

Even Character Degrees and Ito–Michler Theorem

Shuqin Dong1 · Hongfei Pan¹

Received: 28 December 2022 / Revised: 5 June 2023 / Accepted: 28 June 2023 © School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Let $\text{Irr}_2(G)$ be the set of linear and even-degree irreducible characters of a finite group *G*. In this paper, we prove that *G* has a normal Sylow 2-subgroup if \sum $\chi \in \text{Irr}_2(G)$ $\chi(1)^m / \sum$ $\chi \in \text{Irr}_2(G)$ $\chi(1)^{m-1}$ < $(1 + 2^{m-1})/(1 + 2^{m-2})$ for a positive integer *m*, which is the generalization of several recent results concerning the well-known Ito–Michler theorem.

Keywords Character degrees · Sylow subgroups

Mathematics Subject Classification 20C15

1 Introduction

For a finite group G , let $\text{Irr}(G)$ be the set of all complex irreducible characters of G . We write

$$
Irr_2(G) := \{ \chi \in Irr(G) \mid \chi(1) = 1 \text{ or } 2 \mid \chi(1) \}
$$

and

$$
S_2^m(G):=\sum_{\chi\in{\rm Irr}_2(G)}\chi(1)^m/\sum_{\chi\in{\rm Irr}_2(G)}\chi(1)^{m-1},
$$

The first author was supported by NSF of China (Nos. 12201236, 12271200), and the second author by NSF of China (No. 12061011).

B Hongfei Pan hfpanha@163.com Shuqin Dong

dsq83@163.com

¹ School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, Jiangsu, People's Republic of China

where *m* is a positive integer. Ito–Michler theorem $\lceil 3, 5 \rceil$ $\lceil 3, 5 \rceil$ $\lceil 3, 5 \rceil$ states that if a prime *p* does not divide the degree of every irreducible character of a finite group *G*, then *G* has a normal abelian Sylow *p*-subgroup. For the prime $p = 2$, the $S_2^m(G)$ -version of the Ito–Michler theorem asserts that if $S_2^m(G) = 1$, then *G* has a normal abelian Sylow 2-subgroup. In this paper, we improve this for $p = 2$.

Main theorem. Let *G* inite group with $S_2^m(G) < (1 + 2^{m-1})/(1 + 2^{m-2})$. Then, *G* has a normal Sylow 2-subgroup.

We note that $(1 + 2^{m-1})/(1 + 2^{m-2})$ is the exactly value of $S_2^m(G)$ with $G = S_3$, the symmetric group of degree 3, and *S*³ does not have a normal Sylow 2-subgroup. For *G*, the nonabelian group of order 8 or the alternating group *A*⁴ of degree 4, the value of $S_2^m(G)$ respectively is $(1+2^{m-2})/(1+2^{m-3})$ and 1, which are both less than $S_2^m(S_3)$, indeed *G* has a normal Sylow 2-subgroup.

For $m = 1, 2$, we obtain the following corollary.

Corollary 1.1 Let G be a finite group. If $S_2^1(G) < 4/3$ or $S_2^2(G) < 3/2$, then G has a *normal Sylow* 2*-subgroup.*

Proof See [\[1,](#page-9-2) Theorem 1.1] and [\[6,](#page-9-3) Theorem A]. □

In the following of this paper, we prove the Main theorem in Sect. [2,](#page-1-0) and discuss other variations of the Main theorem in Sect. [3.](#page-6-0)

2 Proof of Main Theorem

We denote by $n_k(G)$ the number of irreducible complex characters of degree k of *G*. If *N* is a normal subgroup of *G* and $\theta \in \text{Irr}(N)$, then $\text{Irr}(G|\theta)$ denotes the set of irreducible characters of *G* that lie over θ . We write $I_G(\theta)$ to denote the inertia subgroup of θ in *G*. For an *M*-invariant subgroup *N*, we write $M \ltimes N$ to denote a semidirect of *M* and *N*.

The first lemma is the following observation.

Lemma 2.1 *Let N be a normal subgroup of a group G contained in the derived* $subgroup G' of G. If S₂^m(G) \leq 2, then S₂^m(G/N) \leq S₂^m(G)$.

Proof We write $R = S_2^m(G)$. Then, $1 \le R \le 2$ and

$$
R = \frac{n_1(G) + \sum_{2|k} k^m n_k(G)}{n_1(G) + \sum_{2|k} k^{m-1} n_k(G)}.
$$

It follows that

$$
\sum_{2|k} (k - R)k^{m-1} n_k(G) = (R - 1)n_1(G).
$$

 $\textcircled{2}$ Springer

Since $\text{Irr}(G/N) \subseteq \text{Irr}(G)$ and $N \subseteq G'$, we have

$$
\sum_{2|k} (k - R)k^{m-1} n_k(G/N) \leq \sum_{2|k} (k - R)k^{m-1} n_k(G)
$$

and *n*₁(*G*) = *n*₁(*G*/*N*). Hence $\sum_{n=1}^{n} (k - R)k^{m-1}n_k(G/N)$ ≤ (*R* − 1)*n*₁(*G*/*N*), which is equivalent to $S_2^m(G/N) \le R = S_2^m$ $\mathbb{Z}_2^m(G).$

Lemma 2.2 *For a normal subgroup N of G, let* $\chi \in \text{Irr}(G) - \text{Irr}(G/N)$ *with degree* 2*.* If $G/\text{ker}(\chi)$ *is nonsolvable, then* χ *is a primitive character of* $G/\text{ker}(\chi)$ *.*

Proof We write $\overline{G} = G/\text{ker}(\chi)$, and suppose that χ is not a primitive character of \overline{G} . Then, there is a proper subgroup \overline{H} of \overline{G} and some character ϕ of \overline{H} such that $\chi = \phi^{\overline{G}}$. It follows that $2 = \chi(1) = |\overline{G} : \overline{H}|\phi(1), |\overline{G} : \overline{H}| = 2$ and $\phi(1) = 1$. Hence, \overline{H} is normal in \overline{G} and all the irreducible constituents of $\chi_{\overline{H}}$ are linear. Then, $[H, H] \leq \text{ker}(\chi) = 1$, and *H* is abelian. So *G* is solvable, a contradiction.

The following lemma implies that *G* in our main theorem is solvable.

Lemma 2.3 *Let G be a finite group with* $S_2^m(G) < (1 + 4^m)/(1 + 4^{m-1})$ *. Then, G is solvable.*

Proof Suppose that *G* is nonsolvable and let *G* be a counterexample of minimal order. Let *A* be a minimal nonsolvable normal subgroup of *G*, and let *N* be a minimal normal subgroup of *G* contained in *A*. Then, $N \subseteq A = A' \subseteq G'$. If in addition $[A, Rad(A)] > 1$, then we can choose $N \subseteq [A, Rad(A)],$ where $Rad(A)$ is the solvable radical (i.e., the unique largest solvable normal subgroup) of *A*. We now discuss the following two cases: *N* is abelian or not.

(1). *N* is abelian.

Then, G/N is nonsolvable. Since $|G/N| < |G|$, we have $S_2^m(G) < (1 + 4^m)/(1 +$ 4^{m-1}) ≤ S_2^m (*G*/*N*). Hence, we obtain

$$
\sum_{2|k,k\geqslant 4} (k-1+4^{m-1}k-4^m)k^{m-1}n_k(G) < 3 \cdot 4^{m-1}n_1(G) + 2^{m-1}(2 \cdot 4^{m-1} - 1)n_2(G)
$$

and

$$
3 \cdot 4^{m-1} n_1(G/N) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2(G/N)
$$

$$
\leq \sum_{2|k,k \geq 4} (k - 1 + 4^{m-1}k - 4^m) k^{m-1} n_k(G/N).
$$

Since $n_1(G/N) = n_1(G)$ and $n_k(G/N) \leq n_k(G)$ for $k \geq 2$, we obtain $n_2(G/N)$ $n_2(G)$. Now there is $\chi \in \text{Irr}(G) - \text{Irr}(G/N)$ such that $\chi(1) = 2$. Since $N \nsubseteq \text{ker}(\chi)$, we know that $A\text{ker}(\chi)/\text{ker}(\chi)$ is a nontrivial subgroup of $G/\text{ker}(\chi)$, and thus $G/\text{ker}(\chi)$ is nonsolvable. Now by Lemma [2.2,](#page-2-0) we know that $G/\text{ker}(\chi)$ is a nonsolvable primitive linear group of degree 2. Write $C/\text{ker}(\chi) = Z(G/\text{ker}(\chi))$. According to the proof in [\[6,](#page-9-3) Theorem 3.1], we know that $G = AC$ is a central product, $G/C \cong A_5$, $N =$ *A* ∩ *C* \cong \mathbb{Z}_2 , *A* \cong *SL*(2, 5), *n*₁(*G*) = *n*₁(*C*/*N*), *n*₂(*G*) = *n*₂(*C*/*N*) + 2*n*₁(*G*), $n_4(G) \geq 2n_1(G)$, and $n_6(G) \geq n_1(G) + 2n_2(C/N)$. Now

$$
\sum_{2|k,k\geq 4} (k-1+4^{m-1}k-4^{m})k^{m-1}n_{k}(G)
$$
\n
$$
\geq 3 \cdot 4^{m-1}n_{4}(G) + (5+2 \cdot 4^{m-1}) \cdot 6^{m-1}n_{6}(G)
$$
\n
$$
\geq 6 \cdot 4^{m-1}n_{1}(G) + (5+2 \cdot 4^{m-1})6^{m-1} \cdot (n_{1}(G) + 2n_{2}(C/N))
$$
\n
$$
= (6 \cdot 4^{m-1} + 5 \cdot 6^{m-1} + 2 \cdot 24^{m-1})n_{1}(G) + (10+4^{m})6^{m-1}n_{2}(C/N)
$$
\n
$$
= (6 \cdot 4^{m-1} + 5 \cdot 6^{m-1} + 2 \cdot 24^{m-1})n_{1}(G) + (10+4^{m})6^{m-1}n_{2}(G) - 2n_{1}(G))
$$
\n
$$
= (6 \cdot 4^{m-1} - 15 \cdot 6^{m-1} - 6 \cdot 24^{m-1})n_{1}(G) + (10+4^{m})6^{m-1}n_{2}(G)
$$
\n
$$
= (6 \cdot 4^{m-1} - 15 \cdot 6^{m-1} - 6 \cdot 24^{m-1})n_{1}(G) + [(10+4^{m})6^{m-1} - 2^{m-1}(2 \cdot 4^{m-1} - 1)]n_{2}(G) + 2^{m-1}(2 \cdot 4^{m-1} - 1)n_{2}(G)
$$
\n
$$
\geq (6 \cdot 4^{m-1} - 15 \cdot 6^{m-1} - 6 \cdot 24^{m-1})n_{1}(G) + 2[(10+4^{m})6^{m-1} - 2^{m-1}(2 \cdot 4^{m-1} - 1)]n_{1}(G) + 2^{m-1}(2 \cdot 4^{m-1} - 1)n_{2}(G)
$$
\n
$$
= (5 \cdot 6^{m-1} + 2 \cdot 24^{m-1} + 6 \cdot 4^{m-1} - 4 \cdot 8^{m-1} + 2^{m})n_{1}(G)
$$
\n
$$
+ 2^{m-1}(2 \cdot 4^{m-1} - 1)n_{2}(G)
$$
\n<math display="</math>

Hence, $S_2^m(G) \geq (1 + 4^m)/(1 + 4^{m-1})$, a contradiction. (2). *N* is not abelian.

Assume that $N \not\cong A_5$. By [\[1,](#page-9-2) Theorem 2.2], there exists $\phi \in \text{Irr}(N)$ of even degree such that $\phi(1) \ge 8$ and ϕ is extendible to $I := I_G(\phi)$. By [\[1,](#page-9-2) Proposition 2.3], we $n_1(G) \le n_d(G) |G : I|$ and $n_2(G) \le n_{2d}(G) |G : I| + \frac{1}{2}n_d(G) |G : I|$, where $d = \phi(1)|G : I| \geq 8|G : I|$. Now

$$
3 \cdot 4^{m-1} n_1(G) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2(G)
$$

\n
$$
\leq 3 \cdot 4^{m-1} n_d(G) |G : I| + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2 d(G) |G : I|
$$

\n
$$
+ 2^{m-2} (2 \cdot 4^{m-1} - 1) n_d(G) |G : I|
$$

\n
$$
= (3 \cdot 4^{m-1} + 8^{m-1} - 2^{m-2}) n_d(G) |G : I| + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2 d(G) |G : I|
$$

\n
$$
\leq (3 \cdot 4^{m-1} + 8^{m-1} - 2^{m-2}) n_d(G) \frac{d}{8} + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2 d(G) \frac{d}{8}
$$

\n
$$
= \left(\frac{3}{2} \cdot 4^{m-2} + 8^{m-2} - 2^{m-5}\right) dn_d(G) + 2^{m-4} (2 \cdot 4^{m-1} - 1) dn_{2d}(G)
$$

\n
$$
\leq (d - 1 + 4^{m-1} \cdot d - 4^m) d^{m-1} n_d(G) + (2d - 1 + 4^{m-1} \cdot 2d - 4^m) (2d)^{m-1} n_{2d}(G)
$$

\n
$$
\leq \sum_{2|k,k \geq 4} (k - 1 + 4^{m-1} k - 4^m) k^{m-1} n_k(G),
$$

² Springer

so we have $S_2^m(G) \ge (1 + 4^m)/(1 + 4^{m-1})$, a contradiction.

Assume that $N \cong A_5$. Since the irreducible character of *N* of degree 4 is extendible to *G*, by [\[1,](#page-9-2) Proposition 2.3] again, we have $n_1(G) \leq n_4(G)$ and $n_2(G) \leq n_8(G)$. Now

$$
3 \cdot 4^{m-1} n_1(G) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2(G)
$$

\n
$$
\leq 3 \cdot 4^{m-1} n_4(G) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_8(G)
$$

\n
$$
\leq 3 \cdot 4^{m-1} n_4(G) + (7 + 4^m) 8^{m-1} n_8(G)
$$

\n
$$
\leq \sum_{2|k,k \geq 4} (k - 1 + 4^{m-1}k - 4^m) k^{m-1} n_k(G),
$$

and thus $S_2^m(G)$ ≥ $(1 + 4^m)/(1 + 4^{m-1})$. This contradiction completes the proof. $□$

Lemma 2.4 *Let* $G = M \ltimes N$. If λ *is a G-invariant linear character of* N, *then* λ *is extendible to G.*

Proof Clearly, we may assume that ker(λ) = 1. Then, *N* is cyclic. Let $\chi \in$ Irr(λ^G), then $\chi_N = \chi(1)\lambda$. Hence, $N \subseteq Z(\chi) = \{g \in G \mid |\chi(g)| = \chi(1)\}\$ and $M_{\text{free}}(\chi)$ (*g*) = $\chi(1)\xi$ and $\chi(1)\xi$ (*g*) = $\chi(1)\xi$ (*g*) = $\chi(1)\xi$ (*g*) = $\chi(1)\xi$ $N\text{ker}(\chi)/\text{ker}(\chi) \subseteq Z(\chi)/\text{ker}(\chi) = Z(G/\text{ker}(\chi))$. Then, $[G, N] \subseteq \text{ker}(\chi)$. It follows that $[G, N] ⊆ N ∩ ker(χ) = ker(λ) = 1$. Hence, $N ⊆ Z(G)$. Now $G = M \times N$.
Let $\psi = 1_m \times \lambda$. Then, $\psi \in \text{Irr}(G)$ and $\psi_N = \lambda$. So λ is extendible to G . Let $\psi = 1_m \times \lambda$. Then, $\psi \in \text{Irr}(G)$ and $\psi_N = \lambda$. So λ is extendible to G.

The following lemma is important in the proof of our Main theorem.

Lemma 2.5 *Let* $G = M \ltimes N$, *where* $N \le G'$ *is an abelian group. Assume that no nontrivial irreducible character of* N is invariant under M. If $S_2^m(G) < (1 +$ 2^{m-1})/(1 + 2^{m-2}), *then there is no orbit of even size in the action of* \overline{M} *on the set of irreducible characters of N.*

Proof Let $\{\theta_0 = 1_N, \theta_1, \dots, \theta_t\}$ be a set of representatives of *M*-orbits on Irr(*N*). Let $I_i = I_G(\theta_i)$ for $i \in [1, t]$. By hypothesis, we have $I_i < G$ for $i \geq 1$. Suppose that there is some orbit of even size in the action of M on $\text{Irr}(N)$. Then, we can find an integer *k* such that $2 \mid |G : I_k|$. For $0 \le i \le t$, we set $n_{i,1} = n_1(I_i/N)$ and $T_{i,m} =$ $\lambda \in \text{Irr}(I_i/N), 2|\lambda(1)|$ $\lambda(1)^m$.

By Lemma [2.4,](#page-4-0) every θ_i has an extension ψ to I_i . By Gallagher theorem [\[2](#page-9-4), Corollary 6.17], we have bijections $\lambda \mapsto \lambda \psi_i$ from Irr(I_i/N) to Irr($I_i|\theta_i$). By Clifford correspondence, we have a bijections $\lambda \psi_i \mapsto (\lambda \psi_i)^G$ from $\text{Irr}(I_i | \theta_i)$ to $\text{Irr}(G | \theta_i)$. Observe that $(\lambda \theta_i)^G(1) = |G : I_i|\lambda(1)$ is even if and only if $|G : I_i|$ is even or $|G : I_i|$ is odd and $\lambda(1)$ is even. Then,

$$
\sum_{\chi \in \text{Irr}_2(G)} \chi(1)^{m-1} = n_1(G/N) + \sum_{2|G:I_i|} |G:I_i|^{m-1} \sum_{\lambda \in \text{Irr}(I_i/N)} \lambda(1)^{m-1} + \sum_{2|G:I_i|} |G:I_i|^{m-1} T_{i,m-1}
$$

 \mathcal{D} Springer

and

$$
\sum_{\chi \in \text{Irr}_{2}(G)} \chi(1)^{m} = n_{1}(G/N) + \sum_{2 \mid |G:I_{i}|} |G:I_{i}|^{m} \sum_{\lambda \in \text{Irr}(I_{i}/N)} \lambda(1)^{m} + \sum_{2 \nmid |G:I_{i}|} |G:I_{i}|^{m} \text{T}_{i,m}
$$

\n
$$
\geq n_{1}(G/N) + \sum_{2 \mid |G:I_{i}|} |G:I_{i}|^{m} \sum_{\lambda \in \text{Irr}(I_{i}/N)} \lambda(1)^{m-1} + \sum_{2 \nmid |G:I_{i}|} |G:I_{i}|^{m} \text{T}_{i,m-1}.
$$

From
$$
\sum_{\chi \in \text{Irr}_{2}(G)} \chi(1)^{m} = S_{2}^{m}(G) \sum_{\chi \in \text{Irr}_{2}(G)} \chi(1)^{m-1}
$$
, we have
\n
$$
S_{2}^{m}(G)(n_{1}(G/N) + \sum_{2||G:I_{i}|} |G:I_{i}|^{m-1} \sum_{\lambda \in \text{Irr}(I_{i}/N)} \lambda(1)^{m-1} + \sum_{2||G:I_{i}|} |G:I_{i}|^{m-1} \text{T}_{i,m-1})
$$

\n
$$
\geq n_{1}(G/N) + \sum_{2||G:I_{i}|} |G:I_{i}|^{m} \sum_{\lambda \in \text{Irr}(I_{i}/N)} \lambda(1)^{m-1} + \sum_{2||G:I_{i}|} |G:I_{i}|^{m} \text{T}_{i,m-1}.
$$

Then,

$$
\sum_{2||G:I_i|} (|G:I_i| - S_2^m(G))|G:I_i|^{m-1} \sum_{\lambda \in \text{Irr}(I_i/N)} \lambda(1)^{m-1} + \sum_{2||G:I_i|} (|G:I_i| - S_2^m(G))|G:I_i|^{m-1}T_{i,m-1}
$$

\$\leq (S_2^m(G) - 1)n_1(G/N).

In particular, for *k*, we obtain

$$
(|G: I_k|-S_2^m(G))|G: I_k|^{m-1}\sum_{\lambda\in\operatorname{Irr}(I_k/N)}\lambda(1)^{m-1}\leq (S_2^m(G)-1)n_1(G/N).
$$

Since $n_1(G/N) = |G/N : G'/N|$ and $n_{k,1} = n_1(I_k/N) = |I_k/N, (I_k/N)'|$, so $n_1(G/N) \leqslant |G:I_k|n_{k,1}$. In addition, $\sum_{k=1}^{k}$ λ∈Irr(*Ik*/*N*) $\lambda(1)^{m-1} \geqslant n_1(I_k/N)$. Hence, we get

that

$$
(|G:I_k|-S_2^m(G))|G:I_k|^{m-1}n_1(I_k/N)\leqslant (S_2^m(G)-1)|G:I_k|n_1(I_k/N).
$$

It then follows that

$$
S_2^m(G) \geqslant \frac{|G: I_k|^m + |G: I_k|}{|G: I_k|^{m-1} + |G: I_k|} \geqslant \frac{2^{m-1} + 1}{2^{m-2} + 1},
$$

which is a contradiction. \Box

We now prove our main theorem, which is restated.

Theorem 2.6 *Let G be a finite group. Suppose that* $S_2^m(G) < (1+2^{m-1})/(1+2^{m-2})$ *. Then*, *G has a normal Sylow* 2*-subgroup.*

Proof Suppose the theorem is false and let *G* be a counterexample of minimal order. By Lemma [2.3,](#page-2-1) *G* is solvable. Let *N* be a minimal normal subgroup of *G* contained in the derived subgroup G' of G . Then, N is elementary abelian. By Lemma [2.1,](#page-1-1) $S_2^m(G/N) \leq S_2^m(G) < (1 + 2^{m-1})/(1 + 2^{m-2})$, and by the choice of *G*, *G*/*N* has a normal Sylow 2-subgroup *R*/*N*. If *N* is a 2-group, then *R* is a normal Sylow 2 subgroup of *G*, a contradiction. Hence, *N* is a 2 -group. By the Schur–Zassenhaus theorem, $R = P \ltimes N$, where *P* is a Sylow 2-subgroup of *R*. By the Frattini argument, $G = RN_G(P) = NN_G(P)$. Clearly, $N \nsubseteq N_G(P)$. Since $N_G(P) \cap N \leq N$ and $N_G(P) \cap N \leq G = NN_G(P)$, we obtain $N_G(P) \cap N = 1$, and thus $G = N_G(P) \ltimes N$. If $N \subseteq Z(G)$, then $R = P \times N$ and $P \subseteq G$, a contradiction. Hence, $N \nsubseteq Z(G)$. Then, $[N, G] = N$. Let $\lambda \in \text{Irr}(N) - 1_N$. Assume that λ is *G*-invariant. Then by Lemma [2.4,](#page-4-0) λ has an extension *χ* to *G*. Now we have $χ_N = λ$, $N ⊂ \text{ker}(χ)$, and $λ = 1_N$, this contradiction implies that no nontrivial irreducible character of *N* is *G*-invariant. By Lemma [2.5,](#page-4-1) there is no orbit of even size in the action of *P* on *N*, that is, *P* acts trivially on *N*, hence $R = P \times N$ and $P \subseteq G$, this final contradiction completes the proof. \Box

3 Variations of Main Theorem

Recall that a character $\chi \in \text{Irr}(G)$ is real if $\chi(g) \in \mathbb{R}$ for every element $g \in G$, and $\chi \in \text{Irr}(G)$ is strongly real if χ is afforded by a real representation, or equivalently, its Frobenius–Schur indicator $v_2(\chi)$ is 1. We denote by $n_{k,+}$ the number of irreducible strongly real characters of degree *k* of *G*. We write

$$
\text{Irr}_{2,\mathbb{R}}(G) := \{ \chi \in \text{Irr}_{2}(G) \mid \chi \text{ is real} \},
$$
\n
$$
\text{S}_{2,\mathbb{R}}^{m}(G) := \sum_{\chi \in \text{Irr}_{2,\mathbb{R}}(G)} \chi(1)^{m} / \sum_{\chi \in \text{Irr}_{2,\mathbb{R}}(G)} \chi(1)^{m-1},
$$
\n
$$
\text{Irr}_{2,+}(G) := \{ \chi \in \text{Irr}_{2}(G) \mid \nu_{2}(\chi) = 1 \},
$$
\n
$$
\text{S}_{2,+}^{m}(G) := \sum_{\chi \in \text{Irr}_{2,+}(G)} \chi(1)^{m} / \sum_{\chi \in \text{Irr}_{2,+}(G)} \chi(1)^{m-1}.
$$

Similar to Lemma [2.1,](#page-1-1) we have the following observation.

Lemma 3.1 *Let N be a normal subgroup of a group G such that* $N \subseteq G'$. *If* $S_{2,+}^m(G) \le$ $2, \text{ then } \mathbb{S}_{2,+}^m(G/N) \leqslant \mathbb{S}_{2,+}^m(G).$

Proof Similar to Lemma [2.1.](#page-1-1) □

For a normal subgroup with odd index, we have the next lemma.

Lemma 3.2 *Let N be a normal subgroup of a group G with G*/*N odd order. If* $S_{2,+}^m(G) \leq 2$, then $S_{2,+}^m(N) \leq S_{2,+}^m(G)$ *.*

Proof Firstly, every strongly real linear character of *G* restricts to a strongly real linear character of *N*. Secondly, by [\[4,](#page-9-5) Lemma 2.1], every strongly real linear character of

N lies under a unique strongly real linear character of *G*. Thus, we obtain $n_{1,+}(N)$ = $n_{1,+}(G)$. In addition, from [\[4,](#page-9-5) Lemma 2.1], we also have

$$
\sum_{2|k,k\geqslant 2} n_{k,+}(G) \geqslant \sum_{2|k,k\geqslant 2} n_{k,+}(N).
$$

Denote by $V = S^m_{2,+}(G)$. Then

$$
V = \frac{n_{1,+}(G) + \sum_{2|k} k^m n_{k,+}(G)}{n_{1,+}(G) + \sum_{2|k} k^{m-1} n_{k,+}(G)},
$$

and we obtain

$$
(V-1)n_{1,+}(G) = \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(G).
$$

It then follows that

$$
(V-1)n_{1,+}(N) = \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(G) \ge \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(N),
$$

which is equivalent to $S_{2,+}^m(N) \leq V = S_{2,+}^m(G)$, the proof is complete.

Now we give a variation of Main theorem for strongly real character.

Theorem 3.3 *Let G be a finite group. Suppose that* $S_{2,+}^{m}(G) < (1+2^{m-1})/(1+2^{m-2})$ *. Then*, *G has a normal Sylow* 2−*subgroup.*

Proof Suppose that the theorem is not true, and let *G* be a counterexample of minimal order. Let *N* be a minimal normal subgroup of *G* contained in *G* . Observe that

$$
\sum_{\substack{\chi \in \text{Irr}_{2,+}(G) \\ |\text{Irr}_{2,+}(G)|}} \chi(1) \leq n_{1,+}(G) + \sum_{2|k} k^{2} n_{k,+}(G)
$$
\n
$$
\leq \cdots
$$
\n
$$
n_{1,+}(G) + \sum_{2|k} k n_{k,+}(G)
$$
\n
$$
\leq \cdots
$$
\n
$$
n_{1,+}(G) + \sum_{2|k} k^{m} n_{k,+}(G)
$$
\n
$$
\leq \frac{n_{1,+}(G) + \sum_{2|k} k^{m-1} n_{k,+}(G)}{n_{1,+}(G) + \sum_{2|k} k^{m-1} n_{k,+}(G)}
$$
\n
$$
= S_{2,+}^{m}(G)
$$
\n
$$
< \frac{1+2^{m-1}}{1+2^{m-2}} < 2,
$$

² Springer

by [\[1](#page-9-2), Theorem 5.1] and Lemma [3.1,](#page-6-1) we know that *G* is solvable, *N* is an elementary abelian group with odd order, G/N has a normal Sylow 2-subgroup R/N , and $G =$ $R = P \ltimes N$, where $P \in \text{Syl}_2(G)$.

From the proof of [\[6,](#page-9-3) Theorem 5.1], we have that $n_{1,+}(G) \le |N| - 1 \le \chi_1(1) +$ $\cdots + \chi_s(1)$, where χ_1, \cdots, χ_s are the strongly real irreducible characters of *G*. Now

$$
\frac{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^m n_{\chi_i(1),+}}{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^m}
$$
\n
$$
\geq \frac{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^m}{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^{m-1}}
$$
\n
$$
\geq \frac{n_{1,+}(G) + 2^{m-1} \sum_{i=1}^{s} \chi_i(1)}{n_{1,+}(G) + 2^{m-2} \sum_{i=1}^{s} \chi_i(1)}
$$
\n
$$
\geq \frac{n_{1,+}(G) + 2^{m-1} n_{1,+}(G)}{n_{1,+}(G) + 2^{m-2} n_{1,+}(G)}
$$
\n
$$
= \frac{1 + 2^{m-1}}{1 + 2^{m-2}}.
$$

Then for any $\chi \in \text{Irr}_{2,+}(G)$ with $\chi(1) \geq 2 \geq (1 + 2^{m-1})/(1 + 2^{m-2})$, we have

$$
S_{2,+}^{m}(G) = \frac{\sum\limits_{\chi \in \text{Irr}_{2,+}(G)} \chi(1)^{m}}{\sum\limits_{\chi \in \text{Irr}_{2,+}(G)} \chi(1)^{m-1}} \geq \frac{1+2^{m-1}}{1+2^{m-2}},
$$

and this contradiction completes the proof.

Note that for any $\chi \in \text{Irr}_{2,\mathbb{R}}(G) - \text{Irr}_{2,+}(G)$, we have $\chi(1) \geq 2$. If $S^{m}_{2,+}(G) \leq 2$, then we have

$$
\frac{\sum\limits_{\chi \in \operatorname{Irr}_{2,+}(G)} \chi(1)^m}{\sum\limits_{\chi \in \operatorname{Irr}_{2,+}(G)} \chi(1)^{m-1}} \leq \frac{\sum\limits_{\chi \in \operatorname{Irr}_{2,\mathbb{R}}(G)} \chi(1)^m - \sum\limits_{\chi \in \operatorname{Irr}_{2,+}(G)} \chi(1)^m}{\sum\limits_{\chi \in \operatorname{Irr}_{2,\mathbb{R}}(G)} \chi(1)^{m-1} - \sum\limits_{\chi \in \operatorname{Irr}_{2,+}(G)} \chi(1)^{m-1}}.
$$

Therefore, we obtain the following corollary, which is a variation of Main theorem for real characters.

Corollary 3.4 *Let G be a finite group with* $S_{2,\mathbb{R}}^{m}(G) < (1 + 2^{m-1})/(1 + 2^{m-2})$ *. Then, G has a normal Sylow* 2−*subgroup.*

Declarations

Conflict of interest All authors disclosed no relevant relationships.

References

- 1. Hung, N.N., Tiep, P.H.: Irreducible characters of even degree and normal Sylow 2-subgroups. Math. Proc. Camb. Philos. Soc. **162**, 353–365 (2017)
- 2. Isaacs, I.M.: Character Theory of Finite Groups. Academic Press, New York (1976)
- 3. Ito, N.: Somes studies on group characters. Nagoya Math. J. **2**, 17–28 (1951)
- 4. Marinelli, S., Tiep, P.H.: Zeros of real irreducible characters of finite groups. Algebra Number Theory **3**, 567–593 (2013)
- 5. Michler, G.O.: Brauer's conjectures and the classification of finite simple groups. Lect. Notes Math. **1178**, 129–142 (1986)
- 6. Pan, H.F., Hung, N.N., Dong, S.Q.: Even character degrees and normal Sylow 2-subgroups. J. Group Theory **24**, 195–205 (2021)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.