sampled from U (−γ, γ ) for some γ > 0, and the rest are set to be 0,
where U (a, b) is the uniform distribution with the support [a, b].

1. Assume that m → ∞. By noticing that m−1∑N
i=1 σ−2

i �iT δi
p→ 0 and

m−1∑N
i=1 σ−2

i ω�
i �iT ωi

p→ 1
3 pγ 2, we have

βS(δ, α) = �

(
−zα + T mp1/2γ 2

3
√
2N

)
.

In addition, we have εγ 2 < max1≤i≤N σ−2
i ω�

i �iT ωi ≤ pγ 2, for any positive
constant ε < p, with probability approaching one. We consider two special cases:

(1) Dense case γ = O(T −ξ ) and m = O(N 1/2T 2ξ−1) with some ξ > 1/2. In
this case, T γ 2 = o(1), and it can be verified that βM (δ, α) ≈ α. Thus, the
Max test lacks power. Then, βC (δ, α) ≈ βS(δ, α/2) ≈ βS(δ, α), if α is small.
Hence, the Combo test performs similarly to �̃adj.

(2) Sparse case γ = c
√
log N/T for a sufficient large constant c and m =

o((log N )−1N 1/2). In this case, T mp1/2γ 2

3
√
2N

→ 0 and βS(δ, α) ≈ α; in other

words, the Sum test based on �̃adj lacks power. According to Theorem 3.2,
βM (δ, α) → 1. Consequently, the Combo test has the power βC (δ, α) → 1.

2. Assume that m is fixed. By noticing that
∑N

i=1 σ−2
i ω�

i �iT ωi = Op(γ
2) and

max1≤i≤N σ−2
i ω�

i �iT ωi = Op(γ
2), we can similarly show that, if γ =

c
√
log N/T for a sufficient large constant c, then βS(δ, α) ≈ α, βM (δ, α) → 1,

and βC (δ, α) → 1.

4 Numerical studies

4.1 Simulation

In this section, we investigate the finite-sample performance of the proposed Max and
Combo tests based on TMax and TCombo, respectively. We choose some benchmark
approaches, i.e., the tests based on �̃adj [18], TCLM [13], and TLM [4]; see (2.3), (2.5),
and (2.6), respectively. We consider the following three examples with independent,
correlated, and structured noises, respectively. All simulation results are based on 1000
replications. We set the nominal significance level as α = 5% in all examples.
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Example 4.1 We revisit the model in [18]

yit = αi +
p∑

l=1

xiltβil + uit , i = 1, . . . , N , t = 1, . . . , T ,

xilt = αi (1 − ρil) + ρil x1i,t−1 + (1 − ρ2
il)

1/2vilt , t = −48, . . . , 0, . . . , T ,

where vilt
i id∼ N (0, σ 2

ilx ). We fix some ρil
i id∼ U (0.05, 0.95) and σ 2

ilx
iid∼ χ2(1)

throughout the simulation study. We generate αi
i id∼ N (1, 1), and discard the first

49 observations to reduce the effect of initial values. Three scenarios to generate

uit = σi zi t , with σ 2
i

i id∼ p
2 χ2(2), are considered as follows:

(I) Normal distribution, zit
i id∼ N (0, 1);

(II) t-distribution, zit
i id∼ t(3)/

√
3;

(III) Mixture of normals, zit
i id∼ {0.9N (0, 1) + 0.1N (0, 100)}/√10.9.

Under H0, βil ≡ 1, for all i and l. While under H1, we set βil = βi1, for l �= 1, and for
{β11, . . . , βN1}, we first randomly choose l1 < · · · < lm from {1, . . . , N }, and then
generate βli1 ∼ U (1 − 1.1m−0.65, 1 + 1.1m−0.65), for i = 1, . . . , m, and set the rest
βi1, i /∈ {l1, . . . , lm}, to be 1.

Example 4.2 To study the impact of correlated errors on the testing procedures,
we generated uit = σi zi t with zt = (z1t , . . . , zNt )

� ∼ N (0,�z), where �z =
(0.5|i− j |)1≤i, j≤N . The other settings are the same as in Example 4.1.

Example 4.3 We consider a high-dimensional panel data model with interactive fixed
effects [2]. We generated uit = f�

t λi + σi zi t [1], where f t are 2-dimensional factor

vectors with iid N (0, 1) entries, λi
i id∼ N (0, 0.25I2) are factor-loading vectors, and

zt = (z1t , . . . , zNt )
� ∼ N (0,�z), with �z = (0.5|i− j |)1≤i, j≤N , are noises. The

other settings are the same as in Example 4.1, except that, under H1, βli1
i id∼ U (1 −

2m−0.6, 1 + 2m−0.6).

Table 1 presents empirical sizes of various slope homogeneity tests under Example
4.1, with the configuration that p ∈ {2, 3, 4}, T ∈ {50, 100} and N ∈ {50, 100, 200}.
We can see that the Max test is a little conservative when the sample size is small.
This is not strange, because the convergence rate of the extreme value distribution is
rather slow [16]. In most cases, the �̃adj, TLM and TCombo tests can maintain the sizes
at the nominal level, while the TCLM test tends to be fairly conservative.

Figures 1-3 report the power of various tests with p = 2, 3 or 4 under Example 4.1,
respectively, when T = 100 and N = 200. We observe that the TLM and TCLM tests
perform not very well, in terms of low power. As expected, the Max test outperforms
the �̃adj-based Sum test when m is relatively small, and as m becomes large, the Sum
test performs better than theMax test. This is consistent with our theoretical result, that
is, the Sum test is favorable for detecting dense signals, while the Max test is preferred
for sparse scenarios. The proposed Combo test performs similarly to the Max test
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Table 1 Empirical Sizes of various slope homogeneity tests under Example 4.1

Scenarios p = 2 p = 3 p = 4

N N N

T Method 50 100 200 50 100 200 50 100 200

(I)

50 TMax 1.9 1.7 0.8 3.2 1.5 1.6 3.8 3.0 2.3

�̃adj 4.1 3.7 4.7 3.7 4.4 4.3 3.4 3.6 3.9

TLM 5.5 6.3 5.8 6.6 4.4 4.7 5.3 4.3 5.9

TCLM 1.4 1.0 1.3 1.3 0.7 1.2 1.1 1.0 1.5

TCombo 4.0 3.5 4.2 3.6 4.2 4.1 3.7 3.5 3.8

100 TMax 3.1 3.7 2.6 3.8 4.2 3.3 5.3 6.8 4.5

�̃adj 3.4 4.6 4.9 2.8 4.2 5.2 3.0 3.5 3.7

TLM 5.1 5.8 5.7 5.3 5.8 6.5 5.5 5.9 5.2

TCLM 0.6 0.8 1.3 0.3 1.8 1.9 1.2 1.4 1.9

TCombo 3.5 4.5 4.4 3.3 4.2 4.6 4.7 4.5 3.9

(II)

50 TMax 2.3 1.1 1.3 1.3 1.8 1.2 3.9 3.0 1.7

�̃adj 4.8 4.5 4.5 4.0 3.0 3.7 3.0 4.0 2.6

TLM 5.7 4.3 5.0 4.4 4.4 3.9 5.6 4.7 5

TCLM 0.6 1.6 1.6 1.0 0.7 1.0 1.1 1.1 1.9

TCombo 4.3 4.1 4.0 3.8 3.2 3.7 3.9 3.8 2.8

100 TMax 2.9 3 2.5 4.5 3.2 3.1 7.3 5.5 4.3

�̃adj 4.1 5.0 6.0 4.9 4.3 4.6 2.3 4.0 5.2

TLM 5.8 4.3 5.6 6.2 4.9 4.3 6.7 5.7 5.0

TCLM 1.1 1.2 1.3 1.1 1.0 1.6 0.9 1.1 2.0

TCombo 4.0 4.7 4.8 4.6 4.1 4.1 5.7 5.1 4.8

(III)

50 TMax 1.3 1.8 1.0 2.2 1.4 1.1 4.1 1.8 1.2

�̃adj 4.0 4.0 3.9 3.4 3.5 3.9 2.7 3.1 4.0

TLM 4.5 3.2 4.4 3.7 4.0 3.9 4.5 4.6 3.2

TCLM 1.1 1.2 1.7 1.0 1.6 1.4 0.8 1.3 1.5

TCombo 3.7 3.5 3.8 3.3 3.2 3.4 3.7 3.2 3.8

100 TMax 3.1 1.7 2.6 3.9 4.2 4.8 6.9 6.4 5.3

�̃adj 4.9 3.5 4.0 3.8 4.3 4.5 3.8 3.4 5.2

TLM 5.1 3.9 4.4 3.4 4.6 5.3 4.5 4.5 3.5

TCLM 1.1 1.2 1.9 0.6 1.1 1.4 1.3 1.2 1.6

TCombo 4.3 3.7 4.0 3.6 4.0 4.4 4.7 4.5 5.2
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Fig. 1 Power of various slope homogeneity tests with p = 2 under Example 4.1
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Fig. 2 Power of various slope homogeneity tests with p = 3 under Example 4.1

for small m, and has a similar performance to the Sum test for large m. Moreover,
it outperforms both the Max and Sum tests for moderate m. Our simulation results
reveal that the Combo test is very efficient in most cases, and it adapts to different
levels of the sparsity. In addition, both the proposed Max and Combo tests, together
with �̃adj, are robust to non-normal noises.

Tables 2 and 3 present empirical sizes of various tests under Examples 4.2 and 4.3,
respectively, with a wide range of (p, N , T ) configurations. Figures4, 5 depict the
power of each test against the sparsity level m. Similar conclusions can be made as
under Example 4.1. In particular, the Combo test adapts to the sparsity and has very
good power. We also conduct a simulation study regarding some larger dimensions
N = 400 and T = 200 under Example 4.2; see Fig. 6. It can be seen from Fig. 6 that
the proposed tests perform satisfactorily.

Having observed that theMax test can be sometimes conservative (see, for example,
Tables 1-3), we provide a bootstrap calibration procedure to accommodate such issues.
Based on the residuals ûi = M(Y i −Xi β̂ i ) = (ûi1, . . . , ûiT )�, for i = 1, . . . , N , we
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Table 2 Empirical Sizes of various slope homogeneity tests under Example 4.2

Scenarios p = 2 p = 3 p = 4

N N N

T Method 50 100 200 50 100 200 50 100 200

50 TMax 1.4 1.1 1.3 3.8 1.7 2.0 3.7 2.8 1.8

�̃adj 5.1 5.1 5.0 4.4 3.4 3.9 3.2 3.1 3.9

TLM 6.2 6.2 5.6 5.6 4.0 4.1 5.2 4.5 5.5

TCLM 0.7 1.5 1.2 1.2 1.6 1.2 0.7 1.3 1.5

TCombo 3.0 3.9 3.1 3.4 2.6 1.4 3.3 2.7 2.4

100 TMax 2.5 2.8 1.9 4.7 4.5 2.4 6.6 6.2 5.2

�̃adj 3.4 5.4 3.4 2.8 5.7 4.7 3.7 3.2 4.4

TLM 6.7 5.1 5.3 6.4 5.3 4.0 6.3 5.8 5.4

TCLM 0.7 1.0 1.2 0.7 1.4 1.6 1.4 1.2 1.1

TCombo 2.7 4.3 2.8 3.4 4 3.8 5.2 4.9 4.4

Table 3 Empirical Sizes of various slope homogeneity tests under Example 4.3

Scenarios p = 2 p = 3 p = 4

N N N

T Method 50 100 200 50 100 200 50 100 200

50 TMax 1.9 1.7 1.5 2.2 2.6 1.1 2.7 1.7 1.8

�̃adj 5.9 5.3 6.4 4.0 6.0 6.3 4.4 4.7 6.1

TLM 5.3 5.1 5.6 6.6 4.0 5.1 6.4 4.7 4.7

TCLM 0.7 1.2 2.0 0.9 1.5 1.6 1.6 0.8 1.9

TCombo 3 2.9 4.1 2.8 4.5 4.4 2.6 3.3 4.0

100 TMax 3.3 2.9 3.4 5.3 3.3 3.1 7.2 7.9 4.7

�̃adj 5.3 5.2 6.5 4.7 3.8 6.2 3.5 5.2 4.4

TLM 6.1 5.0 5.5 5.7 5.3 4.6 7.4 5.4 5.9

TCLM 0.9 0.9 1.7 1.1 1.0 1.2 0.9 1.3 1.7

TCombo 3.8 4.1 5.4 5 3.8 4.7 5 6.1 5.1

Table 4 Empirical sizes of the proposed tests with their bootstrap calibrations under Example 4.2

Scenarios p = 2 p = 3 p = 4

N N N

T Method 50 100 200 50 100 200 50 100 200

50 Max 1.4 1.1 1.3 3.8 1.7 2.0 3.7 2.8 1.8

Sum 5.1 5.1 5.0 4.4 3.4 3.9 3.2 3.1 3.9

Combo 3.0 3.9 3.1 3.4 2.6 1.4 3.3 2.7 2.4

Max* 5.7 4.7 4.6 3.8 5.0 4.6 3.2 3.3 3.3

Combo* 6.1 5.2 5.3 3.9 4.3 4.7 4.9 3.8 4.2
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Fig. 3 Power of various slope homogeneity tests with p = 4 under Example 4.1
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Fig. 4 Power of various slope homogeneity tests under Example 4.2
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Fig. 5 Power of various slope homogeneity tests under Example 4.3
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Fig. 6 Power of various slope homogeneity tests under Example 4.2 with N = 400 and T = 200

generated N bootstrap samples

Y ∗
i = Xiγ 0 + ηi , i = 1, . . . , N ,

where γ 0 = (1, . . . , 1)� ∈ R
p and ηi = (ηi1, · · · , ηiT )� such that η·t are bootstrap

samples from {û·t }T
t=1 with û·t = (û1t , · · · , ûNt )

�, and η·t is the t th column of
(η1, . . . , ηN )�. Hence, a bootstrap calibrated Max statistic can be computed based on
the bootstrap sample (Y ∗

i ,Xi ), i = 1, · · · , N . By repeating the sampling procedure
B = 500 times, an empirical p-value can be obtained, say p∗

M . If p∗
M < α, then

we can reject the null hypothesis. We refer to this bootstrap calibrated procedure as
Max*. In a similar way, we can define a bootstrap calibrated Combo test, by rejecting
H0 if p∗

M < 1 − √
1 − α or pS < 1 − √

1 − α, which is referred to as the Combo*
test. Table 4 reports the empirical sizes of the proposed testing procedures, together
with their bootstrap calibrations, under Example 4.2. We observe that both calibrated
procedures perform very well. It is interesting to investigate the asymptotic validity
of these tests for future researches.

4.2 Real data analysis

We study a real-data example of securities in stock markets to assess the performance
of the proposed tests. To model the data, we use the Fama–French three-factor model
[9], which adds size risk and value risk factors to the market risk factor in the capital
asset pricing model. To be specific, assume

Yit = rit − rft = αi + βi1(rmt − rft ) + βi2SMBt + βi3HMLt + uit ,

for i ∈ {1, . . . , N } and t ∈ {τ, . . . , τ + T − 1}, where rit is the return of portfolio i
at time t , rft is the risk-free rate at time t , rmt is the market portfolio return at time t ,
SMBt is the size premium (small minus big), and HMLt is the value premium (high
minus low). We are interested in testing H0 : β i = β for all i = 1, . . . , N versus
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Table 5 Rejection rates of
different tests for beta testing,
regarding the China and US
stock markets

T = 25 T = 30

N N

Method 30 50 80 30 50 800

China Stock Market

TMax 49.3 53.9 54.9 65.3 73.4 78.9

�̃adj 94.3 98.3 99.8 96.1 99.1 100

TLM 48.5 69.3 83.9 53.5 72 87.8

TCLM 63 78.5 87.1 67.4 82.7 92.4

TCombo 92.6 97.5 99.5 95 99.1 100

US Stock Market

TMax 49.9 43.1 40.7 66.6 69.6 68.4

�̃adj 95.1 98.6 99.5 98.5 99.5 100

TLM 66 83 93.4 74.5 89.9 95.1

TCLM 86.6 94.9 97.2 92.4 97.1 98.9

TCombo 93.3 98 99.3 98.3 99.2 99.9

H1 : β i �= β j for some 1 ≤ i �= j ≤ N , where β i = (βi1, βi2, βi3)
�, for all

i = 1, . . . , N .
Two data sets are investigated. One is the data set of securities in China’s stock

markets. We consider N = 1, 340 securities during the period from June 2005 to
May 2019, measured in percentages per month. Hence, we have a total amount of
T = 144 temporal observations. The rate of China’s 10-year government bond is
chosen as the risk-free rate rft , the value-weighted return on the stocks of Shanghai
Stock Exchange and Shenzhen Stock Exchange is used as a proxy for themarket return
rmt , the average return on three small portfolios minus that on three big portfolios is
calculated as SMBt , and the average return on two value portfolios minus that on two
growth portfolios is used as HMLt . The other data set is from the S&P 500 index.
We specify the time range from January 2005 to November 2018 with T = 165, and
collect N = 374 securities during this period.

We first apply five tests based on TMax, �̃adj, TCLM, TLM and TCombo to each data
set with full samples. All tests reject the null hypothesis significantly, which shows that
different stocks have different beta values. Next, we consider a restricted data size by
randomly sampling T ∈ {25, 30} and N ∈ {30, 50, 80} observations from each data
set, and then repeating the process 1,000 times for each (T , N ) combination. Table 5
reports the rejection rates of different tests for each data set. We observe that the Max
test performs not very well, which indicates the signal may be dense. This is further
verified by the fact that the �̃adj-based Sum test performs the best among all (T , N )

combinations. The proposed Combo test (i.e., TCombo) performs very similarly to the
Sum test, consistent with our theoretical and simulation findings.

5 Discussion

In this paper, we propose two approaches for slope homogeneity testing in high-
dimensional panel data models, that is, the Max and Combo tests. The Max is more
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efficient compared to traditional Sum tests under sparse alternatives, while the Combo
is robust to different levels of sparsity. We established the limiting null distributions of
both test statistics. Two limitations of the present work are: (1) the errors are assumed
to be normal; and (2) the cross-sectional units are assumed to be independent. Our
simulation studies show that the proposed tests may perform satisfactorily under non-
normal and/or correlated errors, but the theoretical properties deserve further studies.
Recent developments of slope homogeneity testing with cross-sectional dependence
and/or serially correlated errors, such as [1, 3] and [4], could be extended for our
methods. We leave it as future researches.

6 Appendix

6.1 Some useful lemmas

Lemma 6.1 restates a result in Table 3.4.4 in [8].

Lemma 6.1 Suppose zi
iid∼ �(k, θ), for i =1, . . . , n. Then an(max1≤i≤n zi −bn)

d→�,
as n → ∞, where � is the Gumbel distribution with P(� < x) = e−e−x

, an = 1/θ ,
and bn = θ(log(n) + (k − 1) log(log(n)) − log(�(k))).

Lemma 6.2 Suppose εi
i id∼ N (0, Ip), for i = 1, . . . , N. Let Ai ∈ R

p×p be positive
definite matrices, for all i = 1, . . . , N , and max1≤i≤N λmax(Ai ) ≤ C , for some
positive constant C. Then, max1≤i≤N ε�

i Aiεi = Op(log(N )), as N → ∞.

Proof Consider the eigenvalue decomposition Ai = 
�
i Di
i , where Di =

diag(λi1, . . . , λi p), λik are the eigenvalues of Ai , and 
i is an orthogonal matrix.
Then, ε�

i Aiεi = ε�
i 
�

i Di
iεi . Since εi ∼ N (0, Ip), 
iεi ∼ N (0, Ip). Thus,
ε�

i Aiεi equals ε�
i Diεi =∑p

k=1 λikε
2
ik in distribution. Then,

max
1≤i≤N

ε�
i Aiεi

d= max
1≤i≤N

p∑
k=1

λikε
2
ik ≤ max

1≤i≤N
λmax(Ai )

p∑
k=1

ε2ik ≤ C max
1≤i≤N

p∑
k=1

ε2ik .

Obviously,
∑p

k=1 ε2ik ∼ χ2
p = �(

p
2 , 2). Thus, by Lemma 6.1, we have

P

(
max
1≤i≤N

p∑
k=1

ε2ik ≤ 3 log(N )

)
∼ exp(− exp(− log(N )/2)) → 1,

as N → ∞. Then,max1≤i≤N
∑p

k=1 ε2ik = Op(log(N )), and thusmax1≤i≤N ε�
i Aiεi =

Op(log(N )). �

Lemma 6.3 restates Lemma 6.1 in [14].

Lemma 6.3 Suppose X ∼ χ2
k , we have P(X ≥ k + √

2kx + 2x) ≤ exp(−x) and
P(k − X ≥ √

2kx) ≤ exp(−x).
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Lemma 6.4 Suppose conditions (C1)–(C4) holds. Under H0, max1≤i≤N |σ̃ 2
i − σ 2

i | =
Op(
√
log(N )/T ).

��
Proof According to (A.15) in [18], we have

σ̃ 2
i = ε�

i Mεi

T − 1
+ 1

N (T − 1)
ξ�

A�−1
A �iT �−1

A ξ A + 2√
N (T − 1)

ξ�
A�Aξ i ,

where ξ i = T −1/2X�
i Mεi and ξ A = N−1/2∑N

i=1 ξ i . Thus,

max
1≤i≤N

|σ̃ 2
i − σ 2

i | ≤ max
1≤i≤N

∣∣∣∣∣ε
�
i Mεi

T − 1
− σ 2

i

∣∣∣∣∣+ max
1≤i≤N

1

N (T − 1)
ξ�

A�−1
A �iT �−1

A ξ A

+ max
1≤i≤N

2√
N (T − 1)

|ξ�
A�Aξ i |.

By Condition (C1), we have σ−2
i ε�

i Mεi ∼ χ2
T −1. Let σ 2

max = max1≤i≤N σ 2
i . By

Lemma 6.3, we have

P

(
max
1≤i≤N

ε�
i Mεi

T − 1
− σ 2

i > 3σ 2
max

√
log(N )/T

)

≤ N P

(
ε�

i Mεi

T − 1
− σ 2

i > 3σ 2
max

√
log(N )/T

)

≤ N P

(
σ−2

i ε�
i Mεi

T − 1
− 1 > 3σ−2

i σ 2
max

√
log(N )/T

)

≤ N P
(
χ2

T −1 − (T − 1) ≥ √2.5(T − 1) log(N ) + 2.5
√
log(N )

)
≤ N exp(−1.25 log(N )) = N−1/4 → 0.

Similarly, we have

P

(
max
1≤i≤N

σ 2
i − ε�

i Mεi

T − 1
> 3σ 2

max

√
log(N )/T

)
→ 0.

Thus,

P

(
max
1≤i≤N

∣∣∣∣∣σ 2
i − ε�

i Mεi

T − 1

∣∣∣∣∣ > 3σ 2
max

√
log(N )/T

)
→ 0.

By Condition (C1), we have

ξ�
A�−1

A �iT �−1
A ξ A

d= z��1/2
σ �−1

A �iT �−1
A �1/2

σ z,
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where z ∼ N (0, Ip) and�σ = N−1∑N
i=1 σ 2

i �iT . ByCondition (C3), the eigenvalues

of �
1/2
σ �−1

A �iT �−1
A �

1/2
σ are bounded. Thus,

max
1≤i≤N

1

N (T − 1)
ξ�

A�−1
A �iT �−1

A ξ A ≤ C

N (T − 1)
max
1≤i≤N

z�z = C

N (T − 1)
z�z.

Because z�z ∼ χ2
p, max1≤i≤N

1
N (T −1)ξ

�
A�−1

A �iT �−1
A ξ A = Op(N−1T −1).

Next, notice that

max
1≤i≤N

|ξ�
A�Aξ i | ≤ max

1≤i≤N
N−1/2ξ�

i �Aξ i | + max
1≤i≤N

N−1/2|
∑
j �=i

ξ�
j �Aξ i |.

By condition (C1), we have

ξ�
i �Aξ i

d=σ 2
i z

�
i �

1/2
iT �A�

1/2
iT zi ,

N−1/2
∑
j �=i

ξ�
j �Aξ i

d=N−1/2
∑
j �=i

σiσ j z�j �
1/2
iT �A�

1/2
iT zi

d=(1 − 1/N )1/2σi ei�
1/2
Ai �A�

1/2
iT zi ,

where ei ∼ N (0, Ip) is independent of zi and �Ai = 1
(N−1)

∑
j �=i σ 2

j � jT . By con-

dition (C3) and Lemma 6.2, max1≤i≤N N−1/2ξ�
i �Aξ i = Op(N−1/2 log(N )). Note

that

max
1≤i≤N

⎛
⎝N−1/2

∑
j �=i

ξ�
j �Aξ i

⎞
⎠

2

≤ max
1≤i≤N

(
σi ei�

1/2
Ai �A�

1/2
iT zi

)2
≤ max

1≤i≤N

(
ei�

1/2
Ai �A�

1/2
iT ei

)
max
1≤i≤N

σ 2
i

(
zi�

1/2
Ai �A�

1/2
iT zi

)
.

By Lemma 6.2, max1≤i≤N

(
zi�

1/2
Ai �A�

1/2
iT zi

)
= Op(log(N )). Note that

max
1≤i≤N

(
ei�

1/2
Ai �A�

1/2
iT ei

)
≤ C max

1≤i≤N
e�

i ei
d= C max

1≤i≤N
ζ i ,
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where ζ i ∼ χ2
p. By Lemma 6.3,

P

(
max
1≤i≤N

ζ i > 3 log(N )

)
≤

N∑
i=1

P(ζ i > 3 log(N ))

= N P(χ2
p > 3 log(N ))

≤ N P(χ2
p > p + 2

√
2.5p log(N ) + 2.5 log(N ))

≤ N exp(−1.25 log(N )) = N−1/4 → 0.

Thus, max1≤i≤N ζ i = Op(log(N )). Then, we have

max
1≤i≤N

⎛
⎝
∣∣∣∣∣∣N−1/2

∑
j �=i

ξ�
j �Aξ i

∣∣∣∣∣∣
⎞
⎠ = Op(log(N )).

Consequently, max1≤i≤N
2√

N (T −1)
|ξ�

A�Aξ i | = Op

(
log(N )√

N T

)
.

Combining these facts together, we have

max
1≤i≤N

|σ̃ 2
i − σ 2

i | = Op

(√
log(N )

T

)
+ Op

(
1

N T

)
+ Op

(
log(N )√

N T

)
,

which completes the proof. ��

6.2 Proof of Theorem 3.1

Under H0, we have

β̂ i − β̃WFE = T −1/2�−1
iT ξ i − T −1/2N−1/2⎛

⎝N−1
N∑

j=1

σ̃−2
i �iT

⎞
⎠

−1⎛
⎝N−1/2

N∑
j=1

σ̃−2
i ξ i

⎞
⎠ .

Define �̃A = N−1∑N
j=1 σ̃−2

i �iT and ξ̃ A = N−1/2∑N
j=1 σ̃−2

i ξ i . Then,

S̃i =
(
β̂ i − β̃WFE

)� X�
i MXi

σ̃i
2

(
β̂ i − β̃WFE

)
=σ̃−2

i ξ�
i �−1

iT ξ i − 2N−1/2σ̃−2
i ξ�

i �̃
−1
A ξ̃ A + N−1ξ̃

�
A�̃

−1
A �iT �̃

−1
A ξ̃ A.
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By Condition (C1), we have σ−2
i ξ�

i �−1
iT ξ i ∼ χ2

p. By Lemma 6.1, we have

PH0

{
max
1≤i≤N

σ−2
i ξ�

i �−1
iT ξ i − 2 log(N ) − (p − 2) log(log(N )) + 2 log

(
�(

p

2
)
)

≤ x
}

→ exp(− exp(−x/2)).

By Lemmas 6.2 and Lemma 6.4,

∣∣∣ max
1≤i≤N

σ̃−2
i ξ�

i �−1
iT ξ i− max

1≤i≤N
σ−2

i ξ�
i �−1

iT ξ i

∣∣∣
≤ max

1≤i≤N

∣∣∣σ̃ 2
i − σ 2

i

∣∣∣ σ̃−2
i max

1≤i≤N
σ−2

i ξ�
i �−1

iT ξ i

=Op

(√
log(N )

T

)
Op(log(N ))

=Op

(
log3/2(N )√

T

)
= op(1).

Next, we show that

max
1≤i≤N

N−1ξ̃
�
A�̃

−1
A �iT �̃

−1
A ξ̃ A = Op(N−1) = op(1).

By Condition (C1), we have

ξ̃
�
A�̃

−1
A �iT �̃

−1
A ξ̃ A

d= z��̃
−1/2
A �iT �̃

−1/2
A z,

and by Condition (C3), the eigenvalues of �̃
−1/2
A �iT �̃

−1/2
A are bounded. Thus,

max
1≤i≤N

N−1ξ̃
�
A�̃

−1
A �iT �̃

−1
A ξ̃ A

≤ N−1C z�z = Op(N−1).

By Cauchy’s inequality, we have

max
1≤i≤N

N−1
(
σ̃−2

i ξ�
i �̃

−1
A ξ̃ A

)2
≤ max

1≤i≤N
σ̃−2

i ξ�
i �−1

iT ξ i × max
1≤i≤N

N−1ξ̃
�
A�̃

−1
A �iT �̃

−1
A ξ̃ A

= Op(log(N ))Op(N−1) = op(1).
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Thus,

PH0

{
max
1≤i≤N

S̃i − 2 log(N ) − (p − 2) log(log(N )) + 2 log
(
�
( p

2

))
≤ x

}
→ exp(− exp(−x/2)).

6.3 Proof of Theorem 3.2

Under H1, we have

β̂ i − β̃WFE = T −1/2�−1
iT ξ i − T −1/2N−1/2

⎛
⎝N−1

N∑
j=1

σ̃−2
i �iT

⎞
⎠

−1

⎛
⎝N−1/2

N∑
j=1

σ̃−2
i ξ i

⎞
⎠+ ω̂i ,

where

ω̂i = δi −
⎛
⎝N−1

N∑
j=1

σ̃−2
i �iT

⎞
⎠

−1⎛
⎝N−1

N∑
j=1

σ̃−2
i �iT δi

⎞
⎠ .

By Lemma 6.4 and Condition (C3), we have max1≤i≤N |ω̂i − ωi | = Op(log(N )/T ).
By the triangle inequality,

max
1≤i≤N

T σ̃−2
i ω̂

�
i �iT ω̂i ≥ 1

2
max
1≤i≤N

T σ̃−2
i ω�

i �iT ωi

− max
1≤i≤N

T σ̃−2
i (ω̂i − ωi )

��iT (ω̂i − ωi )

≥1

2
max
1≤i≤N

T σ−2
i ω�

i �iT ωi − 1

2
max
1≤i≤N

T σ−2
i ω�

i �iT ωi × max
1≤i≤N

∣∣∣σ̃−2
i − σ−2

i

∣∣∣
− max

1≤i≤N
T σ̃−2

i (ω̂i − ωi )
��iT (ω̂i − ωi )

≥(8 + 1

2
ε) log(N ) − Op(log

3/2(N )/T −1/2) − Op(log
2(N )/T )

≥(8 + 1

4
ε) log(N ),

as N → ∞. According to the proof of Theorem 3.1, we have

P

{
max
1≤i≤N

T σ̃i
−2(β̂ i − β̃WFE − ω̂i )

��iT (β̂ i − β̃WFE − ω̂i )

− 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(
p

2
)) ≤ x

}
→ exp(− exp(−x/2)).
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Hence,

P

{
max
1≤i≤N

T σ̃i
−2(β̂ i − β̃WFE − ω̂i )

��iT (β̂ i − β̃WFE − ω̂i )

≤ 2 log(N ) + (p − 1) log(log(N ))

}
→ 1,

by setting x = log(log(N )) + 2 log(�(
p
2 )). By the triangle inequality, we have

max
1≤i≤N

T σ̃i
−2(β̂ i − β̃WFE)��iT (β̂ i − β̃WFE)

≥ 1

2
max
1≤i≤N

T σ̃−2
i ω̂

�
i �iT ω̂i − max

1≤i≤N
T σ̃i

−2(β̂ i

− β̃WFE − ω̂i )
��iT (β̂ i − β̃WFE − ω̂i )

≥ (4 + 1

8
ε) log(N ) − 2 log(N ) − (p − 1) log(log(N ))

≥ 1

16
ε log(N ) + 2 log(N ) + (p − 2) log(log(N )) − 2 log

(
�
( p

2

))
+ qα,

with probability approaching one, as N → ∞. Hence, P(�α = 1) → 1.

6.4 Proof of Theorem 3.3

Lemma 6.5 Suppose Z1, . . . , Z N are independent and identically distributed random
sample from χ2

p. Set SN = Z1 +· · ·+ Z N , υN = (2pN )1/2 and AN = { SN −pN
υN

≤ x}.
For y ∈ R, denote lN = 2 log(N ) + (p − 2) log(log(N )) − 2 log(�(

p
2 )) + y and

Bi = {Zi > lN }. Then, for each n ≥ 1,

∑
1≤i1<···<in≤N

∣∣P(AN Bi1 · · · Bin ) − P(AN ) · P(Bi1 · · · Bin )
∣∣→ 0,

as N → ∞.

Proof Write

SN =
N∑

i=1

Zi =
N∑

i=n+1

Zi +
n∑

i=1

Zi
.= UN + �N .

We will show the last term on the right hand side is negligible. By the definition, we
have �N ∼ χ2

pn . By Lemma 6.3, for any n ≥ 1 and ε > 0, there exists t = tN > 0
with limN→∞ tN = ∞ and N0, depending on n, ε, such that

P(�N ≥ ευN ) ≤ 1

N t
,
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for N ≥ N0. Define

AN (x) =
{ 1

υN
(SN − pN ) ≤ x

}
, x ∈ R,

for N ≥ 1. From the fact SN = UN + �N we see that

P(AN (x)B1 · · · Bn) ≤ P
(

AN (x)B1 · · · Bn,
|�N |
υN

< ε
)

+ 1

N t

≤ P
( 1

υN
(UN − pN ) ≤ x + ε, B1 · · · Bn

)
+ 1

N t

= P
( 1

υN
(UN − pN ) ≤ x + ε

)
· P
(
B1 · · · Bn

)+ 1

N t
,

by the independence between UN and �N . Now,

P
( 1

υN
(UN − pN ) ≤ x + ε

)
≤ P
( 1

υN
(UN − pN ) ≤ x + ε,

|�N |
υN

< ε
)

+ 1

N t

≤ P
( 1

υN
(UN + �N − pN ) ≤ x + 2ε

)
+ 1

N t

≤ P
(

AN (x + 2ε)
)+ 1

N t
.

Combining the two inequalities,

P(AN (x)B1 · · · Bn) ≤ P
(

AN (x + 2ε)
) · P
(
B1 · · · Bn

)+ 2

N t
. (6.1)

Similarly,

P
( 1

υN
(UN − pN ) ≤ x − ε, B1 · · · Bn

)
≤ P
( 1

υN
(UN − pN ) ≤ x − ε, B1 · · · Bn,

|�N |
υN

< ε
)

+ 1

N t

≤ P
( 1

υN
(SN − pN ) ≤ x, B1 · · · Bn

)
+ 1

N t
.

By the independence between UN and �N ,

P(AN (x)B1 · · · Bn) ≥ P
( 1

υN
(UN − pN ) ≤ x − ε

)
· P(B1 · · · Bn) − 1

N t
.
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Furthermore,

P
( 1

υN
(SN − pN ) ≤ x − 2ε

)
≤ P
( 1

υN
(SN − pN ) ≤ x − 2ε,

|�N |
υN

< ε
)

+ 1

N t

≤ P
( 1

υN
(UN − pN ) ≤ x − ε

)
+ 1

N t
,

due to the fact SN = UN + �N . Combining the two inequalities, we get

P(AN (x)B1 · · · Bn) ≥ P(AN (x − 2ε)) · P(B1 · · · Bn) − 2

N t
.

This, together with (6.1), concludes

∣∣P(AN (x)B1 · · · Bn) − P(AN (x)) · P(B1 · · · Bn)
∣∣

≤ �N ,ε · P(B1 · · · Bn) + 2

N t
,

for N ≥ N0, where

�N ,ε : = |P(AN (x)) − P(AN (x + 2ε))| + |P(AN (x)) − P(AN (x − 2ε))|.

Similarly, for any 1 ≤ i1 < i2 < · · · < in ≤ N , we have

∣∣P(AN (x)Bi1 · · · Bin ) − P(AN (x)) · P(Bi1 · · · Bin )
∣∣

≤ �N ,ε · P(Bi1 · · · Bin ) + 2

N t
,

for N ≥ N0. As a result,

ζ(N , n) : =
∑

1≤i1<···<in≤N

[
P(AN (x)Bi1 · · · Bin ) − P(AN (x)) · P(Bi1 · · · Bin )

]

≤
∑

1≤i1<···<in≤N

[
�N ,ε · P(Bi1 · · · Bin ) + 2

N t

]

≤ �N ,ε · H(n, N ) +
(

N

n

)
· 2

N t
, (6.2)

where

H(n, N ) :=
∑

1≤i1<···<in≤N

P(Bi1 · · · Bin ).

First, by the central limit theorem,

SN − pN

υN
→ N (0, 1) weakly,
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as N → ∞, and hence

�N ,ε → |�(x + 2ε) − �(x)| + |�(x − 2ε) − �(x)|,

as N → ∞,where�(x) = 1√
2π

∫ x
−∞ e−t2/2 dt . This implies that limε↓0 limN→∞ �N ,ε

= 0. Second, by the independence of Zi , we have

H(n, N ) =
∑

1≤i1<···<in≤N

P(Bi1 · · · Bin )

=
(

N

n

)
P(B1 · · · Bn) =

(
N

n

)
P(B1)

n

=
(

N

n

)
{P(χ2

p > lN )}n .

As N → ∞,

log P( max
1≤i≤N

χ2
p ≤ lN ) = N log P(χ2

p ≤ lN ) = N log(1 − P(χ2
p > lN )) ∼ N P(χ2

p > lN ).

By Lemma 6.1, we have P(χ2
p > lN ) ∼ 1

N e−y/2. Thus,

lim
N→∞ H(n, N ) = 1

n!e−ny/2, (6.3)

for each n ≥ 1. By using
(N

n

) ≤ N n and (6.2), for fixed n ≥ 1, sending N → ∞
first, then sending ε ↓ 0, we get limN→∞ ζ(N , n) = 0, for each n ≥ 1. The proof is
completed. ��
Lemma 6.6 Suppose Z1, . . . , Z N are independent and identically distributed ran-

dom sample from χ2
p, we have

∑N
i=1 Zi −pN√

2pN
and max1≤i≤N Zi − 2 log(N ) − (p −

2) log(log(N )) + 2 log(�(
p
2 )) are asymptotically independent, as N → ∞.

Proof Define SN = ∑N
i=1 Zi and υN = √

2pN . By the central limit theorem, we
have

SN − pN

υN
→ N (0, 1) weakly, (6.4)

as N → ∞. By Lemma 6.1, we have

max
1≤i≤N

Zi − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(
p

2
))

→ F(y) = exp
{

− e−y/2
}

(6.5)
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in distribution, as N → ∞. To show the asymptotic independence, it suffices to prove

P
( SN − pN

υN
≤ x, max

1≤i≤N
Zi − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(

p

2
)) ≤ y

)
→ �(x) · F(y),

as N → ∞, for any x ∈ R and y ∈ R, where �(x) = (2π)−1/2
∫ x
−∞ e−t2/2 dt . Set

L N = max
1≤i≤N

Zi and lN = 2 log(N ) + (p − 2) log(log(N )) − 2 log(�(
p

2
)) + y.

Because of (6.4) and (6.5), it is equivalent to show

lim
N→∞ P

( SN − pN

υN
≤ x, L N > lN

)
= �(x) · [1 − F(y)], (6.6)

for any x ∈ R and y ∈ R. Define

AN =
{ SN − pN

υN
≤ x
}

and Bi = {Zi > lN
}
,

for 1 ≤ i ≤ N . Therefore,

P
( 1

υN
(SN − pN ) ≤ x, L N > lN

)
= P
( N⋃

i=1

AN Bi

)
. (6.7)

Here the notation AN Bi stands for AN ∩ Bi . By the inclusion–exclusion principle,

P
( N⋃

i=1

AN Bi

)
≤
∑

1≤i1≤N

P(AN Bi1) −
∑

1≤i1<i2≤N

P(AN Bi1 Bi2) + · · · +
∑

1≤i1<···<i2k+1≤N

P(AN Bi1 · · · Bi2k+1) (6.8)

and

P
( N⋃

i=1

AN Bi

)
≥
∑

1≤i1≤N

P(AN Bi1) −
∑

1≤i1<i2≤N

P(AN Bi1 Bi2) + · · · −
∑

1≤i1<···<i2k≤N

P(AN Bi1 · · · Bi2k ),

(6.9)
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for any integer k ≥ 1. Define

H(N , n) =
∑

1≤i1<···<in≤N

P(Bi1 · · · Bin ),

for n ≥ 1. From (6.3) we know

lim
n→∞ lim sup

N→∞
H(N , n) = 0. (6.10)

Set

ζ(N , n) =
∑

1≤i1<···<in≤N

[
P(AN Bi1 · · · Bin ) − P(AN ) · P(Bi1 · · · Bin )

]
,

for n ≥ 1. By Lemma 6.5,

lim
N→∞ ζ(N , n) = 0, (6.11)

for each n ≥ 1. The assertion (6.8) implies that

P
( N⋃

i=1

AN Bi

)
≤ P(AN )

[ ∑
1≤i1≤N

P(Bi1) −
∑

1≤i1<i2≤N

P(Bi1 Bi2) + · · · −

∑
1≤i1<···<i2k≤N

P(Bi1 · · · Bi2k )
]

+
[ 2k∑

n=1

ζ(N , n)
]

+ H(N , 2k + 1)

≤ P(AN ) · P
( N⋃

i=1

Bi

)
+
[ 2k∑

n=1

ζ(N , n)
]

+ H(N , 2k + 1), (6.12)

where the inclusion–exclusion formula is used again in the last inequality, that is,

P
( N⋃

i=1

Bi

)
≥
∑

1≤i1≤N

P(Bi1) −
∑

1≤i1<i2≤N

P(Bi1 Bi2) + · · · −
∑

1≤i1<···<i2k≤N

P(Bi1 · · · Bi2k ),

for all k ≥ 1. By the definition of lN and (6.5),

P
( N⋃

i=1

Bi

)
= P
(
L N > lN

)
= P
(
max
1≤i≤N

Zi − 2 log(N ) − (p − 2) log(log(N )) + 2 log(�(
p

2
)) > y

)
→ 1 − F(y),
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as N → ∞. By (6.4), P(AN ) → �(x), as N → ∞. From (6.7), (6.11) and (6.12),
by fixing k first and sending N → ∞, we obtain that

lim sup
N→∞

P
( 1

υN
(SN − pN ) ≤ x, L N > lN

)
≤ �(x) · [1 − F(y)] + lim

N→∞ H(N , 2k + 1).

Now, by letting k → ∞ and using (6.10), we have

lim sup
N→∞

P
( 1

υN
(SN − pN ) ≤ x, L N > lN

)
≤ �(x) · [1 − F(y)]. (6.13)

By applying the same argument to (6.9), we see that the counterpart of (6.12) becomes

P
( N⋃

i=1

AN Bi

)
≥ P(AN )

[ ∑
1≤i1≤N

P(Bi1) −
∑

1≤i1<i2≤N

P(Bi1 Bi2) + · · · +

∑
1≤i1<···<i2k−1≤N

P(Bi1 · · · Bi2k−1)
]

+
[ 2k−1∑

n=1

ζ(N , n)
]

− H(N , 2k)

≥ P(AN ) · P
( N⋃

i=1

Bi

)
+
[ 2k−1∑

n=1

ζ(N , n)
]

− H(N , 2k),

where in the last step we use the inclusion–exclusion principle, i.e.,

P
( N⋃

i=1

Bi

)
≤
∑

1≤i1≤N

P(Bi1) −
∑

1≤i1<i2≤N

P(Bi1 Bi2) + · · · +
∑

1≤i1<···<i2k−1≤N

P(Bi1 · · · Bi2k−1),

for all k ≥ 1. Review (6.7) and repeat the earlier procedure to see

lim inf
N→∞ P

( 1

υN
(SN − pN ) ≤ x, L N > lN

)
≥ �(x) · [1 − F(y)],

by sending N → ∞ and then sending k → ∞. This and (6.13) yield (6.6). The proof
is completed.

��

Proof of Theorem 3.3 According to the proof of Theorem 3.2 in [18], we have �̃adj =
Sa + Op(T −1/2) + Op(N−1/2), where Sa = (2pN )−1/2∑N

i=1(σ
−2
i ξ�

i �−1
iT ξ i − p).

According to the proof of Theorem 3.2, we have TMax = Ma + Op(

√
log N

N ) +
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Op(
log3/2 N

T 1/2 ), where Ma = max1≤i≤N σ−2
i ξ�

i �−1
iT ξ i . Given ε ∈ (0, 1), set �N =

{|�̃adj − Sa | < ε, |M − Ma | < ε}. We have limN ,T →∞ P(�N ) = 1. By Lemma 6.6,

P(�̃adj ≤ x, TMax > lN ) ≤ P(�̃adj ≤ x, TMax > lN ,�N ) + P(�c
N )

≤ P(Sa ≤ x + ε, Ma > lN − ε) + P(�c
N )

→ �(x + ε)(1 − F(y − ε)),

as N , T → ∞. Similarly, by Lemma 6.6,

P(�̃adj ≤ x, TMax > lN ) ≥ P(�̃adj ≤ x, TMax > lN ,�N )

≥ P(Sa ≤ x − ε, Ma > lN + ε)

→ �(x − ε)(1 − F(y + ε)),

as N , T → ∞. So

�(x − ε)(1 − F(y + ε)) ≤ lim
N ,T →∞ P(�̃adj ≤ x, TMax > lN ) ≤ �(x + ε)(1 − F(y − ε)).

Sending ε → 0, the conclusion follows. ��
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