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Abstract
Let Irr2(G) be the set of linear and even-degree irreducible characters of a finite
group G. In this paper, we prove that G has a normal Sylow 2-subgroup if∑

χ∈Irr2(G)

χ(1)m/
∑

χ∈Irr2(G)

χ(1)m−1 < (1 + 2m−1)/(1 + 2m−2) for a positive integer

m, which is the generalization of several recent results concerning the well-known
Ito–Michler theorem.
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1 Introduction

For a finite group G, let Irr(G) be the set of all complex irreducible characters of G.
We write

Irr2(G) := {χ ∈ Irr(G) | χ(1) = 1 or 2 | χ(1)}
and

Sm2 (G) :=
∑

χ∈Irr2(G)

χ(1)m/
∑

χ∈Irr2(G)

χ(1)m−1,
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where m is a positive integer. Ito–Michler theorem [3, 5] states that if a prime p does
not divide the degree of every irreducible character of a finite group G, then G has
a normal abelian Sylow p-subgroup. For the prime p = 2, the Sm2 (G)-version of the
Ito–Michler theorem asserts that if Sm2 (G) = 1, then G has a normal abelian Sylow
2-subgroup. In this paper, we improve this for p = 2.
Main theorem. Let G inite group with Sm2 (G) < (1 + 2m−1)/(1 + 2m−2). Then, G
has a normal Sylow 2-subgroup.

We note that (1 + 2m−1)/(1 + 2m−2) is the exactly value of Sm2 (G) with G = S3,
the symmetric group of degree 3, and S3 does not have a normal Sylow 2-subgroup.
For G, the nonabelian group of order 8 or the alternating group A4 of degree 4, the
value of Sm2 (G) respectively is (1+2m−2)/(1+2m−3) and 1, which are both less than
Sm2 (S3), indeed G has a normal Sylow 2-subgroup.

For m = 1, 2, we obtain the following corollary.

Corollary 1.1 Let G be a finite group. If S12(G) < 4/3 or S22(G) < 3/2, then G has a
normal Sylow 2-subgroup.

Proof See [1, Theorem 1.1] and [6, Theorem A]. ��

In the following of this paper, we prove the Main theorem in Sect. 2, and discuss
other variations of the Main theorem in Sect. 3.

2 Proof of Main Theorem

We denote by nk(G) the number of irreducible complex characters of degree k of
G. If N is a normal subgroup of G and θ ∈ Irr(N ), then Irr(G|θ) denotes the set
of irreducible characters of G that lie over θ . We write IG(θ) to denote the inertia
subgroup of θ in G. For an M-invariant subgroup N , we write M � N to denote a
semidirect of M and N .

The first lemma is the following observation.

Lemma 2.1 Let N be a normal subgroup of a group G contained in the derived
subgroup G ′ of G. If Sm2 (G) � 2, then Sm2 (G/N ) � Sm2 (G).

Proof We write R = Sm2 (G). Then, 1 � R � 2 and

R =
n1(G) + ∑

2|k
kmnk(G)

n1(G) + ∑

2|k
km−1nk(G)

.

It follows that

∑

2|k
(k − R)km−1nk(G) = (R − 1)n1(G).
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Since Irr(G/N ) ⊆ Irr(G) and N ⊆ G ′, we have
∑

2|k
(k − R)km−1nk(G/N ) �

∑

2|k
(k − R)km−1nk(G)

and n1(G) = n1(G/N ). Hence
∑

2|k
(k − R)km−1nk(G/N ) � (R− 1)n1(G/N ), which

is equivalent to Sm2 (G/N ) � R = Sm2 (G). ��
Lemma 2.2 For a normal subgroup N of G, let χ ∈ Irr(G) − Irr(G/N ) with degree
2. If G/ker(χ) is nonsolvable, then χ is a primitive character of G/ker(χ).

Proof We write G = G/ker(χ), and suppose that χ is not a primitive character of
G. Then, there is a proper subgroup H of G and some character φ of H such that
χ = φG . It follows that 2 = χ(1) = |G : H |φ(1), |G : H | = 2 and φ(1) = 1.
Hence, H is normal in G and all the irreducible constituents of χH are linear. Then,
[H , H ] � ker(χ) = 1, and H is abelian. So G is solvable, a contradiction. ��

The following lemma implies that G in our main theorem is solvable.

Lemma 2.3 Let G be a finite group with Sm2 (G) < (1 + 4m)/(1 + 4m−1). Then, G is
solvable.

Proof Suppose that G is nonsolvable and let G be a counterexample of minimal order.
Let A be a minimal nonsolvable normal subgroup of G, and let N be a minimal
normal subgroup of G contained in A. Then, N ⊆ A = A′ ⊆ G ′. If in addition
[A,Rad(A)] > 1, thenwe can choose N ⊆ [A,Rad(A)], whereRad(A) is the solvable
radical (i.e., the unique largest solvable normal subgroup) of A. We now discuss the
following two cases: N is abelian or not.

(1). N is abelian.

Then, G/N is nonsolvable. Since |G/N | < |G|, we have Sm2 (G) < (1+ 4m)/(1+
4m−1) � Sm2 (G/N ). Hence, we obtain

∑

2|k,k�4

(k − 1 + 4m−1k − 4m)km−1nk(G) < 3 · 4m−1n1(G) + 2m−1(2 · 4m−1 − 1)n2(G)

and

3 · 4m−1n1(G/N ) + 2m−1(2 · 4m−1 − 1)n2(G/N )

�
∑

2|k,k�4

(k − 1 + 4m−1k − 4m)km−1nk(G/N ).

Since n1(G/N ) = n1(G) and nk(G/N ) � nk(G) for k � 2, we obtain n2(G/N ) <

n2(G).Now there isχ ∈ Irr(G)−Irr(G/N ) such thatχ(1) = 2. Since N � ker(χ),we
know that Aker(χ)/ker(χ) is a nontrivial subgroup of G/ker(χ), and thus G/ker(χ)
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is nonsolvable. Now by Lemma 2.2, we know thatG/ker(χ) is a nonsolvable primitive
linear group of degree 2. Write C/ker(χ) = Z(G/ker(χ)). According to the proof
in [6, Theorem 3.1], we know that G = AC is a central product, G/C ∼= A5, N =
A ∩ C ∼= Z2, A ∼= SL(2, 5), n1(G) = n1(C/N ), n2(G) = n2(C/N ) + 2n1(G),
n4(G) � 2n1(G), and n6(G) � n1(G) + 2n2(C/N ). Now

∑

2|k,k�4

(k − 1 + 4m−1k − 4m)km−1nk(G)

� 3 · 4m−1n4(G) + (5 + 2 · 4m−1) · 6m−1n6(G)

� 6 · 4m−1n1(G) + (5 + 2 · 4m−1)6m−1 · (n1(G) + 2n2(C/N ))

= (6 · 4m−1 + 5 · 6m−1 + 2 · 24m−1)n1(G) + (10 + 4m)6m−1n2(C/N )

= (6 · 4m−1 + 5 · 6m−1 + 2 · 24m−1)n1(G) + (10 + 4m)6m−1(n2(G) − 2n1(G))

= (6 · 4m−1 − 15 · 6m−1 − 6 · 24m−1)n1(G) + (10 + 4m)6m−1n2(G)

= (6 · 4m−1 − 15 · 6m−1 − 6 · 24m−1)n1(G) + [(10 + 4m)6m−1

− 2m−1(2 · 4m−1 − 1)]n2(G) + 2m−1(2 · 4m−1 − 1)n2(G)

� (6 · 4m−1 − 15 · 6m−1 − 6 · 24m−1)n1(G) + 2[(10 + 4m)6m−1

− 2m−1(2 · 4m−1 − 1)]n1(G) + 2m−1(2 · 4m−1 − 1)n2(G)

= (5 · 6m−1 + 2 · 24m−1 + 6 · 4m−1 − 4 · 8m−1 + 2m)n1(G)

+ 2m−1(2 · 4m−1 − 1)n2(G)

� 3 · 4m−1n1(G) + 2m−1(2 · 4m−1 − 1)n2(G).

Hence, Sm2 (G) � (1 + 4m)/(1 + 4m−1), a contradiction.
(2). N is not abelian.

Assume that N � A5. By [1, Theorem 2.2], there exists φ ∈ Irr(N ) of even degree
such that φ(1) � 8 and φ is extendible to I := IG(φ). By [1, Proposition 2.3], we
have n1(G) � nd(G)|G : I | and n2(G) � n2d(G)|G : I | + 1

2nd(G)|G : I |, where
d = φ(1)|G : I | � 8|G : I |. Now
3 · 4m−1n1(G) + 2m−1(2 · 4m−1 − 1)n2(G)

� 3 · 4m−1nd (G)|G : I | + 2m−1(2 · 4m−1 − 1)n2d (G)|G : I |
+ 2m−2(2 · 4m−1 − 1)nd (G)|G : I |

= (3 · 4m−1 + 8m−1 − 2m−2)nd (G)|G : I | + 2m−1(2 · 4m−1 − 1)n2d (G)|G : I |
� (3 · 4m−1 + 8m−1 − 2m−2)nd (G)

d

8
+ 2m−1(2 · 4m−1 − 1)n2d (G)

d

8

=
(
3

2
· 4m−2 + 8m−2 − 2m−5

)

dnd (G) + 2m−4(2 · 4m−1 − 1)dn2d (G)

� (d − 1 + 4m−1 · d − 4m)dm−1nd (G) + (2d − 1 + 4m−1 · 2d − 4m)(2d)m−1n2d (G)

�
∑

2|k,k�4

(k − 1 + 4m−1k − 4m)km−1nk(G),
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so we have Sm2 (G) � (1 + 4m)/(1 + 4m−1), a contradiction.
Assume that N ∼= A5. Since the irreducible character of N of degree 4 is extendible

to G, by [1, Proposition 2.3] again, we have n1(G) � n4(G) and n2(G) � n8(G).
Now

3 · 4m−1n1(G) + 2m−1(2 · 4m−1 − 1)n2(G)

� 3 · 4m−1n4(G) + 2m−1(2 · 4m−1 − 1)n8(G)

� 3 · 4m−1n4(G) + (7 + 4m)8m−1n8(G)

�
∑

2|k,k�4

(k − 1 + 4m−1k − 4m)km−1nk(G),

and thus Sm2 (G) � (1 + 4m)/(1 + 4m−1). This contradiction completes the proof. ��
Lemma 2.4 Let G = M � N. If λ is a G-invariant linear character of N , then λ is
extendible to G.

Proof Clearly, we may assume that ker(λ) = 1. Then, N is cyclic. Let χ ∈
Irr(λG), then χN = χ(1)λ. Hence, N ⊆ Z(χ) = {g ∈ G

∣
∣|χ(g)| = χ(1)} and

Nker(χ)/ker(χ) ⊆ Z(χ)/ker(χ) = Z(G/ker(χ)). Then, [G, N ] ⊆ ker(χ). It fol-
lows that [G, N ] ⊆ N ∩ker(χ) = ker(λ) = 1. Hence, N ⊆ Z(G). Now G = M ×N .
Let ψ = 1m × λ. Then, ψ ∈ Irr(G) and ψN = λ. So λ is extendible to G. ��

The following lemma is important in the proof of our Main theorem.

Lemma 2.5 Let G = M � N , where N � G ′ is an abelian group. Assume that
no nontrivial irreducible character of N is invariant under M. If Sm2 (G) < (1 +
2m−1)/(1 + 2m−2), then there is no orbit of even size in the action of M on the set of
irreducible characters of N .

Proof Let {θ0 = 1N , θ1, · · · , θt } be a set of representatives of M-orbits on Irr(N ).
Let Ii = IG(θi ) for i ∈ [1, t]. By hypothesis, we have Ii < G for i � 1. Suppose
that there is some orbit of even size in the action of M on Irr(N ). Then, we can find
an integer k such that 2 | |G : Ik |. For 0 � i � t , we set ni,1 = n1(Ii/N ) and
Ti,m = ∑

λ∈Irr(Ii /N ),2|λ(1)
λ(1)m .

By Lemma 2.4, every θi has an extension ψ to Ii . By Gallagher theorem [2, Corol-
lary 6.17], we have bijections λ 	→ λψi from Irr(Ii/N ) to Irr(Ii |θi ). By Clifford
correspondence, we have a bijections λψi 	→ (λψi )

G from Irr(Ii |θi ) to Irr(G|θi ).
Observe that (λθi )

G(1) = |G : Ii |λ(1) is even if and only if |G : Ii | is even or |G : Ii |
is odd and λ(1) is even. Then,

∑

χ∈Irr2(G)

χ(1)m−1 = n1(G/N ) +
∑

2||G:Ii |
|G : Ii |m−1

∑

λ∈Irr(Ii /N )

λ(1)m−1

+
∑

2�|G:Ii |
|G : Ii |m−1Ti,m−1
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and
∑

χ∈Irr2(G)

χ(1)m = n1(G/N ) +
∑

2||G:Ii |
|G : Ii |m

∑

λ∈Irr(Ii /N )

λ(1)m +
∑

2�|G:Ii |
|G : Ii |mTi,m

� n1(G/N ) +
∑

2||G:Ii |
|G : Ii |m

∑

λ∈Irr(Ii /N )

λ(1)m−1 +
∑

2�|G:Ii |
|G : Ii |mTi,m−1.

From
∑

χ∈Irr2(G)

χ(1)m = Sm2 (G)
∑

χ∈Irr2(G)

χ(1)m−1, we have

Sm2 (G)(n1(G/N ) +
∑

2||G:Ii |
|G : Ii |m−1

∑

λ∈Irr(Ii /N )

λ(1)m−1 +
∑

2�|G:Ii |
|G : Ii |m−1Ti,m−1)

� n1(G/N ) +
∑

2||G:Ii |
|G : Ii |m

∑

λ∈Irr(Ii /N )

λ(1)m−1 +
∑

2�|G:Ii |
|G : Ii |mTi,m−1.

Then,

∑

2||G:Ii |
(|G : Ii | − Sm2 (G))|G : Ii |m−1

∑

λ∈Irr(Ii /N )

λ(1)m−1

+
∑

2�|G:Ii |
(|G : Ii | − Sm2 (G))|G : Ii |m−1Ti,m−1

� (Sm2 (G) − 1)n1(G/N ).

In particular, for k, we obtain

(|G : Ik | − Sm2 (G))|G : Ik |m−1
∑

λ∈Irr(Ik/N )

λ(1)m−1 � (Sm2 (G) − 1)n1(G/N ).

Since n1(G/N ) = |G/N : G ′/N | and nk,1 = n1(Ik/N ) = |Ik/N , (Ik/N )′|, so
n1(G/N ) � |G : Ik |nk,1. In addition, ∑

λ∈Irr(Ik/N )

λ(1)m−1 � n1(Ik/N ). Hence, we get

that

(|G : Ik | − Sm2 (G))|G : Ik |m−1n1(Ik/N ) � (Sm2 (G) − 1)|G : Ik |n1(Ik/N ).

It then follows that

Sm2 (G) � |G : Ik |m + |G : Ik |
|G : Ik |m−1 + |G : Ik | � 2m−1 + 1

2m−2 + 1
,

which is a contradiction. ��
We now prove our main theorem, which is restated.

Theorem 2.6 Let G be a finite group. Suppose that Sm2 (G) < (1+2m−1)/(1+2m−2).
Then, G has a normal Sylow 2-subgroup.
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Proof Suppose the theorem is false and let G be a counterexample of minimal order.
By Lemma 2.3, G is solvable. Let N be a minimal normal subgroup of G contained
in the derived subgroup G ′ of G. Then, N is elementary abelian. By Lemma 2.1,
Sm2 (G/N ) � Sm2 (G) < (1 + 2m−1)/(1 + 2m−2), and by the choice of G, G/N has
a normal Sylow 2-subgroup R/N . If N is a 2-group, then R is a normal Sylow 2-
subgroup of G, a contradiction. Hence, N is a 2′-group. By the Schur–Zassenhaus
theorem, R = P � N , where P is a Sylow 2-subgroup of R. By the Frattini argument,
G = RNG(P) = NNG(P). Clearly, N � NG(P). Since NG(P) ∩ N < N and
NG(P)∩N �G = NNG(P), we obtain NG(P)∩N = 1, and thus G = NG(P)�N .
If N ⊆ Z(G), then R = P×N and P�G, a contradiction. Hence, N � Z(G). Then,
[N ,G] = N . Let λ ∈ Irr(N )−1N . Assume that λ isG-invariant. Then by Lemma 2.4,
λ has an extension χ to G. Now we have χN = λ, N ⊆ ker(χ), and λ = 1N , this
contradiction implies that no nontrivial irreducible character of N is G-invariant. By
Lemma 2.5, there is no orbit of even size in the action of P on N , that is, P acts
trivially on N , hence R = P × N and P � G, this final contradiction completes the
proof. ��

3 Variations of Main Theorem

Recall that a character χ ∈ Irr(G) is real if χ(g) ∈ R for every element g ∈ G, and
χ ∈ Irr(G) is strongly real if χ is afforded by a real representation, or equivalently, its
Frobenius–Schur indicator v2(χ) is 1. We denote by nk,+ the number of irreducible
strongly real characters of degree k of G. We write

Irr2,R(G) := {χ ∈ Irr2(G) | χ is real},
Sm2,R(G) :=

∑

χ∈Irr2,R(G)

χ(1)m/
∑

χ∈Irr2,R(G)

χ(1)m−1,

Irr2,+(G) := {χ ∈ Irr2(G) | v2(χ) = 1},
Sm2,+(G) :=

∑

χ∈Irr2,+(G)

χ(1)m/
∑

χ∈Irr2,+(G)

χ(1)m−1.

Similar to Lemma 2.1, we have the following observation.

Lemma 3.1 Let N be a normal subgroup of a group G such that N ⊆ G ′. If Sm2,+(G) �
2, then Sm2,+(G/N ) � Sm2,+(G).

Proof Similar to Lemma 2.1. ��
For a normal subgroup with odd index, we have the next lemma.

Lemma 3.2 Let N be a normal subgroup of a group G with G/N odd order. If
Sm2,+(G) � 2, then Sm2,+(N ) � Sm2,+(G).

Proof Firstly, every strongly real linear character ofG restricts to a strongly real linear
character of N . Secondly, by [4, Lemma 2.1], every strongly real linear character of
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N lies under a unique strongly real linear character of G. Thus, we obtain n1,+(N ) =
n1,+(G). In addition, from [4, Lemma 2.1], we also have

∑

2|k,k�2

nk,+(G) �
∑

2|k,k�2

nk,+(N ).

Denote by V = Sm2,+(G). Then

V =
n1,+(G) + ∑

2|k
kmnk,+(G)

n1,+(G) + ∑

2|k
km−1nk,+(G)

,

and we obtain

(V − 1)n1,+(G) =
∑

2|k
(km − Vkm−1)nk,+(G).

It then follows that

(V − 1)n1,+(N ) =
∑

2|k
(km − Vkm−1)nk,+(G) �

∑

2|k
(km − Vkm−1)nk,+(N ),

which is equivalent to Sm2,+(N ) � V = Sm2,+(G), the proof is complete. ��
Now we give a variation of Main theorem for strongly real character.

Theorem 3.3 Let G be a finite group. Suppose that Sm2,+(G) < (1+2m−1)/(1+2m−2).
Then, G has a normal Sylow 2−subgroup.

Proof Suppose that the theorem is not true, and let G be a counterexample of minimal
order. Let N be a minimal normal subgroup of G contained in G ′. Observe that

∑

χ∈Irr2,+(G)

χ(1)

|Irr2,+(G)| �
n1,+(G) + ∑

2|k
k2nk,+(G)

n1,+(G) + ∑

2|k
knk,+(G)

� · · ·

�
n1,+(G) + ∑

2|k
kmnk,+(G)

n1,+(G) + ∑

2|k
km−1nk,+(G)

= Sm2,+(G)

<
1 + 2m−1

1 + 2m−2 < 2,
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by [1, Theorem 5.1] and Lemma 3.1, we know that G is solvable, N is an elementary
abelian group with odd order, G/N has a normal Sylow 2-subgroup R/N , and G =
R = P � N , where P ∈ Syl2(G).

From the proof of [6, Theorem 5.1], we have that n1,+(G) � |N | − 1 � χ1(1) +
· · · + χs(1), where χ1, · · · , χs are the strongly real irreducible characters of G. Now

n1,+(G) +
s∑

i=1
χi (1)mnχi (1),+

n1,+(G) +
s∑

i=1
χi (1)m−1nχi (1),+

�
n1,+(G) +

s∑

i=1
χi (1)m

n1,+(G) +
s∑

i=1
χi (1)m−1

�
n1,+(G) + 2m−1

s∑

i=1
χi (1)

n1,+(G) + 2m−2
s∑

i=1
χi (1)

� n1,+(G) + 2m−1n1,+(G)

n1,+(G) + 2m−2n1,+(G)

= 1 + 2m−1

1 + 2m−2 .

Then for any χ ∈ Irr2,+(G) with χ(1) � 2 � (1 + 2m−1)/(1 + 2m−2), we have

Sm2,+(G) =

∑

χ∈Irr2,+(G)

χ(1)m

∑

χ∈Irr2,+(G)

χ(1)m−1 � 1 + 2m−1

1 + 2m−2 ,

and this contradiction completes the proof. ��
Note that for any χ ∈ Irr2,R(G) − Irr2,+(G), we have χ(1) � 2. If Sm2,+(G) � 2,

then we have
∑

χ∈Irr2,+(G)

χ(1)m

∑

χ∈Irr2,+(G)

χ(1)m−1 �

∑

χ∈Irr2,R(G)

χ(1)m − ∑

χ∈Irr2,+(G)

χ(1)m

∑

χ∈Irr2,R(G)

χ(1)m−1 − ∑

χ∈Irr2,+(G)

χ(1)m−1 .

Therefore, we obtain the following corollary, which is a variation of Main theorem for
real characters.

Corollary 3.4 Let G be a finite group with Sm2,R(G) < (1+ 2m−1)/(1+ 2m−2). Then,
G has a normal Sylow 2−subgroup.
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