

Even Character Degrees and Ito-Michler Theorem

Shuqin Dong¹ · Hongfei Pan¹

Received: 28 December 2022 / Revised: 5 June 2023 / Accepted: 28 June 2023 © School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Let $\operatorname{Irr}_2(G)$ be the set of linear and even-degree irreducible characters of a finite group *G*. In this paper, we prove that *G* has a normal Sylow 2-subgroup if $\sum_{\chi \in \operatorname{Irr}_2(G)} \chi(1)^m / \sum_{\chi \in \operatorname{Irr}_2(G)} \chi(1)^{m-1} < (1+2^{m-1})/(1+2^{m-2})$ for a positive integer *m*, which is the generalization of several recent results concerning the well-known Ito-Michler theorem.

Keywords Character degrees · Sylow subgroups

Mathematics Subject Classification 20C15

1 Introduction

For a finite group G, let Irr(G) be the set of all complex irreducible characters of G. We write

$$Irr_2(G) := \{ \chi \in Irr(G) \mid \chi(1) = 1 \text{ or } 2 \mid \chi(1) \}$$

and

$$S_2^m(G) := \sum_{\chi \in Irr_2(G)} \chi(1)^m / \sum_{\chi \in Irr_2(G)} \chi(1)^{m-1},$$

The first author was supported by NSF of China (Nos. 12201236, 12271200), and the second author by NSF of China (No. 12061011).

 ☑ Hongfei Pan hfpanha@163.com
 Shuqin Dong

dsq83@163.com

School of Mathematics and Statistics, Huaiyin Normal University, Huaian 223300, Jiangsu, People's Republic of China

where *m* is a positive integer. Ito–Michler theorem [3, 5] states that if a prime *p* does not divide the degree of every irreducible character of a finite group *G*, then *G* has a normal abelian Sylow *p*-subgroup. For the prime p = 2, the $S_2^m(G)$ -version of the Ito–Michler theorem asserts that if $S_2^m(G) = 1$, then *G* has a normal abelian Sylow 2-subgroup. In this paper, we improve this for p = 2.

Main theorem. Let G inite group with $S_2^m(G) < (1 + 2^{m-1})/(1 + 2^{m-2})$. Then, G has a normal Sylow 2-subgroup.

We note that $(1 + 2^{m-1})/(1 + 2^{m-2})$ is the exactly value of $S_2^m(G)$ with $G = S_3$, the symmetric group of degree 3, and S_3 does not have a normal Sylow 2-subgroup. For *G*, the nonabelian group of order 8 or the alternating group A_4 of degree 4, the value of $S_2^m(G)$ respectively is $(1 + 2^{m-2})/(1 + 2^{m-3})$ and 1, which are both less than $S_2^m(S_3)$, indeed *G* has a normal Sylow 2-subgroup.

For m = 1, 2, we obtain the following corollary.

Corollary 1.1 Let G be a finite group. If $S_2^1(G) < 4/3$ or $S_2^2(G) < 3/2$, then G has a normal Sylow 2-subgroup.

Proof See [1, Theorem 1.1] and [6, Theorem A].

In the following of this paper, we prove the Main theorem in Sect. 2, and discuss other variations of the Main theorem in Sect. 3.

2 Proof of Main Theorem

We denote by $n_k(G)$ the number of irreducible complex characters of degree k of G. If N is a normal subgroup of G and $\theta \in \text{Irr}(N)$, then $\text{Irr}(G|\theta)$ denotes the set of irreducible characters of G that lie over θ . We write $I_G(\theta)$ to denote the inertia subgroup of θ in G. For an M-invariant subgroup N, we write $M \ltimes N$ to denote a semidirect of M and N.

The first lemma is the following observation.

Lemma 2.1 Let N be a normal subgroup of a group G contained in the derived subgroup G' of G. If $S_2^m(G) \leq 2$, then $S_2^m(G/N) \leq S_2^m(G)$.

Proof We write $R = S_2^m(G)$. Then, $1 \le R \le 2$ and

$$R = \frac{n_1(G) + \sum_{2|k} k^m n_k(G)}{n_1(G) + \sum_{2|k} k^{m-1} n_k(G)}.$$

It follows that

$$\sum_{2|k} (k-R)k^{m-1}n_k(G) = (R-1)n_1(G).$$

D Springer

Since $Irr(G/N) \subseteq Irr(G)$ and $N \subseteq G'$, we have

$$\sum_{2|k} (k-R)k^{m-1}n_k(G/N) \leq \sum_{2|k} (k-R)k^{m-1}n_k(G)$$

and $n_1(G) = n_1(G/N)$. Hence $\sum_{2|k} (k-R)k^{m-1}n_k(G/N) \leq (R-1)n_1(G/N)$, which is equivalent to $S_2^m(G/N) \leq R = S_2^m(G)$.

Lemma 2.2 For a normal subgroup N of G, let $\chi \in Irr(G) - Irr(G/N)$ with degree 2. If $G/\ker(\chi)$ is nonsolvable, then χ is a primitive character of $G/\ker(\chi)$.

Proof We write $\overline{G} = G/\ker(\chi)$, and suppose that χ is not a primitive character of \overline{G} . Then, there is a proper subgroup \overline{H} of \overline{G} and some character ϕ of \overline{H} such that $\chi = \phi^{\overline{G}}$. It follows that $2 = \chi(1) = |\overline{G} : \overline{H}|\phi(1), |\overline{G} : \overline{H}| = 2$ and $\phi(1) = 1$. Hence, \overline{H} is normal in \overline{G} and all the irreducible constituents of $\chi_{\overline{H}}$ are linear. Then, $[\overline{H}, \overline{H}] \leq \ker(\chi) = 1$, and \overline{H} is abelian. So \overline{G} is solvable, a contradiction.

The following lemma implies that G in our main theorem is solvable.

Lemma 2.3 Let G be a finite group with $S_2^m(G) < (1 + 4^m)/(1 + 4^{m-1})$. Then, G is solvable.

Proof Suppose that *G* is nonsolvable and let *G* be a counterexample of minimal order. Let *A* be a minimal nonsolvable normal subgroup of *G*, and let *N* be a minimal normal subgroup of *G* contained in *A*. Then, $N \subseteq A = A' \subseteq G'$. If in addition $[A, \operatorname{Rad}(A)] > 1$, then we can choose $N \subseteq [A, \operatorname{Rad}(A)]$, where $\operatorname{Rad}(A)$ is the solvable radical (i.e., the unique largest solvable normal subgroup) of *A*. We now discuss the following two cases: *N* is abelian or not.

(1). N is abelian.

Then, G/N is nonsolvable. Since |G/N| < |G|, we have $S_2^m(G) < (1+4^m)/(1+4^{m-1}) \leq S_2^m(G/N)$. Hence, we obtain

$$\sum_{2|k,k \ge 4} (k-1+4^{m-1}k-4^m)k^{m-1}n_k(G) < 3 \cdot 4^{m-1}n_1(G) + 2^{m-1}(2 \cdot 4^{m-1}-1)n_2(G)$$

and

$$3 \cdot 4^{m-1} n_1(G/N) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2(G/N)$$

$$\leq \sum_{2|k,k \ge 4} (k - 1 + 4^{m-1}k - 4^m) k^{m-1} n_k(G/N).$$

Since $n_1(G/N) = n_1(G)$ and $n_k(G/N) \le n_k(G)$ for $k \ge 2$, we obtain $n_2(G/N) < n_2(G)$. Now there is $\chi \in Irr(G) - Irr(G/N)$ such that $\chi(1) = 2$. Since $N \nsubseteq ker(\chi)$, we know that $Aker(\chi)/ker(\chi)$ is a nontrivial subgroup of $G/ker(\chi)$, and thus $G/ker(\chi)$

🖄 Springer

is nonsolvable. Now by Lemma 2.2, we know that $G/\ker(\chi)$ is a nonsolvable primitive linear group of degree 2. Write $C/\ker(\chi) = Z(G/\ker(\chi))$. According to the proof in [6, Theorem 3.1], we know that G = AC is a central product, $G/C \cong A_5$, $N = A \cap C \cong \mathbb{Z}_2$, $A \cong SL(2, 5)$, $n_1(G) = n_1(C/N)$, $n_2(G) = n_2(C/N) + 2n_1(G)$, $n_4(G) \ge 2n_1(G)$, and $n_6(G) \ge n_1(G) + 2n_2(C/N)$. Now

$$\begin{split} &\sum_{2|k,k \geqslant 4} (k-1+4^{m-1}k-4^m)k^{m-1}n_k(G) \\ &\geqslant 3\cdot 4^{m-1}n_4(G) + (5+2\cdot 4^{m-1})\cdot 6^{m-1}n_6(G) \\ &\geqslant 6\cdot 4^{m-1}n_1(G) + (5+2\cdot 4^{m-1})6^{m-1}\cdot (n_1(G)+2n_2(C/N)) \\ &= (6\cdot 4^{m-1}+5\cdot 6^{m-1}+2\cdot 24^{m-1})n_1(G) + (10+4^m)6^{m-1}n_2(C/N) \\ &= (6\cdot 4^{m-1}+5\cdot 6^{m-1}+2\cdot 24^{m-1})n_1(G) + (10+4^m)6^{m-1}n_2(G) \\ &= (6\cdot 4^{m-1}-15\cdot 6^{m-1}-6\cdot 24^{m-1})n_1(G) + [(10+4^m)6^{m-1} n_2(G) \\ &= (6\cdot 4^{m-1}-15\cdot 6^{m-1}-6\cdot 24^{m-1})n_1(G) + [(10+4^m)6^{m-1} - 2^{m-1}(2\cdot 4^{m-1}-1)]n_2(G) + 2^{m-1}(2\cdot 4^{m-1}-1)n_2(G) \\ &\geqslant (6\cdot 4^{m-1}-15\cdot 6^{m-1}-6\cdot 24^{m-1})n_1(G) + 2[(10+4^m)6^{m-1} - 2^{m-1}(2\cdot 4^{m-1}-1)]n_1(G) + 2^{m-1}(2\cdot 4^{m-1}-1)n_2(G) \\ &= (5\cdot 6^{m-1}+2\cdot 24^{m-1}+6\cdot 4^{m-1}-4\cdot 8^{m-1}+2^m)n_1(G) \\ &+ 2^{m-1}(2\cdot 4^{m-1}-1)n_2(G) \\ &\geqslant 3\cdot 4^{m-1}n_1(G) + 2^{m-1}(2\cdot 4^{m-1}-1)n_2(G). \end{split}$$

Hence, $S_2^m(G) \ge (1 + 4^m)/(1 + 4^{m-1})$, a contradiction. (2). *N* is not abelian.

Assume that $N \ncong A_5$. By [1, Theorem 2.2], there exists $\phi \in Irr(N)$ of even degree such that $\phi(1) \ge 8$ and ϕ is extendible to $I := I_G(\phi)$. By [1, Proposition 2.3], we have $n_1(G) \le n_d(G)|G : I|$ and $n_2(G) \le n_{2d}(G)|G : I| + \frac{1}{2}n_d(G)|G : I|$, where $d = \phi(1)|G : I| \ge 8|G : I|$. Now

$$\begin{split} 3\cdot 4^{m-1}n_1(G) &+ 2^{m-1}(2\cdot 4^{m-1}-1)n_2(G) \\ &\leqslant 3\cdot 4^{m-1}n_d(G)|G:I| + 2^{m-1}(2\cdot 4^{m-1}-1)n_{2d}(G)|G:I| \\ &+ 2^{m-2}(2\cdot 4^{m-1}-1)n_d(G)|G:I| \\ &= (3\cdot 4^{m-1}+8^{m-1}-2^{m-2})n_d(G)|G:I| + 2^{m-1}(2\cdot 4^{m-1}-1)n_{2d}(G)|G:I| \\ &\leqslant (3\cdot 4^{m-1}+8^{m-1}-2^{m-2})n_d(G)\frac{d}{8} + 2^{m-1}(2\cdot 4^{m-1}-1)n_{2d}(G)\frac{d}{8} \\ &= \left(\frac{3}{2}\cdot 4^{m-2}+8^{m-2}-2^{m-5}\right)dn_d(G) + 2^{m-4}(2\cdot 4^{m-1}-1)dn_{2d}(G) \\ &\leqslant (d-1+4^{m-1}\cdot d-4^m)d^{m-1}n_d(G) + (2d-1+4^{m-1}\cdot 2d-4^m)(2d)^{m-1}n_{2d}(G) \\ &\leqslant \sum_{2|k,k| \ge 4} (k-1+4^{m-1}k-4^m)k^{m-1}n_k(G), \end{split}$$

Springer

so we have $S_2^m(G) \ge (1+4^m)/(1+4^{m-1})$, a contradiction.

Assume that $N \cong A_5$. Since the irreducible character of N of degree 4 is extendible to G, by [1, Proposition 2.3] again, we have $n_1(G) \leq n_4(G)$ and $n_2(G) \leq n_8(G)$. Now

$$\begin{aligned} 3 \cdot 4^{m-1} n_1(G) &+ 2^{m-1} (2 \cdot 4^{m-1} - 1) n_2(G) \\ &\leqslant 3 \cdot 4^{m-1} n_4(G) + 2^{m-1} (2 \cdot 4^{m-1} - 1) n_8(G) \\ &\leqslant 3 \cdot 4^{m-1} n_4(G) + (7 + 4^m) 8^{m-1} n_8(G) \\ &\leqslant \sum_{2|k,k \geqslant 4} (k - 1 + 4^{m-1}k - 4^m) k^{m-1} n_k(G), \end{aligned}$$

and thus $S_2^m(G) \ge (1+4^m)/(1+4^{m-1})$. This contradiction completes the proof. \Box

Lemma 2.4 Let $G = M \ltimes N$. If λ is a G-invariant linear character of N, then λ is extendible to G.

Proof Clearly, we may assume that $\ker(\lambda) = 1$. Then, N is cyclic. Let $\chi \in \operatorname{Irr}(\lambda^G)$, then $\chi_N = \chi(1)\lambda$. Hence, $N \subseteq Z(\chi) = \{g \in G | |\chi(g)| = \chi(1)\}$ and $N\ker(\chi)/\ker(\chi) \subseteq Z(\chi)/\ker(\chi) = Z(G/\ker(\chi))$. Then, $[G, N] \subseteq \ker(\chi)$. It follows that $[G, N] \subseteq N \cap \ker(\chi) = \ker(\lambda) = 1$. Hence, $N \subseteq Z(G)$. Now $G = M \times N$. Let $\psi = 1_m \times \lambda$. Then, $\psi \in \operatorname{Irr}(G)$ and $\psi_N = \lambda$. So λ is extendible to G.

The following lemma is important in the proof of our Main theorem.

Lemma 2.5 Let $G = M \ltimes N$, where $N \leq G'$ is an abelian group. Assume that no nontrivial irreducible character of N is invariant under M. If $S_2^m(G) < (1 + 2^{m-1})/(1 + 2^{m-2})$, then there is no orbit of even size in the action of M on the set of irreducible characters of N.

Proof Let $\{\theta_0 = 1_N, \theta_1, \dots, \theta_t\}$ be a set of representatives of *M*-orbits on Irr(*N*). Let $I_i = I_G(\theta_i)$ for $i \in [1, t]$. By hypothesis, we have $I_i < G$ for $i \ge 1$. Suppose that there is some orbit of even size in the action of *M* on Irr(*N*). Then, we can find an integer *k* such that $2 \mid |G : I_k|$. For $0 \le i \le t$, we set $n_{i,1} = n_1(I_i/N)$ and $T_{i,m} = \sum_{\lambda \in Irr(I_i/N), 2|\lambda(1)} \lambda(1)^m$.

By Lemma 2.4, every θ_i has an extension ψ to I_i . By Gallagher theorem [2, Corollary 6.17], we have bijections $\lambda \mapsto \lambda \psi_i$ from $\operatorname{Irr}(I_i/N)$ to $\operatorname{Irr}(I_i|\theta_i)$. By Clifford correspondence, we have a bijections $\lambda \psi_i \mapsto (\lambda \psi_i)^G$ from $\operatorname{Irr}(I_i|\theta_i)$ to $\operatorname{Irr}(G|\theta_i)$. Observe that $(\lambda \theta_i)^G(1) = |G : I_i| \lambda(1)$ is even if and only if $|G : I_i|$ is even or $|G : I_i|$ is odd and $\lambda(1)$ is even. Then,

$$\sum_{\chi \in \operatorname{Irr}_2(G)} \chi(1)^{m-1} = n_1(G/N) + \sum_{2||G:I_i|} |G:I_i|^{m-1} \sum_{\lambda \in \operatorname{Irr}(I_i/N)} \lambda(1)^{m-1} + \sum_{2 \nmid |G:I_i|} |G:I_i|^{m-1} \operatorname{T}_{i,m-1}$$

Deringer

and

$$\begin{split} \sum_{\chi \in \operatorname{Irr}_2(G)} \chi(1)^m &= n_1(G/N) + \sum_{2||G:I_i|} |G:I_i|^m \sum_{\lambda \in \operatorname{Irr}(I_i/N)} \lambda(1)^m + \sum_{2 \nmid |G:I_i|} |G:I_i|^m \operatorname{T}_{i,m} \\ &\geqslant n_1(G/N) + \sum_{2||G:I_i|} |G:I_i|^m \sum_{\lambda \in \operatorname{Irr}(I_i/N)} \lambda(1)^{m-1} + \sum_{2 \nmid |G:I_i|} |G:I_i|^m \operatorname{T}_{i,m-1}. \end{split}$$

From
$$\sum_{\chi \in Irr_2(G)} \chi(1)^m = S_2^m(G) \sum_{\chi \in Irr_2(G)} \chi(1)^{m-1}$$
, we have
 $S_2^m(G)(n_1(G/N) + \sum_{2||G:I_i|} |G:I_i|^{m-1} \sum_{\lambda \in Irr(I_i/N)} \lambda(1)^{m-1} + \sum_{2\nmid |G:I_i|} |G:I_i|^{m-1} T_{i,m-1})$
 $\ge n_1(G/N) + \sum_{2\mid |G:I_i|} |G:I_i|^m \sum_{\lambda \in Irr(I_i/N)} \lambda(1)^{m-1} + \sum_{2\nmid |G:I_i|} |G:I_i|^m T_{i,m-1}.$

Then,

$$\begin{split} &\sum_{2||G:I_i|} (|G:I_i| - \mathbf{S}_2^m(G))|G:I_i|^{m-1} \sum_{\lambda \in \operatorname{Irr}(I_i/N)} \lambda(1)^{m-1} \\ &+ \sum_{2 \nmid |G:I_i|} (|G:I_i| - \mathbf{S}_2^m(G))|G:I_i|^{m-1} \mathbf{T}_{i,m-1} \\ &\leqslant (\mathbf{S}_2^m(G) - 1)n_1(G/N). \end{split}$$

In particular, for k, we obtain

$$(|G:I_k| - \mathbf{S}_2^m(G))|G:I_k|^{m-1} \sum_{\lambda \in \operatorname{Irr}(I_k/N)} \lambda(1)^{m-1} \leq (\mathbf{S}_2^m(G) - 1)n_1(G/N).$$

Since $n_1(G/N) = |G/N : G'/N|$ and $n_{k,1} = n_1(I_k/N) = |I_k/N, (I_k/N)'|$, so $n_1(G/N) \leq |G : I_k|n_{k,1}$. In addition, $\sum_{\lambda \in \operatorname{Irr}(I_k/N)} \lambda(1)^{m-1} \geq n_1(I_k/N)$. Hence, we get that

that

$$(|G:I_k| - \mathbf{S}_2^m(G))|G:I_k|^{m-1}n_1(I_k/N) \leq (\mathbf{S}_2^m(G) - 1)|G:I_k|n_1(I_k/N).$$

It then follows that

$$S_2^m(G) \ge \frac{|G:I_k|^m + |G:I_k|}{|G:I_k|^{m-1} + |G:I_k|} \ge \frac{2^{m-1} + 1}{2^{m-2} + 1},$$

which is a contradiction.

We now prove our main theorem, which is restated.

Theorem 2.6 Let G be a finite group. Suppose that $S_2^m(G) < (1+2^{m-1})/(1+2^{m-2})$. Then, G has a normal Sylow 2-subgroup.

🖄 Springer

Proof Suppose the theorem is false and let G be a counterexample of minimal order. By Lemma 2.3, G is solvable. Let N be a minimal normal subgroup of G contained in the derived subgroup G' of G. Then, N is elementary abelian. By Lemma 2.1, $S_2^m(G/N) \leq S_2^m(G) < (1+2^{m-1})/(1+2^{m-2})$, and by the choice of G, G/N has a normal Sylow 2-subgroup R/N. If N is a 2-group, then R is a normal Sylow 2subgroup of G, a contradiction. Hence, N is a 2'-group. By the Schur–Zassenhaus theorem, $R = P \ltimes N$, where P is a Sylow 2-subgroup of R. By the Frattini argument, $G = RN_G(P) = NN_G(P)$. Clearly, $N \not\subseteq N_G(P)$. Since $N_G(P) \cap N < N$ and $N_G(P) \cap N \trianglelefteq G = NN_G(P)$, we obtain $N_G(P) \cap N = 1$, and thus $G = N_G(P) \ltimes N$. If $N \subseteq Z(G)$, then $R = P \times N$ and $P \trianglelefteq G$, a contradiction. Hence, $N \not\subseteq Z(G)$. Then, [N, G] = N. Let $\lambda \in Irr(N) - 1_N$. Assume that λ is G-invariant. Then by Lemma 2.4, λ has an extension χ to G. Now we have $\chi_N = \lambda$, $N \subseteq \ker(\chi)$, and $\lambda = 1_N$, this contradiction implies that no nontrivial irreducible character of N is G-invariant. By Lemma 2.5, there is no orbit of even size in the action of P on N, that is, P acts trivially on N, hence $R = P \times N$ and $P \leq G$, this final contradiction completes the proof. П

3 Variations of Main Theorem

Recall that a character $\chi \in Irr(G)$ is real if $\chi(g) \in \mathbb{R}$ for every element $g \in G$, and $\chi \in Irr(G)$ is strongly real if χ is afforded by a real representation, or equivalently, its Frobenius–Schur indicator $v_2(\chi)$ is 1. We denote by $n_{k,+}$ the number of irreducible strongly real characters of degree k of G. We write

$$Irr_{2,\mathbb{R}}(G) := \{ \chi \in Irr_{2}(G) \mid \chi \text{ is real} \},\$$

$$S_{2,\mathbb{R}}^{m}(G) := \sum_{\chi \in Irr_{2,\mathbb{R}}(G)} \chi(1)^{m} / \sum_{\chi \in Irr_{2,\mathbb{R}}(G)} \chi(1)^{m-1},\$$

$$Irr_{2,+}(G) := \{ \chi \in Irr_{2}(G) \mid v_{2}(\chi) = 1 \},\$$

$$S_{2,+}^{m}(G) := \sum_{\chi \in Irr_{2,+}(G)} \chi(1)^{m} / \sum_{\chi \in Irr_{2,+}(G)} \chi(1)^{m-1}.$$

Similar to Lemma 2.1, we have the following observation.

Lemma 3.1 Let N be a normal subgroup of a group G such that $N \subseteq G'$. If $S_{2,+}^m(G) \leq 2$, then $S_{2,+}^m(G/N) \leq S_{2,+}^m(G)$.

Proof Similar to Lemma 2.1.

For a normal subgroup with odd index, we have the next lemma.

Lemma 3.2 Let N be a normal subgroup of a group G with G/N odd order. If $S_{2,+}^m(G) \leq 2$, then $S_{2,+}^m(N) \leq S_{2,+}^m(G)$.

Proof Firstly, every strongly real linear character of *G* restricts to a strongly real linear character of *N*. Secondly, by [4, Lemma 2.1], every strongly real linear character of

N lies under a unique strongly real linear character of *G*. Thus, we obtain $n_{1,+}(N) = n_{1,+}(G)$. In addition, from [4, Lemma 2.1], we also have

$$\sum_{2|k,k\geqslant 2} n_{k,+}(G) \geqslant \sum_{2|k,k\geqslant 2} n_{k,+}(N).$$

Denote by $V = S_{2,+}^m(G)$. Then

$$V = \frac{n_{1,+}(G) + \sum_{2|k} k^m n_{k,+}(G)}{n_{1,+}(G) + \sum_{2|k} k^{m-1} n_{k,+}(G)},$$

and we obtain

$$(V-1)n_{1,+}(G) = \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(G).$$

It then follows that

$$(V-1)n_{1,+}(N) = \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(G) \ge \sum_{2|k} (k^m - Vk^{m-1})n_{k,+}(N),$$

which is equivalent to $S_{2,+}^m(N) \leq V = S_{2,+}^m(G)$, the proof is complete.

Now we give a variation of Main theorem for strongly real character.

Theorem 3.3 Let G be a finite group. Suppose that $S_{2,+}^m(G) < (1+2^{m-1})/(1+2^{m-2})$. Then, G has a normal Sylow 2-subgroup.

Proof Suppose that the theorem is not true, and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G contained in G'. Observe that

$$\frac{\sum\limits_{\chi \in \operatorname{Irr}_{2,+}(G)} \chi(1)}{|\operatorname{Irr}_{2,+}(G)|} \leqslant \frac{n_{1,+}(G) + \sum\limits_{2|k} k^2 n_{k,+}(G)}{n_{1,+}(G) + \sum\limits_{2|k} k n_{k,+}(G)}$$
$$\leqslant \cdots$$
$$\leqslant \frac{n_{1,+}(G) + \sum\limits_{2|k} k^m n_{k,+}(G)}{n_{1,+}(G) + \sum\limits_{2|k} k^{m-1} n_{k,+}(G)}$$
$$= S_{2,+}^m(G)$$
$$< \frac{1 + 2^{m-1}}{1 + 2^{m-2}} < 2,$$

Deringer

by [1, Theorem 5.1] and Lemma 3.1, we know that *G* is solvable, *N* is an elementary abelian group with odd order, G/N has a normal Sylow 2-subgroup R/N, and $G = R = P \ltimes N$, where $P \in Syl_2(G)$.

From the proof of [6, Theorem 5.1], we have that $n_{1,+}(G) \leq |N| - 1 \leq \chi_1(1) + \cdots + \chi_s(1)$, where χ_1, \cdots, χ_s are the strongly real irreducible characters of *G*. Now

$$\frac{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^m n_{\chi_i(1),+}}{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^{m-1} n_{\chi_i(1),+}} \ge \frac{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^{m-1}}{n_{1,+}(G) + \sum_{i=1}^{s} \chi_i(1)^{m-1}}$$
$$\ge \frac{n_{1,+}(G) + 2^{m-1} \sum_{i=1}^{s} \chi_i(1)}{n_{1,+}(G) + 2^{m-2} \sum_{i=1}^{s} \chi_i(1)}$$
$$\ge \frac{n_{1,+}(G) + 2^{m-1} n_{1,+}(G)}{n_{1,+}(G) + 2^{m-2} n_{1,+}(G)}$$
$$= \frac{1 + 2^{m-1}}{1 + 2^{m-2}}.$$

Then for any $\chi \in \operatorname{Irr}_{2,+}(G)$ with $\chi(1) \ge 2 \ge (1+2^{m-1})/(1+2^{m-2})$, we have

$$\mathbf{S}_{2,+}^{m}(G) = \frac{\sum\limits_{\chi \in \mathrm{Irr}_{2,+}(G)} \chi(1)^{m}}{\sum\limits_{\chi \in \mathrm{Irr}_{2,+}(G)} \chi(1)^{m-1}} \ge \frac{1+2^{m-1}}{1+2^{m-2}},$$

and this contradiction completes the proof.

Note that for any $\chi \in Irr_{2,\mathbb{R}}(G) - Irr_{2,+}(G)$, we have $\chi(1) \ge 2$. If $S_{2,+}^m(G) \le 2$, then we have

$$\frac{\sum_{\chi \in Irr_{2,+}(G)} \chi(1)^m}{\sum_{\chi \in Irr_{2,+}(G)} \chi(1)^{m-1}} \leqslant \frac{\sum_{\chi \in Irr_{2,\mathbb{R}}(G)} \chi(1)^m - \sum_{\chi \in Irr_{2,+}(G)} \chi(1)^m}{\sum_{\chi \in Irr_{2,\mathbb{R}}(G)} \chi(1)^{m-1} - \sum_{\chi \in Irr_{2,+}(G)} \chi(1)^{m-1}}.$$

Therefore, we obtain the following corollary, which is a variation of Main theorem for real characters.

Corollary 3.4 Let G be a finite group with $S_{2,\mathbb{R}}^m(G) < (1+2^{m-1})/(1+2^{m-2})$. Then, G has a normal Sylow 2-subgroup.

Declarations

Conflict of interest All authors disclosed no relevant relationships.

References

- 1. Hung, N.N., Tiep, P.H.: Irreducible characters of even degree and normal Sylow 2-subgroups. Math. Proc. Camb. Philos. Soc. **162**, 353–365 (2017)
- 2. Isaacs, I.M.: Character Theory of Finite Groups. Academic Press, New York (1976)
- 3. Ito, N.: Somes studies on group characters. Nagoya Math. J. 2, 17–28 (1951)
- 4. Marinelli, S., Tiep, P.H.: Zeros of real irreducible characters of finite groups. Algebra Number Theory **3**, 567–593 (2013)
- Michler, G.O.: Brauer's conjectures and the classification of finite simple groups. Lect. Notes Math. 1178, 129–142 (1986)
- Pan, H.F., Hung, N.N., Dong, S.Q.: Even character degrees and normal Sylow 2-subgroups. J. Group Theory 24, 195–205 (2021)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.