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Abstract

Let Irrp(G) be the set of linear and even-degree irreducible characters of a finite

group G. In this paper, we prove that G has a normal Sylow 2-subgroup if
Soxmm/ Y x (™ < (1 42"/ 4 2m72) for a positive integer

x €lrra (G) x €lrrz (G)

m, which is the generalization of several recent results concerning the well-known

Ito—Michler theorem.
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1 Introduction

For a finite group G, let Irr(G) be the set of all complex irreducible characters of G.
We write

Irra(G) :={x € Irr(G) | x(1) =1 or 2| x(1)}
and

2Gy = Y " > kTt

x€lra(G) x€lra(G)
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where m is a positive integer. [to-Michler theorem [3, 5] states that if a prime p does
not divide the degree of every irreducible character of a finite group G, then G has
a normal abelian Sylow p-subgroup. For the prime p = 2, the S5’ (G)-version of the
Ito—Michler theorem asserts that if S5'(G) = 1, then G has a normal abelian Sylow
2-subgroup. In this paper, we improve this for p = 2.

Main theorem. Let G inite group with S5 (G) < (1 + 2m=1y /(1 4+ 2"=2). Then, G
has a normal Sylow 2-subgroup.

We note that (1 +2"71)/(1 4 2"~2) is the exactly value of S5'(G) with G = S3,
the symmetric group of degree 3, and S3 does not have a normal Sylow 2-subgroup.
For G, the nonabelian group of order 8 or the alternating group A4 of degree 4, the
value of S7'(G) respectively is (1 4 2"=2)/(14-2"=3) and 1, which are both less than
S5'(83), indeed G has a normal Sylow 2-subgroup.

For m = 1, 2, we obtain the following corollary.

Corollary 1.1 Let G be a finite group. IfSé(G) <4/3 or S%(G) < 3/2, then G has a
normal Sylow 2-subgroup.

Proof See [1, Theorem 1.1] and [6, Theorem A]. O

In the following of this paper, we prove the Main theorem in Sect. 2, and discuss
other variations of the Main theorem in Sect. 3.

2 Proof of Main Theorem

We denote by n;(G) the number of irreducible complex characters of degree k of
G. If N is a normal subgroup of G and 6 € Irr(N), then Irr(G|0) denotes the set
of irreducible characters of G that lie over 6. We write I (0) to denote the inertia
subgroup of 6 in G. For an M-invariant subgroup N, we write M X N to denote a
semidirect of M and N.

The first lemma is the following observation.

Lemma 2.1 Let N be a normal subgroup of a group G contained in the derived
subgroup G' of G. If S} (G) < 2, then S5 (G/N) < S} (G).

Proof We write R = S7'(G). Then, 1 < R < 2 and

n1(G) + Y kK"nx(G)
2|k

R = .
n1(G) + Y k" n(G)
2|k

It follows that

Z(k — R)K"'ni(G) = (R — Dny(G).
2|k
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Since Irr(G/N) C Irr(G) and N € G’, we have

D k= RK"'ni(G/N) < Y (k= K" 'ni(G)

2|k 2|k

and n1(G) = n;(G/N).Hence ) (k— R)K™ 'ni(G/N) < (R —1)n1(G/N), which
2|k
is equivalent to S5'(G/N) < R = S7'(G). O

Lemma 2.2 For a normal subgroup N of G, let x € Irr(G) — Irr(G/N) with degree
2. If G /ker(x) is nonsolvable, then x is a primitive character of G [ker(x).

Proof We write G = G/ker(x), and _suppose that x is not a primitive character of
G. Then, there is a proper subgroup H of G and some character ¢ of H such that
x = ¢C. It follows that 2 = x(1) = [G : H|¢(1), |G : H| = 2 and (1) = 1.
Hence, H is normal in G and all the irreducible constituents of xz are linear. Then,
[H, H] < ker(x) = 1, and H is abelian. So G is solvable, a contradiction. o

The following lemma implies that G in our main theorem is solvable.

Lemma 2.3 Let G be a finite group with S5'(G) < (1 +4™)/(1 + 4m=1) Then, G is
solvable.

Proof Suppose that G is nonsolvable and let G be a counterexample of minimal order.
Let A be a minimal nonsolvable normal subgroup of G, and let N be a minimal
normal subgroup of G contained in A. Then, N € A = A’ € G'. If in addition
[A,Rad(A)] > 1,thenwecanchoose N C [A, Rad(A)], where Rad(A) is the solvable
radical (i.e., the unique largest solvable normal subgroup) of A. We now discuss the
following two cases: N is abelian or not.

(1). N is abelian.

Then, G/N is nonsolvable. Since |G/N| < |G|, we have S7'(G) < (1 +4™)/(1+
gm—1y < S7(G/N). Hence, we obtain

Z (k= 1+4" Tk — ™" 10 (G) < 3-4" 0 (G) + 2" 12 - 4" — Dna(G)
2|k, k>4

and

34" i (G/N) 2" 2 4" — Dma(G/N)

< Z (k— 144"k — 4™k ' (G/N).
2|k, k>4

Since n1(G/N) = n1(G) and nx(G/N) < nig(G) for k > 2, we obtain ny(G/N) <
n2(G).Now thereis y € Irr(G)—Irr(G/N) suchthat y (1) = 2. Since N ;{ ker(x),we
know that Aker(x)/ker(x) is a nontrivial subgroup of G /ker(yx), and thus G /ker(x)

@ Springer



S.Dong, H. Pan

is nonsolvable. Now by Lemma 2.2, we know that G /ker(}x ) is a nonsolvable primitive
linear group of degree 2. Write C/ker(x) = Z(G/ker(x)). According to the proof
in [6, Theorem 3.1], we know that G = AC is a central product, G/C = A5, N =
ANC E Zy, A = SL(2,5),n1(G) = n1(C/N), no(G) = na(C/N) + 2n1(G),
n4(G) = 2n1(G), and ng(G) = n1(G) + 2n2(C/N). Now

> k=1 +4" ke — 4K i (G)
2|k,k>4

>3- 4" 1y (G)+ 54+2-4"1 . 6" ng(G)
>6-4""n1(G)+ (5+2-4" 16" (n1(G) + 2n2(C/N))
=6-4""1 456" +2.24" Hn(G) + (10 + 4™)6" ' ny(C/N)
=(6-4" 456" +2.24" Y (G) + (10 + 4™)6" (n2(G) — 2n1(G))
=(6-4"1-15.6"1 — 624" Y (G) + (10 + 46" 'n2(G)
=(6-4"1—15.6"1 —6.24" Y (G) + [(10 +4™)6" !

=212 4 - DIna(G) + 2724 — Dna(G)
>(6-4"1 156" —6.24" Y (G) + 2[(10 + 4™)6" !

— 212 4" _ DIn(G) + 2712 - 4" = Dina(G)
=G-6" 224" L6 4m g8 42"y (G)

+ 212 4 Dny(G)
>3-4" 1 (G) + 2" 124" — Dna(G).

Hence, S7'(G) > (1 +4™)/(1 + 4m=1) a contradiction.
(2). N is not abelian.

Assume that N 22 As. By [1, Theorem 2.2], there exists ¢ € Irr(N) of even degree
such that ¢ (1) > 8 and ¢ is extendible to I := Ig(¢). By [1, Proposition 2.3], we
have n1(G) < ng(G)|G : I and ny(G) < nog(G)|G : I| + %nd(G)|G : 1], where
d=¢)|G:I| > 8|G :I|.Now

3.4" Gy + 27124 — Dna(G)
<34 ()G I+ 212 4 — Dinpy (GG : T
+2M7202. 4" _ Dng(G)|G : 1)
=@l pgm=l o=y, ()G I+ 2" 124" — Dingy(G)|G : 1|

d d
<@ amlypgm-l_ 2’"‘2)nd(G)g +om=lg.qm-1 _ D2 (G)g
3
= <5 qm=2 4 gm=2_ 2’"*5> dng(G) +2" 424" — D)dnyy(G)

<@—-1+4""1d—ama" ny(G)+ Qd —1+4"1 . 2d — 4™)2d)" 124 (G)

< (k— 1+ 4"k —amEm =1y (G),
20k, k>4
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so we have S7'(G) > (1 +4™)/(1 + 4"=1) "a contradiction.

Assume that N = As. Since the irreducible character of N of degree 4 is extendible
to G, by [1, Proposition 2.3] again, we have n1(G) < n4(G) and n2(G) < ng(G).
Now

3.4 (G) +2"71 24" — Hna(G)
<3-4" g (G) + 2712 -4 — 1ng(G)
<34 1y (G) + (T + 4™)8" ng(G)

< Y k= 144"k —amk" I (G),
20k, k>4

and thus S5'(G) > (1 +4™)/(1 + 4m=1)_This contradiction completes the proof. O

Lemma24 Let G = M x N. If A is a G-invariant linear character of N, then A is
extendible to G.

Proof Clearly, we may assume that ker(A) = 1. Then, N is cyclic. Let x €
Irr(A%), then xy = x(1)A. Hence, N € Z(x) = {g € G|lx(g)| = x(1)} and
Nker(x)/ker(x) € Z(x)/ker(x) = Z(G/ker(x)). Then, [G, N] C ker(x). It fol-
lows that [G, N] € N Nker(x) = ker(A) = 1.Hence, N C Z(G).Now G = M x N.
Let ¢ = 1,, x A. Then, ¢ € Irr(G) and ¥y = A. So A is extendible to G. O

The following lemma is important in the proof of our Main theorem.

Lemma2.5 Let G = M x N, where N < G’ is an abelian group. Assume that
no nontrivial irreducible character of N is invariant under M. IfSE”(G) < (1+
2m=1y /(1 + 2"=2), then there is no orbit of even size in the action of M on the set of
irreducible characters of N.

Proof Let {6y = 1y,6q,---,06;} be a set of representatives of M-orbits on Irr(N).
Let I; = Ig(6;) fori € [1,t]. By hypothesis, we have I; < G fori > 1. Suppose
that there is some orbit of even size in the action of M on Irr(N). Then, we can find
an integer k such that 2 | |G : [Ix]. For 0 < i < ¢, we setn; 1 = n1(l;/N) and
Tim = > A(DH)™.

relrr(l; /N), 2|1 (1)

By Lemma 2.4, every 6; has an extension v to /;. By Gallagher theorem [2, Corol-
lary 6.17], we have bijections A +— Ay; from Irr(Z; /N) to Irr(Z;16;). By Clifford
correspondence, we have a bijections Ay, +— ()\.I/J‘i)G from Irr(Z;16;) to Irr(G|6;).
Observe that (16;)¢ (1) = |G : I;|A(1) is even if and only if |G : I;|iseven or |G : ;]|
is odd and A(1) is even. Then,

> ox =GN+ Y UG Y !

x €l (G) 2|1G:1;| relre(l; /N)

+ Y G LT T
HG:|
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and

YoM =ni(G/NY+ D IG L™ Y AW+ Y UG L T
x €lra(G) 2||G:1; | relrr(I;/N) 241G:1;|

>niG/N)+ D IG L™ Y A" D G LT e
2|1G:1;| relr(l;/N) 241G 1|

From Y x()"=S7(G) > x(1)"!, wehave
x€lira(G) Xx€lma (G)

SPGG/NY+ Y G L™ S A Y G LT T )
2/|G: | relrr(l; /N) 241G 1|

>ni(G/NY+ D UG L™ Y ™ Y (G LM T
2||G:1;| relrr(l; /N) 24|G:I;|

Then,

Yo AG LI =SEGNIG L™ Y A
2||G:1;| relr(l;/N)
+ Y (G LI =SFGNIG : L™ Ti
24|G:1;|
< (85(G) = Dni(G/N).

In particular, for k, we obtain

(G : Il = SFGNIG L™ Y A" < (SY(G) — Dni(G/N).
relrr(Ix/N)

Since n1(G/N) = |G/N : G'/N| and nx1 = n1(It/N) = |It/N, (Ix/N)'|, so
n1(G/N) < |G : Ix|ng,1. In addition, > A > n1(Ix/N). Hence, we get
relrr(Ii /N)

that

(G : Ik] = SE(G)IG : L™ 'ni(I/N) < (S5(G) — DIG : Iklny(Ik/N).
It then follows that

|G : Ik|™ + |G : Ik . =14

ST(G) = > ,
2O 2 G TG

which is a contradiction. O
We now prove our main theorem, which is restated.

Theorem 2.6 Let G be a finite group. Suppose that S5 (G) < (14 2m=1y/(142m72),
Then, G has a normal Sylow 2-subgroup.
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Proof Suppose the theorem is false and let G be a counterexample of minimal order.
By Lemma 2.3, G is solvable. Let N be a minimal normal subgroup of G contained
in the derived subgroup G’ of G. Then, N is elementary abelian. By Lemma 2.1,
S#(G/N) < S5(G) < (1 +2™~1/(1 +2™~2), and by the choice of G, G/N has
a normal Sylow 2-subgroup R/N. If N is a 2-group, then R is a normal Sylow 2-
subgroup of G, a contradiction. Hence, N is a 2’-group. By the Schur—Zassenhaus
theorem, R = P X N, where P is a Sylow 2-subgroup of R. By the Frattini argument,
G = RNg(P) = NNg(P). Clearly, N g Ng(P). Since Ng(P) NN < N and
Ng(P)NN <G = NNg(P),weobtain Ng(P)NN = 1,and thus G = Ng(P) X N.
If N € Z(G),then R = P x N and P <G, acontradiction. Hence, N ¢ Z(G). Then,
[N,G] = N.LetA € Irr(N) — 1 y. Assume that A is G-invariant. Then by Lemma 2.4,
A has an extension y to G. Now we have xyy = A, N C ker(x), and A = 1y, this
contradiction implies that no nontrivial irreducible character of N is G-invariant. By
Lemma 2.5, there is no orbit of even size in the action of P on N, that is, P acts
trivially on N, hence R = P x N and P < G, this final contradiction completes the
proof. O

3 Variations of Main Theorem

Recall that a character x € Irr(G) is real if x(g) € R for every element g € G, and
x € Irr(G) is strongly real if x is afforded by a real representation, or equivalently, its
Frobenius—Schur indicator v2(x) is 1. We denote by ni 4 the number of irreducible
strongly real characters of degree k of G. We write

Irrp R (G) = {x € Irr2(G) | x isreal},

SPR(G) = Y x(M"/ > xmm

x €l r(G) x€lrp R(G)
Irry +(G) := {x € Irr2(G) | v2(x) = 1},

PG = > xmm/ Y xmh

x€lrs 4 (G) x €l 4 (G)
Similar to Lemma 2.1, we have the following observation.

Lemma 3.1 Let N be anormal subgroup of a group G suchthat N € G’ I]CSE'f+(G) <
2, then S5’ (G/N) < S5, (G).

Proof Similar to Lemma 2.1. O
For a normal subgroup with odd index, we have the next lemma.

Lemma3.2 Let N be a normal subgroup of a group G with G/N odd order. If
S5, (G) <2, then S5 (N) < S5, (G).

Proof Firstly, every strongly real linear character of G restricts to a strongly real linear
character of N. Secondly, by [4, Lemma 2.1], every strongly real linear character of
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N lies under a unique strongly real linear character of G. Thus, we obtain nj (N) =
n1,+(G). In addition, from [4, Lemma 2.1], we also have

Y (G = Y m(N).

2k, k=2 2|k, k=2

Denote by V = S’£+(G). Then

n1.4(G) + Y k" +(G)
2|k

V= ,
n1.+(G) + X k" Tng 1(G)
2|k

and we obtain

(V = Dni(G) = Y k" — VK" D 1 (G).
2|k

It then follows that

(V= Dni e (N) =) (K" = VE" g 4 (G) =Y (K™ = VK™ mi (N,
2]k 2lk

which is equivalent to Sgﬁ LN SV = ng 4 (G), the proof is complete. O
Now we give a variation of Main theorem for strongly real character.

Theorem 3.3 Let G be afinite group. Suppose that Sy’ , (G) < (1 +2m=hy/(14-2m72),
Then, G has a normal Sylow 2—subgroup.

Proof Suppose that the theorem is not true, and let G be a counterexample of minimal
order. Let N be a minimal normal subgroup of G contained in G’. Observe that

> x() n4(G)+ Y k24 (G)
2|k

x€lry 1 (G)
2 4+ (G)|  n14(G) + Y kng 4(G)
2|k
n1,4+(G) + Y k"ng +(G)

2k

<

n1.4+(G) + Y k" ng (G)

2|k

(6]

1+2m—1
<—<2
L42m=2 7

@ Springer



Even Character Degrees and...

by [1, Theorem 5.1] and Lemma 3.1, we know that G is solvable, N is an elementary
abelian group with odd order, G/N has a normal Sylow 2-subgroup R/N, and G =
R = P x N, where P € Syl,(G).

From the proof of [6, Theorem 5.1], we have that ny +(G) < [N| —1 < xi1(1) +
-+« + xs(1), where x1, - - - , x5 are the strongly real irreducible characters of G. Now

S S
n+(G)+ X xi(W)™ny, 1)+ n +(G)+ Y xi(H™
“ -

i= i=1

WV

S S
ni+(G) + X i)™ nyay+  ni+(G)+ Y xi(Hm!
i=1 i=1

n14(G) +2"1 Y (D)

i=1

ni+(G) +2772 3 xi(l)

i=1

WV

- 1.+(6) +2" 1y 4 (G)
~ n14+(G) + 2" 2n1 1 (G)
1 42m-1

Then for any x € Irrp, 4 (G) with x (1) >2 > (1 4+2""1)/(1 4-2"2), we have

> xr 1
m x €l 4 (G) 142"~
2 +(G) = 1~ R
' > x@m 142m
x €l 4 (G)
and this contradiction completes the proof. O

Note that for any x € Irrp g(G) — Irrp 4+ (G), we have x (1) > 2. If SE'er(G) <2,
then we have

> xmm > ox(m— X xm"
x€lrry 4 (G) x€lrry g(G) x €l 1 (G)

A0 D DY C LD ST
x€lry +(G) x €liry r(G) x€lry +(G)

Therefore, we obtain the following corollary, which is a variation of Main theorem for
real characters.

Corollary 3.4 Let G be a finite group with S (G) < (1+2"~1) /(1 +2"~2). Then,
G has a normal Sylow 2—subgroup.
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