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Abstract
In this paper, the functional central limit theorem is established for martingale like ran-
dom vectors under the framework sub-linear expectations introduced by Shige Peng.
As applications, the Lindeberg central limit theorem for independent random vectors
is established, the sufficient and necessary conditions of the central limit theorem
for independent and identically distributed random vectors are found, and a Lévy’s
characterization of a multi-dimensional G-Brownian motion is obtained.
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1 Introduction and Notations

In the classical framework of probability theory, the expectation is a linear function
of random variables defined on a measurable space and the probability is an additive
function of events on this space. The sub-linear expectation is an extension of the
expectation by relaxing its linearity to sub-linearity, and it related probability, called
capacity, is non-longer additive. Under the sub-linear expectation, Peng [7–9, 11]
gave the notions of the G-normal distributions, G-Brownian motions, G-martingales,
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independence of random variables, identical distribution of random variables and so
on. Peng [9, 11] and Krylov [5] established the central limit theorem for independent
and identically distributed (i.i.d.) random variables. Zhang [16] obtained the Linde-
berg central limit theorem for independent but not necessary identically distributed
one-dimensional random variables as well as martingale like sequences. In this paper,
we consider the multi-dimensional martingale like random vectors. In the classical
probability space, since the convergence in distribution of a sequence of random vec-
tors Xn = (Xn,1, . . . , Xn,d) is equivalent to the convergence in distribution of any
linear functions

∑
k αk Xn,k of Xn by the Cramér–Wold device, the central limit the-

orem for random vectors follows from the central limit theorem for one-dimensional
random variables directly. Under the sub-linear expectation, due to the nonlinearity,
the Cramér–Wold device is no longer valid for showing the convergence of random
vectors. In this paper, we derive the functional central limit theorem for martingale
like random vectors under the Lindeberg condition. As applications, we establish the
Lindeberg central limit theorem for independent random vectors, give the sufficient
and necessary conditions of the central limit theorem for independent and identically
distributed random vectors and obtain a Lévy characterization of a multi-dimensional
G-Brownian motion.

We use the framework and notations of Peng [8, 9, 11]. If the reader is familiar with
these notations, the remainder of this section can be skipped. Let (�,F) be a given
measurable space, and let H be a linear space of real functions defined on (�,F)

such that if X1, . . . , Xn ∈ H then ϕ(X1, . . . , Xn) ∈ H for each ϕ ∈ Cl,Lip(R
n),

where Cl,Lip(R
n) denotes the linear space of (local Lipschitz) functions ϕ satisfying

|ϕ(x) − ϕ( y)| ≤ C(1 + |x|m + | y|m)|x − y|, ∀x, y ∈ R
n,

for some C > 0,m ∈ N depending on ϕ.

H is considered as a space of “random variables.” In this case, we denote X ∈ H .
We also denote the space of bounded Lipschitz functions and the space of bounded
continuous functions on R

n by Cb,Lip(R
n) and Cb(R

n), respectively. A sub-linear
expectation Ê on H is a function Ê : H → R satisfying the following properties:
for all X ,Y ∈ H ,

(1) Monotonicity: If X ≥ Y then Ê[X ] ≥ Ê[Y ];
(2) Constant preserving: Ê[c] = c;
(3) Sub-additivity: Ê[X + Y ] ≤ Ê[X ] + Ê[Y ] whenever Ê[X ] + Ê[Y ] is not of the

form +∞ − ∞ or −∞ + ∞;
(4) Positive homogeneity: Ê[λX ] = λÊ[X ], λ ≥ 0.

Here, R = [−∞,∞]. The triple (�,H , Ê) is called a sub-linear expectation space.
Given a sub-linear expectation Ê, let us denote the conjugate expectation Ê of Ê by
Ê[X ] := −Ê[−X ], ∀X ∈ H . If X is not in H , we define its sub-linear expectation
by Ê∗[X ] = inf{Ê[Y ] : X ≤ Y ∈ H }. When there is no ambiguity, we also denote it
by Ê.
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After having the sub-linear expectation, we consider the capacities. Let G ⊂ F . A
function V : G → [0, 1] is called a capacity if

V (∅) = 0, V (�) = 1 and V (A) ≤ V (B) ∀ A ⊂ B, A, B ∈ G.

It is called to be sub-additive if V (A
⋃

B) ≤ V (A) + V (B) for all A, B ∈ G with
A
⋃

B ∈ G. Let (�,H , Ê) be a sub-linear expectation space. In this paper, we denote
(V,V) be a pair of capacities with the properties that

Ê[ f ] ≤ V(A) ≤ Ê[g] if f ≤ IA ≤ g,

f , g ∈ H and A ∈ F ,V is sub-additive (1.1)

and V(A) := 1 − V(Ac), A ∈ F . It is obvious that V(A
⋃

B) ≤ V(A) + V(B). We
call V and V the upper and the lower capacity, respectively. In general, we can choose
V as

V(A) := inf{Ê[ξ ] : IA ≤ ξ, ξ ∈ H }, ∀A ∈ F . (1.2)

To distinguish this capacity with others, we denote it by V̂ and V̂(A) = 1 − V̂(A). V̂
is the largest capacity satisfying (1.1).

When there exists a family of probability measure on (�,F ) such that

Ê[X ] = sup
P∈P

P[X ] =: sup
P∈P

∫

XdP, (1.3)

V can be defined as
V(A) = sup

P∈P
P(A). (1.4)

We denote this capacity by VP , and VP (A) = 1 − V
P (A).

If V1 and V2 are two capacities having the property (1.1), then for any random
variable X ∈ H ,

V1(X ≥ x + ε) ≤ V2(X ≥ x) ≤ V1(X ≥ x − ε) for all ε > 0 and x . (1.5)

In fact, let f , g ∈ Cb,Lip(R) such that I {y ≥ x + ε} ≤ f (y) ≤ I {y ≥ x} ≤ g(y) ≤
I {y ≥ x − ε}. Then,

V1(X ≥ x + ε) ≤ Ê[ f (X)] ≤ V2(X ≥ x) ≤ Ê[g(X)] ≤ V1(X ≥ x − ε).

It follows from (1.5) that

V1(X ≥ x) = V2(X ≥ x) V1(X > x) = V2(X > x)

for all but except countable many x . In this paper, the events that we considered are
almost of the type {X ≥ x} or {X > x} , and so the results will not depend on the
capacity that we have chosen.

Next, we recall the notations of identical distribution and independence.
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Definition 1.1 (Peng [9, 11])

(i) (Identical distribution) Let X1 and X2 be two n-dimensional random vec-
tors defined, respectively, in sub-linear expectation spaces (�1,H1, Ê1) and

(�2,H2, Ê2). They are called identically distributed, denoted by X1
d= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(R
n),

whenever the sub-expectations are finite. A sequence {Xn; n ≥ 1} of random

variables (or random vectors) is said to be identically distributed if Xi
d= X1 for

each i ≥ 1.
(ii) (Independence) In a sub-linear expectation space (�,H , Ê), a random vector

Y = (Y1, . . . ,Yn),Yi ∈ H is said to be independent to another randomvector X =
(X1, . . . , Xm) , Xi ∈ H under Ê, if for each test functionϕ ∈ Cl,Lip(R

m×R
n),we

have Ê[ϕ(X,Y)] = Ê
[
Ê[ϕ(x,Y)]∣∣x=X

]
, whenever ϕ(x) := Ê [|ϕ(x,Y)|] < ∞

for all x and Ê [|ϕ(X)|] < ∞.
Random variables (or random vectors) X1, . . . , Xn are said to be independent if
for each 2 ≤ k ≤ n, Xk is independent to (X1, . . . , Xk−1). A sequence of random
variables (or random vectors) is said to be independent if for each n, X1, . . . , Xn

are independent.

Finally, we recall the notations of G-normal distribution and G-Brownian motion
which are introduced by Peng [8, 9]. We denote by S(d) the collection of all d ×
d symmetric matrices. A function G : S(d) → R is called a sub-linear function
monotonic in A ∈ S(d) if for each A, A ∈ S(d),

⎧
⎪⎨

⎪⎩

G(A + A) ≤ G(A) + G(A),

G(λA) = λG(A), ∀λ > 0,

G(A) ≥ G(A), if A ≥ A.

Here, A ≥ A means that A − A is semi-positive definite. G is continuous if |G(A) −
G(A)| → 0 when ‖A − A‖∞ → 0, where ‖A − A‖∞ = maxi, j |ai j − ai j | for
A = (ai j ; i, j = 1, . . . , d) and A = (ai j ; i, j = 1, . . . , d).

Definition 1.2 (G-normal random variable) Let G : S(d) → R be a continu-
ous sub-linear function monotonic in A ∈ S(d). A d-dimensional random vector
ξ = (ξ1, . . . , ξd) in a sub-linear expectation space (�̃, H̃ , Ẽ) is called aG-normal dis-
tributed random variable (written as ξ ∼ N

(
0,G

)
under Ẽ), if for any ϕ ∈ Cl,Lip(R

d),
the function u(x, t) = Ẽ

[
ϕ
(
x + √

tξ
)]

(x ∈ R
d , t ≥ 0) is the unique viscosity solu-

tion of the following heat equation:

∂t u − 1

2
G
(
D2u

)
= 0, u(0, x) = ϕ(x),

where Du = (
∂xi u, i = 1, . . . , d

)
and D2u = D(Du) = (

∂xi ,x j u
)d
i, j=1.
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That ξ is a G-normal distributed random vector is equivalent to that if ξ ′ is an inde-
pendent copy of ξ , then

Ẽ
[
ϕ(αξ + βξ ′)

] = Ẽ

[

ϕ
(√

α2 + β2ξ
)
]

, ∀ϕ ∈ Cl,Lip(R) and ∀α, β ≥ 0,

and G(A) = Ẽ
[〈ξ A, ξ 〉] (cf. Definition II.1.4 and Example II.1.13 of Peng [10]),

where 〈x, y〉 is the scalar product of x, y. When d = 1, G can be written as G(α) =
α+σ 2−α+σ 2, and wewrite ξ ∼ N (0, [σ 2, σ 2]) if ξ is a G-normal distributed random
variable (c..f. Peng [11]).

Definition 1.3 (G-Brownian motion) A d-dimensional random process (W t )t≥0 in the
sub-linear expectation space (�̃, H̃ , Ẽ) is called a G-Brownian motion if

(i) W0 = 0;
(ii) For each 0 ≤ t1 ≤ . . . ≤ tp ≤ t ≤ s,

Ẽ
[
ϕ
(
W t1, . . . ,W tp ,W s − W t

)]

= Ẽ

[
Ẽ
[
ϕ
(
x1, . . . , x p,

√
t − s)ξ

)] ∣
∣
x1=W t1 ,...,x p=W tp

]
(1.6)

∀ϕ ∈ Cl,Lip(R
p×(d+1)),

where ξ ∼ N (0,G).

Let C[0,∞) = C[0,∞)(R
d) be a function space of continuous real d-dimensional

functions on [0,∞) equipped with the supremum norm ‖x‖ =
∞∑
i=1

sup0≤t≤2i (|x(t)|∧
1)/2i , where | y| is the Euclidean norm of y. Denote byCb

(
C[0,∞)

)
the set of bounded

continuous functions h(x) : C[0,∞) → R. As shown in Peng [8, 10] and Denis
et al. [2], there is a sub-linear expectation space

(
�̃, H̃ , Ẽ

)
with �̃ = C[0,∞) and

Cb
(
�̃
) ⊂ H̃ such that Ẽ is countably sub-additive, (H̃ , Ẽ[‖ · ‖]) is a Banach space,

and the canonical process W (t)(ω) = ωt (ω ∈ �̃) satisfies (i) and (ii). Further, there
exists a weakly compact family of probability measuresP on (�̃,B�̃) such that

Ẽ[X ] = max
P∈P

EP [X ] for X ∈ H̃ ,

where B�̃ is the Borel σ -algebra on �̃ (c.f. Theorem 6.2.5 Proposition 6.3.2 of
Peng [10]). In the sequel of this paper, the G-normal random vectors and G-Brownian
motions are considered in (�̃, H̃ , Ẽ).

2 Functional Central Limit Theorem for Martingale Vectors

On the sub-linear expectation space (�,H , Ê), we write ηn
d→ η if Ê [ϕ(ηn)] →

Ê [ϕ(η)] holds for all bounded and continuous functionsϕ, ηn
V→ η ifV (|ηn − η| ≥ ε)
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→ 0 for any ε > 0, ηn ≤ η + o(1) in capacity V if (ηn − η)+ V→ 0, ηn → η in L p

if limn Ê[|ηn − η|p] = 0, and ηn ≤ η + o(1) in L p if (ηn − η)+ → 0 in L p. We also
write ξ ≤ η in L p if Ê[((ξ − η)+)p] = 0, ξ = η in L p if Ê[|ξ − η|p] = 0, X ≤ Y in
V if V (X − Y ≥ ε) = 0 for all ε > 0, and X = Y in V if both X ≤ Y and Y ≤ X
holds in V.

We recall the definition of the conditional expectation under the sub-linear expec-
tation. Let (�,H , Ê) be a sub-linear expectation space. LetHn,0 ⊂ . . . ⊂ Hn,kn be
subspaces of H such that

(i) any constant c ∈ Hn,k and,
(ii) if X1, . . . , Xd ∈ Hn,k , then ϕ(X1, . . . , Xd) ∈ Hn,k for any ϕ ∈ Cl,li p(R

d),
k = 0, . . . , kn .

DenoteL (H ) = {X : Ê[|X |] < ∞, X ∈ H }. We consider a system of operators in
L (H ),

Ên,k : L (H ) → L (Hn,k).

Suppose that the operators Ên,k satisfy the followingproperties: for all X ,Y ∈ L (H ),

(a) Ên,k[X + Y ] = X + Ên,k[Y ] in L1 if X ∈ Hn,k , and Ên,k[XY ] = X+
Ên,k[Y ] +

X−
Ên,k[−Y ] in L1 if X ∈ Hn,k and XY ∈ L (H );

(b) Ê
[
Ên,k[X ]] = Ê[X ].

Denote Ê[X |Hn,k] = Ên,k[X ], Ê[X |Hn,k] = −Ên,k[−X ]. Ê[X |Hn,k] is called the
conditional sub-linear expectation of X givenHn,k , and Ên,k is called the conditional
expectation operator.

For a random vector X = (X1, . . . , Xd), we denote Ê[X] = (Ê[X1], . . . , Ê[Xd ])
and Ê[X|Hn,k] = (Ê[X1|Hn,k], . . . , Ê[Xd |Hn,k]). Now, we assume that {Zn,k; k =
1, . . . , kn} is an array of d-dimensional random vectors such that Zn,k ∈ Hn,k and
Ê[|Zn,k |2] < ∞, k = 1, . . . , kn . Let D[0,1] = D[0,1](Rd) be the space of right
continuous d-dimensional functions having finite left limits which is endowed with
the Skorohod topology (c.f. Billingsley [1]) and τn(t) be a non-decreasing function
in D[0,1](R1) which takes integer values with τn(0) = 0, τn(1) = kn . Define Sn,i =
∑i

k=1 Zn,k ,
Wn(t) = Sn,τn(t). (2.1)

Then, Wn is an element in D[0,1](Rd). The following is the functional central limit
theorem.

Theorem 2.1 Suppose that the operators Ên,k satisfy (a) and (b). Assume that the
following Lindeberg condition is satisfied:

kn∑

k=1

Ê

[(∣
∣Zn,k

∣
∣2 − ε

)+ |Hn,k−1

]
V→ 0 ∀ε > 0 (2.2)

and
kn∑

k=1

{|Ê[Zn,k |Hn,k−1]| + |Ê[Zn,k |Hn,k−1]|
} V→ 0. (2.3)
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Further, assume that there is a continuous non-decreasing non-random function ρ(t)
and a non-random function G : S(d) → R for which

∑

k≤τn(t)

Ê
[〈Zn,k A, Zn,k〉

∣
∣Hn,k−1

] V→ G(A)ρ(t), A ∈ S(d). (2.4)

Then for any 0 = t0 < . . . < td ≤ 1,

(
Wn(t1), . . . ,Wn(td)

)
d→
(
W(ρ(t1)), . . . ,W(ρ(td))

)
, (2.5)

and for any bounded continuous function ϕ : D[0,1](Rd) → R,

lim
n→∞ Ê [ϕ (Wn)] = Ẽ[ϕ(W ◦ ρ)], (2.6)

where W is a G-Brownian motion with W(1) ∼ N (0,G) under Ẽ, and W ◦ ρ(t) =
W(ρ(t)).

The proof of this theorem will stated in the last section.

Remark 2.2 Let Gn(A, t) = ∑
k≤τn(t) Ê

[〈Zn,k A, Zn,k〉
∣
∣Hn,k−1

]
. It is easily seen that

Gn(A, t) : S(d) → R is a continuous sub-linear function monotonic in A ∈ S(d). So,
G is a continuous sub-linear function monotonic in A ∈ S(d). Without loss of gener-
ality, we assume G(Id×d) = 1 for otherwise we can replace ρ(t) by G(Id×d)ρ(t). It
is obvious that

|Gn(A, t) − Gn(A, t)| ≤ d‖A − A‖∞
∑

k≤τn(t)

Ê
[〈Zn,k, Zn,k〉

∣
∣Hn,k−1

]

= d‖A − A‖∞Gn(I , t).

It follows that |G(A)−G(A)| ≤ d‖A− A‖∞. Then, it can be verified that (2.4) holds
uniformly in A in a bounded area, and G(A) is continuous in A ∈ S(d).

Remark 2.3 When d = 1, (2.4) is equivalent to

∑

k≤τn(t)

Ê[Z2
n,k |Hn,k−1] V→ ρ(t), t ∈ [0, 1] (2.7)

and
∑

k≤τn(t)

Ê[Z2
n,k |Hn,k−1] V→ rρ(t), t ∈ [0, 1]. (2.8)

The condition (2.7) is assumed in Zhang [16]. But, (2.8) is replaced by amore stringent
condition as follows,

kn∑

k=1

∣
∣
∣r Ê[Z2

n,k |Hn,k−1] − Ê[Z2
n,k |Hn,k−1]

∣
∣
∣

V→ 0.
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As shown in Remark 3.2, (2.7) and (2.8) cannot be weakened furthermore.

3 Applications

3.1 Lindeberg’s CLT for Independent RandomVectors

From Theorem 2.1, we have the following functional central limit theorem for inde-
pendent random vectors.

Theorem 3.1 Let {Zn,k; k = 1, . . . , kn} be an array of independent d-dimensional
random vectors, n = 1, 2, . . ., and τn(t) be a non-decreasing function in D[0,1](R1)

which takes integer values with τn(0) = 0, τn(1) = kn. Denote Wn(t) =∑
k≤τn(t) Zn,k . Assume that

kn∑

k=1

Ê

[(
|Zn,k |2 − ε

)+] → 0 ∀ε > 0 (3.1)

and
kn∑

k=1

{|Ê[Zn,k]| + |Ê[Zn,k |
} → 0. (3.2)

Further, assume that there is a continuous non-decreasing non-random function ρ(t)
and a non-random function G : S(d) → R for which

∑

k≤τn(t)

Ê
[〈Zn,k A, Zn,k〉

] → G(A)ρ(t), A ∈ S(d). (3.3)

Then for any 0 = t0 < . . . < td ≤ 1,

(
Wn(t1), . . . ,Wn(td)

)
d→
(
W
(
ρ(t1)

)
, . . . ,W

(
ρ(td)

))
, (3.4)

and for any continuous functionϕ : D[0,1](Rd) → Rwith |ϕ(x)| ≤ C supt∈[0,1] |x(t)|2,

lim
n→∞ Ê [ϕ (Wn)] = Ẽ[ϕ(W ◦ ρ)], (3.5)

where W is G-Brownian motion on [0,∞) with W(1) ∼ N (0,G) under Ẽ. Further,
when p > 2, (3.5) holds for any continuous function ϕ : D[0,1](Rd) → R with
|ϕ(x)| ≤ C supt∈[0,1] |x(t)|p if (3.1) is replaced by the condition that

kn∑

k=1

Ê
[∣
∣Zn,k

∣
∣p
] → 0. (3.6)
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Proof For a bounded continuous function ϕ, (3.5) follows from Theorem 2.1 for the
functional central limit theorem of martingale vectors. For continuous function ϕ :
D[0,1](Rd) → R with |ϕ(x)| ≤ C supt∈[0,1] |x(t)|p, we first note that (3.1) is implied
by (3.6) for p > 2. Since (3.5) holds for bounded continuous function ϕ and

∣
∣ϕ(x) − (−N ) ∨ ϕ(x) ∧ N

∣
∣ ≤

(

C sup
t∈[0,1]

|x(t)|p − N

)+
,

it is sufficient to show that {max
i≤kn

|∑k≤i Zn,k |p, n ≥ 1} is uniformly integrable, i.e.,

lim
N→∞ lim sup

n→∞
Ê

⎡

⎣

(

max
i≤kn

∣
∣
∣

i∑

k=1

Zn,k

∣
∣
∣
p − N

)+⎤

⎦ = 0 (3.7)

under the conditions (3.2), (3.3), (3.1) or/and (3.6). For showing (3.7), it is sufficient to
consider the one-dimensional case. Let Yn,k = (−1)∨Zn,k∧1 and Ŷn,k = Zn,k−Yn,k .
Then, the Lindeberg condition (3.1) implies that

kn∑

k=1

Ê[|Ŷn,k |] =
kn∑

k=1

Ê

[(|Zn,k | − 1
)+] ≤ 2

kn∑

k=1

Ê

[(|Zn,k |2 − 1/2
)+] → 0. (3.8)

It follows that
kn∑

k=1

{|Ê[Yn,k]| + |Ê[Yn,k]|
} → 0, (3.9)

by (3.2). Also, it is obvious that

kn∑

k=1

Ê[|Yn,k |q ] ≤
kn∑

k=1

Ê[Y 2
n,k] ≤

kn∑

k=1

Ê[Z2
n,k] = O(1),∀q ≥ 2. (3.10)

By the Rosenthal-type inequality for independent random variables (c.f. Theorem 2.1
of Zhang[14]),

Ê

[

max
i≤kn

∣
∣
∣

i∑

k=1

Yn,k

∣
∣
∣
q
]

≤ Cq

⎧
⎨

⎩

kn∑

k=1

Ê
[|Yn,k |q

]+
( kn∑

k=1

Ê

[
Y 2
n,k

]
)q/2

+
( kn∑

k=1

(∣
∣Ê
[
Yn,k

] ∣
∣+ ∣

∣Ê [Yn,k
] ∣
∣
)
)q
⎫
⎬

⎭
≤ Cq , (3.11)
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by (3.9) and (3.10). It follows that

lim
N→∞ lim sup

n→∞
Ê

⎡

⎣

(

max
i≤kn

∣
∣
∣

i∑

k=1

Yn,k

∣
∣
∣
p − N

)+⎤

⎦

≤ lim
N→∞ lim sup

n→∞
N−1

Ê

[

max
i≤kn

∣
∣
∣

i∑

k=1

Yn,k

∣
∣
∣
2p
]

= 0.

For Ŷn,k , by the Rosenthal-type inequality for independent random variables again,
we have

Ê

[

max
i≤kn

∣
∣
∣

i∑

k=1

Ŷn,k

∣
∣
∣
p
]

≤ Cp

⎧
⎨

⎩

kn∑

k=1

Ê[|Ŷn,k |p] +
( kn∑

k=1

Ê[|Ŷn,k |2]
)p/2

+
( kn∑

k=1

(
(Ê[Ŷn,k ])+ + (Ê[Ŷn,k ])−

)
)p
⎫
⎬

⎭

≤ Cp

⎧
⎨

⎩

kn∑

k=1

Ê[(|Zn,k |p − 1)+] +
( kn∑

k=1

Ê[(Z2
n,k − 1)+]

)p/2

+
( kn∑

k=1

Ê[(|Zn,k | − 1)+]
)p
⎫
⎬

⎭

→ 0

by (3.8) and the condition (3.1) (and (3.6) when p > 2). Hence, (3.7) is proved. ��
Remark 3.2 When d = 1, the condition (3.3) is equivalent to

∑

k≤τn(t)

Ê[Z2
n,k] → ρ(t), t ∈ [0, 1], (3.12)

∑

k≤τn(t)

Ê[Z2
n,k] → rρ(t), t ∈ [0, 1]. (3.13)

Suppose that {Zn,k; k = 1, . . . , kn} is an array of independent random variables with
Ê[Zn,k] = Ê[Zn,k] = 0, k = 1, . . . , kn , and theLindeberg condition (3.14) is satisfied.
If (3.4) or (3.5) holds, then as shown in the proof of Theorem 3.1,

∑

k≤kn(t)

Ê[Z2
n,k] = Ê[W 2

n (t)] → Ê[W 2(ρ(t))] = ρ(t),

∑

k≤kn(t)

Ê[Z2
n,k] = Ê[W 2

n (t)] → Ê[W 2(ρ(t))] = rρ(t).

So, the conditions (3.12) and (3.13) cannot be weakened furthermore.

Corollary 3.3 Let {Xn,k; k = 1, . . . , kn} be an array of independent random variables,
n = 1, 2, . . .. Denoteσ 2

n,k = Ê[X2
n,k],σ 2

n,k = Ê[X2
n,k] and B2

n = ∑kn
k=1 σ 2

n,k . Suppose
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that the Lindeberg condition is satisfied:

1

B2
n

kn∑

k=1

Ê

[(
X2
n,k − εB2

n

)+] → 0 ∀ε > 0, (3.14)

and further, there is a constant r ∈ [0, 1] such that

∑m
k=1 σ 2

n,k
∑m

k=1 σ 2
n,k

→ r , as long as kn ≥ m → ∞ with lim inf

∑m
k=1 σ 2

n,k

B2
n

> 0, (3.15)

∑kn
k=1

{|Ê[Xn,k]| + |Ê[Xn,k]|
}

Bn
→ 0. (3.16)

Then for any continuous function ϕ with |ϕ(x)| ≤ Cx2,

lim
n→∞ Ê

[

ϕ

(∑kn
k=1 Xn,k

Bn

)]

= Ẽ[ϕ(ξ)], (3.17)

where ξ ∼ N (0, [r , 1]) under Ẽ.
Proof Let Zn,k = Xn,k/Bn , k = 1, . . . , kn . It is easily seen that the array {Zn,k; k =
1, . . . , kn} satisfies (3.1) and (3.2). Denote B2

n,0 = 0, B2
n,k = ∑k

i=1 σ 2
n,i . Define the

function τn(t) by

τn(t) = k if B2
n,k/B

2
n ≤ t < B2

n,k+1/B
2
n , and τn(1) = kn .

From the Lindeberg condition (3.14), it is easily verified that

maxk σ 2
n,k

B2
n

≤ maxk σ 2
n,k

B2
n

→ 0.

It follows that

∣
∣
∣
∣
∣
∣

∑

k≤τn(t)

Ê[Z2
n,k] − t

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

B2
n,τn(t)

B2
n

− t

∣
∣
∣
∣
∣
≤ maxk σ 2

n,k

B2
n

→ 0,

and τn(t) → ∞ if t > 0. By the condition (3.21), we have

∑

k≤τn(t)

Ê[X2
n,k] =

∑
k≤τn(t) σ 2

n,k

B2
n

=
∑

k≤τn(t) σ 2
n,k

∑
k≤τn(t) σ 2

n,k

B2
n,τn(t)

B2
n

→ r t .

So, (3.12) and (3.13) are satisfied with ρ(t) = t . Hence, (3.23) follows from (3.5).
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It is easily seen that (3.15) is implied by the following condition of Zhang [16],

∑kn
k=1

∣
∣
∣rσ 2

n,k − σ 2
n,k

∣
∣
∣

B2
n

→ 0. (3.18)

Zhang [16] also showed that the condition (3.18) cannot be weakened to

∑kn
k=1 σ 2

n,k
∑kn

k=1 σ 2
n,k

→ r . (3.19)

However, the following theorem shows that if we consider a sequence of independent
randomvariables instead of arrays of independent randomvariables, then the condition
(3.15) can be weakened to (3.19).

Theorem 3.4 Let {Xk; k = 1, 2, . . .} be a sequence of independent random variables.
Denote σ 2

k = Ê[X2
k ], σ 2

k = Ê[X2
k ], B2

n = ∑n
k=1 σ 2

k . Suppose that the Lindeberg
condition is satisfied:

1

B2
n

n∑

k=1

Ê

[(
X2
k − εB2

n

)+] → 0 ∀ε > 0, (3.20)

and further, there is a constant r ∈ [0, 1] such that

∑n
k=1 σ 2

k∑n
k=1 σ 2

k

→ r , also, (3.21)

∑n
k=1

{|Ê[Xk]| + |Ê[Xk]|
}

Bn
→ 0. (3.22)

Then for any continuous function ϕ with |ϕ(x)| ≤ Cx2,

lim
n→∞ Ê

[

ϕ

(∑n
k=1 Xk

Bn

)]

= Ẽ[ϕ(ξ)], (3.23)

where ξ ∼ N (0, [r , 1]) under Ẽ.
Proof Obviously, since (3.21) implies (3.15). ��

3.2 CLT for i.i.d. RandomVectors

Now, we consider a sequence {Xk; k = 1, 2, . . .} of independent and identically
distributed d-dimensional random vectors, and let Sn = ∑n

k=1 Xk .
If we let Zn,k = Xk/

√
n, k = 1, . . . , n, then (3.1) is equivalent to that Ê[(|X1|2 −

c)+] → 0 as c → ∞, (3.2) is equivalent to that Ê[X1] = Ê[−X1] = 0, and (3.3)
is automatically satisfied with G(A) = Ê[〈X1A, X1〉], ρ(t) ≡ t and τn(t) = [nt]/n.
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From Theorem 3.1, we obtain Peng’s central limit theorem (c.f. Theorem 2.4.4. of
Peng (2019)).

Corollary 3.5 Suppose Ê[(|X1|2 − c)+] → 0 as c → ∞, Ê[X1] = Ê[−X1] = 0. Let
G(A) = Ê[〈X1A, X1〉]. Then,

lim
n→∞ Ê

[

ϕ

(
Sn√
n

)]

= Ẽ
[
ϕ(ξ)

]
, ∀ϕ ∈ Cb(R

d), (3.24)

where ξ ∼ N (0,G).

The next theorem gives the sufficient and necessary conditions of the central limit
theorem for independent and identically distributed random vectors. For a random
vector X = (X1, . . . , Xd), we write X(c) = (X (c)

1 , . . . , X (c)
d ), where X (c)

i = (−c) ∨
(Xi ∧ c), i = 1, . . . , d.

Theorem 3.6 Suppose that

(i) lim
c→∞ Ê[|X1|2 ∧ c] is finite;

(ii) x2V (|X1| ≥ x) → 0 as x → ∞;

(iii) lim
c→∞ Ê

[
X(c)
1

]
= lim

c→∞ Ê

[
−X(c)

1

]
= 0;

(iv) The limit

G(A) = lim
c→∞ Ê

[
〈X(c)

1 A, X (c)
1 〉
]

(3.25)

exists for each A ∈ S(d).

Then for any bounded continuous function ϕ : D[0,1](Rd) → R,

lim
n→∞ Ê

[

ϕ

(
S[n·]√
n

)]

= Ẽ [ϕ(W)] , (3.26)

where W is a G-Brownian motion with W1 ∼ N (0,G). In particular, (3.24) holds
with where ξ ∼ N (0,G).

Conversely, if (3.24) holds for any ϕ ∈ Cb,Lip(R
d) and a random vector ξ with

x2Ṽ (|ξ | ≥ x) → 0 as x → ∞, then (i)-(iv) hold.

Remark 3.7 If Ê[(|X1|2 − c)+] → 0 as c → ∞, then (i), (ii) and (iv) are satisfied,
G(A) = Ê [〈X1A, X1〉], and (iii) is equivalent to Ê[X1] = Ê[−X1] = 0. Also, if
CV(|X1|2) < ∞, then (i), (ii) and (iv) are satisfied.

For the one-dimensional case d = 1, (iv) is equivalent to lim
c→∞ Ê[X2

1 ∧ c] and

lim
c→∞ Ê[X2

1 ∧ c] are finite which are implied by (i). In general, we don’t know whether

(iv) can be derived from (i)-(iii) or not.

Proof When d = 1, this theorem is proved by Zhang [15] (c.f. Theorem 4.2), where
it is shown that limc→∞ Ê

[
Xc
1

]
and limc→∞ Ê

[−Xc
1

]
exist and are finite under the

condition (i). Note

∣
∣Ê
[〈Xc

1A, Xc
1〉
]− Ê

[〈Xc
1A, Xc

1〉
]∣
∣ ≤ |A − A|Ê[|X1|2 ∧ (dc2)].
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It is easily seen that if the limit in (3.25) exists, then it is finite andG(A) is a continuous
sub-linear function monotonic in A ∈ S(d). We first prove the direct part. Let Yn,k =
1√
n
X(

√
n)

k . By (i)-(iii) we have that

n∑

i=1

Ê

[
|Yn,i |2

]
= Ê

[∣
∣X(

√
n)

1

∣
∣2
]

≤ Ê

[
|X1|2 ∧ (dn)

]
≤ C0, (3.27)

n∑

i=1

Ê[|Yn,i |p] ≤ ε p−2
Ê

[
|X1|2 ∧ (dn)

]
+ dnV(|X1| ≥ ε

√
n) → 0, ∀p > 2

(3.28)

as n → ∞ and then ε → 0, and

n∑

i=1

(∣
∣Ê[Yn,i ]

∣
∣+ ∣

∣Ê[−Yn,i ]
∣
∣
)

= lim
c→∞

√
n
(∣
∣
∣Ê[X (

√
n)

1 ] − Ê[X (c
√
n)

1 ]
∣
∣
∣+

∣
∣
∣Ê[−X(

√
n)

1 ] − Ê[−X(c
√
n)

1 ]
∣
∣
∣
)

≤ 2
d∑

i=1

lim
c→∞

√
nÊ
[(|X1,i | ∧ (c

√
n) − √

n
)+]

≤ 2
d∑

i=1

√
n
(
lim
c→∞ Ê

[(|X1,i | ∧ (c
√
n) − x

√
n
)+]+ Ê

[(|X1,i | ∧ (x
√
n) − √

n
)+])

≤ 2
d∑

i=1

⎛

⎝
lim
c→∞ Ê[X2

1,i ∧ (c2n)]
x

+ xnV
(|X1,i | ≥ √

n
)
⎞

⎠ → 0 (3.29)

as n → ∞ and then x → ∞. Further, by (iv),

[nt]∑

k=1

Ê
[〈Yn,k A,Yn,k〉

] = [nt]
n

Ê

[
〈X(

√
n)

1 A, X (
√
n)

1 〉
]

→ G(A)t .

Denote Wn(t) = ∑[nt]
k=1 Yn,k . By Theorem 3.1, for any bounded continuous function

ϕ : D[0,1](Rd) → R,
lim
n→∞ Ê [ϕ (Wn)] = Ẽ [ϕ(W)] . (3.30)

Note

∣
∣
∣
∣Ê

[

ϕ

(
S[n·]√
n

)]

− Ê [ϕ (Wn)]

∣
∣
∣
∣ ≤ sup

x
|ϕ(x)|

n∑

k=1

V

(
Xk√
n

�= Yn,k

)

≤ sup
x

|ϕ(x)|nV (|X1| ≥ √
n
) → 0. (3.31)

(3.26) is proved.
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Now, suppose that (3.24) holds. By (3.24), for each element X1,i of X1 =
(X1,1, . . . , X1,d), i = 1, . . . , d, we have

lim
n→∞ Ê

[

ϕ

(∑n
k=1 Xk,i√

n

)]

= Ẽ [ϕ(ξi )] , ∀ϕ ∈ C1
b(R).

By Theorem 4.2 of Zhang [15], lim
c→∞ Ê[X2

1,i ∧ c] is finite, x2V (|X1,i | ≥ x
) → 0 as

x → ∞, and lim
c→∞ Ê

[
X (c)
1,i

] = lim
c→∞ Ê

[− X (c)
1,i

] = 0. So, (i)-(iii) are proved.

At last, we show (iv). Let Yn,k be defined as above. Then, (3.27)–(3.29) remain
true. Let Tn,m = ∑m

k=1 Yn,k , 1 ≤ m ≤ n and Tn = Tn,n . Then, similar to (3.11), we
have

max
n

Ê

[
|Tn|p

]
≤ max

n
Ê

[
max
m≤n

|Tn,m |p
]

≤ Cp, ∀p ≥ 2.

Hence, {|Tn|p; n ≥ 1
}
is uniformly integrable for any p ≥ 2. (3.32)

On the other hand, by (3.24) and (3.31),

lim
n→∞ Ê [ϕ (Tn)] = Ẽ

[
ϕ(ξ)

]
, ∀ϕ ∈ C1

b(R
d). (3.33)

Choosing ϕ(x) = |x|p ∧ c yields

Ẽ[|ξ |p ∧ c] = lim
n→∞ Ê

[|Tn|p ∧ c
] ≤ max

n
Ê

[
|Tn|p

]
≤ Cp.

Hence,
lim
c→∞ Ẽ[|ξ |p ∧ c] ≤ Cp is finite for any p ≥ 2. (3.34)

Let G(c)
ξ (A) = Ẽ

[
〈ξ (c)A, ξ (c)〉

]
. Note, for a > b,

∣
∣
∣〈ξ (a)A, ξ (a)〉 − 〈ξ (b)A, ξ (b)〉

∣
∣
∣ ≤ |A|(|ξ (a)| + |ξ (b)|)|ξ (a) − ξ (b)|.

It follows that
∣
∣
∣G(a)

ξ (A) − G(b)
ξ (A)

∣
∣
∣

≤ |A|
(
Ẽ
[
(|ξ (a)| + |ξ (b)|)2]

)1/2(
Ẽ
[ d∑

k=1

(ξ2k ∧ a2 − b2)+
])1/2

(3.35)

≤ C |A|
(
Ê
[|ξ |2 ∧ (da2)

])1/2
(
dÊ[|ξ |3 ∧ a3]

b

)1/2

→ 0 as a > b → ∞,

by (3.34). It follows that

Gξ (A) = lim
c→∞G(c)

ξ (A) exists and is finite.
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Now, choosing ϕ(x) = 〈x(c)A, x(c)〉 in (3.33) yields

lim
n→∞ Ê

[
〈T (c)

n A, T (c)
n 〉
]

= G(c)
ξ (A).

Note that |〈Tn A, T n − 〈T (c)
n A, T (c)

n 〉| ≤ 2|A| · |Tn|2 I {|Tn| > c}, and {|Tn|2, n ≥ 1}
is uniformly integrable by (3.32). Letting c → ∞ in the above equation yields

lim
n→∞ Ê

[〈Tn A, T n〉
] = Gξ (A).

On the other hand, note

〈Tn A, T n〉 =
n∑

k=1

〈Yn,k A,Yn,k〉 + 2
n∑

k=1

〈Tn,k−1A,Yn,k〉.

Since

Ê [〈x, X〉] ≤
d∑

i=1

(x+
i Ê[Xi ] + x−

i Ê[−Xi ]) ≤ 2|x|(|Ê[X]| + |Ê[−X]|),

we have

Ê

[

±
n∑

k=1

〈Tn,k−1A,Yn,k〉
]

≤ 2
n∑

k=1

Ê[|Tn,k−1A|](|Ê[Yn,k]| + |Ê[−Yn,k]|
)

≤ C
n∑

k=1

(|Ê[Yn,k]| + |Ê[−Yn,k]|
) → 0.

It follows that

Ê
[〈Tn A, T n〉

]−
n∑

k=1

Ê
[〈Yn,k A,Yn,k〉

]

= Ê
[〈Tn A, T n〉

]− Ê
[ n∑

k=1

〈Yn,k A,Yn,k〉
] → 0,

where the inequality is due to the independence of 〈Yn,k A,Yn,k〉, k = 1, . . . , n. We
conclude that

Ê
[〈X(

√
n)

1 A, X (
√
n)

1 〉] =
n∑

k=1

Ê
[〈Yn,k A,Yn,k〉

] → Gξ (A).
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Similar to (3.35), for
√
n ≤ b ≤ a ≤ √

n + 1 we have

|Ê[〈X(a)
1 A, X (a)

1 〉]− Ê
[〈X(b)

1 A, X (b)
1 〉]|

≤ |A|
(
Ê
[
(|X(a)

1 | + |X(b)
1 |)2]

)1/2(
Ê
[ d∑

k=1

(X2
1,k ∧ a2 − b2)+

])1/2

≤ C |A|
( d∑

k=1

(n + 1)V
(|X1,k | ≥ √

n
))1/2 → 0,

by (i) and (iii). Hence,

lim
c→∞ Ê

[〈X (c)
1 A, X (c)

1 〉] = lim
n→∞ Ê

[〈X(
√
n)

1 A, X (
√
n)

1 〉] = Gξ (A), A ∈ S(d).

(iv) is now proved. ��

3.3 Lévy’s Characterization of G-BrownianMotion

At last, we give a Lévy’s characterization of a multi-dimensional G-Brownian motion
as an application of Theorem 2.1. Let {Ht ; t ≥ 0} be a non-decreasing family of
subspaces of H such that (1) a constant c ∈ Ht and, (2) ϕ(X1, . . . , Xd) ∈ Ht

whenever X1, . . . , Xd ∈ Ht and ϕ ∈ Cl,li p. We consider a system of operators on
L (H ) = {X ∈ H ; Ê[|X |] < ∞},

Êt : L (H ) → L (Ht )

and denote Ê[X |Ht ] = Êt [X ], Ê[X |Ht ] = −Êt [−X ]. Suppose that the operators Êt

satisfy the following properties: for all X ,Y ∈ L (H ),

(i) Êt [X+Y ] = X+ Êt [Y ] in L1 if X ∈ Ht , and Êt [XY ] = X+
Êt [Y ]+X−

Êt [−Y ]
in L1 if X ∈ Ht and XY ∈ L (H );

(ii) Ê
[
Êt [X ]] = Ê[X ].

For a random vector X = (X1, . . . , Xd), we denote Êt [X] = (
Êt [X1], . . . , Êt [Xd ]

)
.

Definition 3.8 A d-dimensional process M t is called a martingale, if M t ∈ L (Ht )

and

Ê[M t |Hs] = Ms, s ≤ t .

Denote

WT (M, δ) = sup
ti

Ê
[
max
1≤i≤n

|M(ti ) − M(ti−1)| ∧ 1
]
,

where the supremum sup
ti

is taken over all ti s with

0 = t0 < t1 < · · · < tn = T , δ/2 < ti − ti−1 < δ, i = 1, . . . , n.
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The Lévy characterization of a one-dimensional G-Brownian motion under G-
expectation in a Wiener space is established by Xu and Zhang [12, 13], Gao et al. [3],
Lin [6] and Hu and Li [4] by the method of the stochastic calculus. The following
theorem gives a Lévy characterization of a d-dimensional G-Brownian motion.

Theorem 3.9 Let M t be a d-dimensional random process in (�,H ,Ht , Ê) with
M0 = 0,

for all p > 0 and t ≥ 0, CV(|M t |p) < ∞ �⇒ Ê[|M t |p] < ∞. (3.36)

Suppose that M t satisfies

(I) Both M t and −M t are martingales;
(II) There is a function G : S(d) → R such that 〈M t A, M t 〉 − G(A)t is a real

martingale for each A ∈ S(d);
(III) For any T > 0, limδ→0 WT (M, δ) = 0.

Then, G(A) is continuous and monotonic in A ∈ S(d), and M t satisfies Property (ii)
as in Definition 1.3 with M1 ∼ N (0,G).

Proof By (II),G(A)t = Ê[〈M t A, M t 〉]. So,G(A) is monotonic in A ∈ S(d).With the
same argument as in 2.2, |G(A)−G(A)| ≤ d‖A− A‖∞G(I ). So G(A) is continuous
in A ∈ S(d). Note that Ê[〈(M t − Ms)A, M t − Ms〉|Hs] = G(A)(t − s) (0 < s < t)
by (I) and (II). In particular, Ê[Mt,k − Ms,k)

2|Hs] = σ 2
k (t − s) (0 < s < t) for some

σk ≥ 0. By Lemma 5.7 of Zhang [16], we have for each k = 1, . . . , d,

Ê[|Mt,k − Ms,k |p] ≤ CV

(|Mt,k − Ms,k |p
) ≤ Cp(t − s)p/2, t ≥ s ≥ 0, p ≥ 2.

For Property (ii) in Definition 1.3, it is sufficient to show that for any 0 < t1 < · · · < tp
and ϕ ∈ Cb,Lip(R

d×p),

Ê
[
ϕ(M t1, · · · , M tp )

] = Ẽ
[
ϕ(W t1 , . . . ,W tp )

]
. (3.37)

Without loss of generality, we assume 0 < t1 < · · · < td ≤ 1. Let

kn = 2n, Zn,k = Mk/2n − M(k−1)/2n , Hn,k = Hk/2n , k = 1, . . . , kn,

and τn(t) = [t2n]. Then, Ê[Zn,k |Hn,k−1] = Ê[−Zn,k |Hn,k−1] = 0,

Ê[〈Zn,k A, Zn,k〉|Hn,k−1] = G(A)
1

2n
,

kn∑

k=1

Ê[|Zn,k |3] ≤ C
2n∑

k=1

( 1

2n
)3/2 = C

2n/2 → 0.

Hence, the sequence {Zn,k,Hn,k} satisfies the conditions (2.2)-(2.4) with ρ(t) = t .

Let Wn(·) be defined as in (2.1). By Theorem 2.1, (Wn(t1), · · · ,Wn(tp))
d→
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(W t1 , . . . ,W tp ). On the other hand,

|Wn(t) − M t | =
∣
∣
∣M t − M[2n t]/2n

∣
∣
∣

V→ 0.

So, (3.37) holds for all ϕ ∈ Cb,Lip(R
d×p). The proof is now completed.

4 Proofs

For the capacity and sub-linear expectation, we have the following lemma.

Lemma 4.1 We have

(1) if X ≤ Y in L p, then X ≤ Y in V;
(2) if X ≤ Y in V and Ê[((X − Y )+)p] < ∞, then X ≤ Y in Lq for 0 < q < p;
(3) if X ≤ Y inV, f (x) is non-decreasing continuous functionandV(|Y | ≥ M) → 0

as M → ∞, then f (X) ≤ f (Y ) in V;
(4) if p ≥ 1, X ,Y ≥ 0 in L p, X ≤ Y in L p, then Ê[X p] ≤ Ê[Y p];
(5) if Ê is countably additive, then X ≤ Y in V is equivalent to X ≤ Y in L p for

any p > 0;
(6) if Xn → 0 in L p, then Xn → 0 in V and in Lq for 0 < q < p;
(7) if Xn → 0 in V and Ê[|Xn|p] ≤ C < ∞, then Xn → 0 in Lq for 0 < q < p.

Properties (1)–(5) are proved in Zhang [16]. By noting

V(|Xn| ≥ ε) ≤ Ê[|Xn|p
ε p

, ε > 0,

|Xn|q ≤ εq + εq−p|Xn|p, and Ê[|Xn|q ] ≤ εq + εq−p
Ê[|Xn|p], (6) follows. For (7),

note that

Ê[|Xn|q ] ≤ εq + cqV(|Xn| ≥ ε) + Ê[|Xn|p]
cp−q

,

the result follows.
The following lemma gives the properties of the conditional expectation operators

Ên,k .

Lemma 4.2 [16] For any X ,Y ∈ L (H ), we have

(a) Ên,k[c] = c in L1, Ên,k[λX ] = λÊn,k[X ] in L1 if λ ≥ 0;
(b) Ên,k[X ] ≤ Ên,k[Y ] in L1 if X ≤ Y in L1;
(c) Ên,k[X ] − Ên,k[Y ] ≤ Ên,k[X − Y ] in L1;
(d) Ên,k

[[
Ên,l [X ]]] = Ên,l∧k[X ] in L1;

(e) if |X | ≤ M in L p for all p ≥ 1, then
∣
∣Ên,k[X ]∣∣ ≤ M in L p for all p ≥ 1.

To prove functional central limit theorems, we need the following Rosenthal-
type inequalities which can be proved by the same argument as in Theorem 4.1 of
Zhang [16].
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Lemma 4.3 Suppose that {Xn,i } are a set of bounded random variables, Xn,k ∈ Hn,k .
Set S0 = 0, Sk = ∑k

i=1 Xn,i . Then,

Ê

[(

max
k≤kn

(Skn − Sk)

)2 ∣
∣Hn,0

]

≤ Ê

[ kn∑

k=1

Ê[X2
n,k |Hn,k−1]

∣
∣
∣Hn,0

]

in L1, (4.1)

when Ê[Xn,k |Hn,k−1] ≤ 0 in L1, k = 1, . . . , kn. In general, for p ≥ 2, there is a
constant Cp such that

Ê

[
max
k≤kn

|Sk |p
∣
∣Hn,0

]

≤ Cp

{

Ê

[ kn∑

k=1

Ê[|Xn,k |p|Hn,k−1]
∣
∣
∣Hn,0

]

+ Ê

[
( kn∑

k=1

Ê[X2
n,k |Hn,k−1]

)p/2∣∣
∣Hn,0

]

+Ê

[
{ kn∑

k=1

((
Ê[Xn,k |Hn,k−1]

)+ + (Ê[Xn,k |Hn,k−1]
)−)}p∣∣

∣Hn,0

]}

in L1.

(4.2)

The following lemma will be used in the proof of the convergence of finite-
dimensional distribution (2.5).

Lemma 4.4 [16]Suppose that the operators Ên,k satisfy (a)and (b), Xn ∈ Hn,k′
n

⊂ H
is a d1-dimensional random vector, and Yn ∈ H is a d2-dimensional random vector.

Write Hn = Hn,k′
n
. Assume that Xn

d→ X , and for any bounded Lipschitz function
ϕ(x, y) : Rd1

⊗
Rd2 → R,

Ê

[∣
∣
∣Ê[ϕ(x,Yn)|Hn] − Ẽ[ϕ(x,Y)]

∣
∣
∣
]

→ 0, ∀x,

where X , Y are two random vectors in a sub-linear expectation space (�,H , Ẽ)with
Ṽ(‖X‖ > λ) → 0 and Ṽ(‖Y‖ > λ) → 0 as λ → ∞. Then

(Xn,Yn)
d→ (X̃, Ỹ),

where Ỹ is independent to X̃ , X̃
d= X and Ỹ

d= Y .

Proof of Theorem 2.1 Without loss of generality, we assume that |Zn,k | ≤ εn , k =
1, . . . , kn , with a sequence 0 < εn → 0, δkn = ∑kn

k=1 Ê[|Zn,k |2|Hn,k−1] ≤ 2ρ(1)

in L1, and χkn =: ∑kn
k=1

{|Ê[Zn,k |Hn,k−1]| + |Ê[Zn,k |Hn,k−1]|
}

< 1 in L1 (c.f. the
same arguments at the beginning of the proofs of Theorems 3.1 and 3.2 of Zhang [16]).
Under these assumptions, the property (g) of the conditional expectation implies that
all random variables considered above are bounded in L p for all p > 0, and then the
convergences in (2.3) and (2.4) all hold in L p for any p > 0, by Lemma 4.1.
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We first show that for any r ≥ 2, there is a positive constant Cr > 0 such that

Ê

[

max
τn(s)≤k≤τn(t)

∣
∣Sn,k − Sn,τn(s)

∣
∣r
∣
∣Hn,τn(s)

]

≤ Cr in L p, (4.3)

Ê

[

max
τn(s)≤k≤τn(t)

∣
∣Sn,k − Sn,τn(s)

∣
∣r
∣
∣Hn,τn(s)

]

≤ Cr (ρ(t) − ρ(s))r/2 + o(1) in L p,

(4.4)

Ê
[
Sn,τn(t) − Sn,τn(s)

∣
∣Hn,τn(s)

] → 0 in L p, (4.5)

Ê [Sn,τn(t) − Sn,τn(s)
∣
∣Hn,τn(s)

] → 0 in L p, (4.6)

Ê

[〈
(Sn,τn(t) − Sn,τn(s))A, Sn,τn(t) − Sn,τn(s)

〉∣
∣
∣Hn,τn(s)

]

→ G(A)
(
ρ(t) − ρ(s)

)
in L p, ∀A ∈ S(d), (4.7)

for any 0 < s < t and p > 0. Further, (4.7) holds uniformly in A ∈ S(d)with |A| ≤ c.
For (4.3)–(4.6), it is sufficient to verify the one-dimensional case. For (4.3), by

Lemma 4.3,

Ê

[

max
τn(s)≤k≤τn(t)

∣
∣Sn,k − Sn,τn(s)

∣
∣r
∣
∣Hn,τn(s)

]

≤ Cr

⎧
⎨

⎩
Ê

⎡

⎣
τn(t)∑

k=τn(s)+1

Ê[|Zn,k |r |Hn,k−1]
∣
∣
∣Hn,τn(s)

⎤

⎦

+ Ê

⎡

⎣
( τn(t)∑

k=τn(s)+1

Ê[|Zn,k |2|Hn,k]
)r/2∣∣

∣Hn,τn(s)

⎤

⎦

+ Ê

⎡

⎣
{ τn(t)∑

k=τn(s)+1

(∣
∣Ê[Zn,k |Hn,k]

∣
∣+ ∣

∣Ê[Zn,k |Hn,k]
∣
∣
)}r ∣∣

∣Hn,τn(s)

⎤

⎦

⎫
⎬

⎭

≤ Cr

{

εr−2
n Ê

[
δkn

∣
∣
∣Hn,τn(s)

]
+ Ê

⎡

⎢
⎣

⎛

⎝
τn(t)∑

k=τn(s)+1

Ê[|Zn,k |2|Hn,k]
⎞

⎠

r/2
∣
∣
∣Hn,τn(s)

⎤

⎥
⎦

+ Ê

[
χr
kn

∣
∣
∣Hn,τn(s)

]}

(4.8)

≤ Cr

{
2ρ(1) + (2ρ(1))r/2 + 1

}
in L1.

Note that the random variable max
τn(s)≤k≤τn(t)

|Sn,k − Sn,τn(s)| is a bounded (≤ (τn(t) −
τn(s))εn). By the property (g) of Ên,k , Ê

[
max

τn(s)≤k≤τn(t)
|Sn,k − Sn,τn(s)|r

∣
∣Hn,τn(s)

]
is

bounded in L p for any p > 0. Hence, by (1) and (2) of Lemma 4.1, (4.3) is proved.
By this inequality and Lemma 4.1, it is sufficient to consider the case of p = 1 for
(4.4)–(4.7).

123



378 L.-X. Zhang

It is easily shown that

Ê[±Zn,k |Hn,k] ≤ ∣
∣Ê[Zn,k |Hn,k]

∣
∣+ ∣

∣Ê[Zn,k |Hn,k]
∣
∣ in L1.

Then,

Ê

⎡

⎣± (Sn,τn(t) − Sn,τn(s)
)−

τn (t)∑

k=τn(s)+1

∣
∣Ê[Zn,k |Hn,k ]

∣
∣+ ∣

∣Ê[Zn,k |Hn,k ]
∣
∣
∣Hn,τn(s)

⎤

⎦

= Ê

⎡

⎣Ê
[ τn(t)∑

k=τn(s)+1

{± Zn,k − ∣
∣Ê[Zn,k |Hn,k ]

∣
∣− ∣

∣Ê[Zn,k |Hn,k ]
}∣
∣Hn,τn (t)−1

]∣
∣
∣Hn,τn (s)

⎤

⎦

≤ Ê

⎡

⎣Ê
[ τn(t)−1∑

k=τn(s)+1

{± Zn,k − ∣
∣Ê[Zn,k |Hn,k ]

∣
∣− ∣

∣Ê[Zn,k |Hn,k ]
}∣
∣Hn,τn(t)−1

]∣
∣
∣Hn,τn(s)

⎤

⎦

= Ê

⎡

⎣
τn(t)−1∑

k=τn(s)+1

{± Zn,k − ∣
∣Ê[Zn,k |Hn,k ]

∣
∣− ∣

∣Ê[Zn,k |Hn,k ]
}∣∣
∣Hn,τn(s)

⎤

⎦

≤ · · · ≤ 0 in L1.

It follows that

Ê
[± (Sn,τn(t) − Sn,τn(s)

) ∣
∣Hn,τn(s)

]

≤ Ê

⎡

⎣
τn(t)∑

k=τn(s)+1

∣
∣Ê[Zn,k |Hn,k]

∣
∣+ ∣

∣Ê[Zn,k |Hn,k]
∣
∣
∣Hn,τn(s)

⎤

⎦ (4.9)

≤ Ê
[
χkn

∣
∣Hn,τn(s)

] → 0 in L1,

which implies (4.5) and (4.6).
For (4.7), we first note that

τn(t)∑

k=τn(s)+1

Ê

[〈
Zn,k A, Zn,k

〉∣∣
∣Hn,k−1

]
→ G(A)

(
ρ(t) − ρ(s)

)
in L p, (4.10)

for any p > 0, by condition (2.4). Without loss of generality, we assume s = 0, t = 1.
Note

〈Skn A, Skn 〉 −
kn∑

k=1

Ê
[〈Zn,k A, Zn,k〉

∣
∣Hn,k−1

]

=
kn∑

k=1

(
〈Zn,k A, Zn,k〉 − Ê

[
〈Zn,k A, Zn,k〉

∣
∣
∣Hn,k−1

])
+ 2

kn∑

k=1

〈Sn,k−1A, Zn,k〉,

Ê
[±〈Sn,k−1A, Zn,k〉

∣
∣Hn,k−1

]

≤ 2|Sn,k−1A| {∣∣Ê [Zn,k
∣
∣Hn,k−1

]∣
∣+ ∣

∣Ê
[−Zn,k

∣
∣Hn,k−1

]∣
∣
}
in L1.
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And then

Ê

[

±
( kn∑

k=1

〈Sn,k−1A, Zn,k〉
)
∣
∣Hn,0

]

≤ 2Ê

[ kn∑

k=1

|Sn,k−1A| {∣∣Ê [Zn,k
∣
∣Hn,k−1

]∣
∣+ ∣

∣Ê [Zn,k
∣
∣Hn,k−1

]∣
∣
} ∣
∣Hn,0

]

in L1,

similar to (4.9). It follows that

∣
∣
∣
∣
∣
Ê

[
〈Skn A, Skn 〉 −

kn∑

k=1

Ê
[〈Zn,k A, Zn,k〉

∣
∣Hn,k−1

] ∣∣
∣Hn,0

]
∣
∣
∣
∣
∣

≤ 2Ê

[

χkn max
k≤kn

|Sn,k A|
∣
∣
∣Hn,0

]

in L1.

Taking the sub-linear expectation yields

Ê

[∣
∣
∣
∣
∣
Ê

[
〈Skn A, Skn 〉 −

kn∑

k=1

Ê
[〈Zn,k A, Zn,k〉

∣
∣Hn,k−1

] ∣∣
∣Hn,0

]
∣
∣
∣
∣
∣

]

≤ 2Ê
[
χkn max

k≤kn
|Sn,k A|

]
≤ 2

(

Ê[χ2
kn ]Ê[max

k≤kn
|Sn,k A|2]

)1/2

≤ C
(
Ê[χ2

kn ]
)1/2 → 0,

by (4.3) and the fact that χkn → 0 in L p. By noting (4.10), we have

Ê

[∣
∣
∣Ê
[
〈Skn A, Skn 〉 − G(A)ρ(1)

∣
∣
∣Hn,0

]∣
∣
∣
]

→ 0.

(4.7) is proved. By the same argument as in Remark 2.2, (4.7) holds uniformly in
A ∈ S(d) with |A| ≤ c.

For (4.4), it is easily seen the first and the third terms in (4.8) converge to 0 in
L1, and the second term converges to

(
ρ(t) − ρ(s)

)r/2 by (4.10). And hence, (4.4) is
proved. The proof of (4.3)–(4.7) is completed.

Now, let ωδ(x) = sup|t−s|<δ,t,s∈[0,1] |x(t) − x(s)|. Assume 0 < δ < 1/10. Let
0 = t0 < t1 . . . < tK = 1 such that tk − tk−1 = δ, and let tK+1 = tK+2 = 1. For any
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ε > 0, it is easily seen that

lim sup
n→∞

V (wδ (Wn) ≥ 3ε)

≤ lim sup
n→∞

2
K−1∑

k=0

V

(

max
s∈[tk ,tk+2]

|Sn,τn(s) − Sn,τn(tk )| ≥ ε

)

≤ 2

ε4

K−1∑

k=0

lim sup
n→∞

Ê

[

max
s∈[tk ,tk+2]

|Sn,τn(s) − Sn,τn(tk)|4
]

≤ C

ε4

K−1∑

k=0

(
ρ(tk+2) − ρ(tk)

)2 ≤ Cρ(1)

ε4
sup

|t−s|≤2δ

∣
∣ρ(t) − ρ(s)

∣
∣

by (4.4). It follows that for any ε > 0,

lim
δ→0

lim sup
n→∞

V (wδ (Wn) ≥ ε) = 0. (4.11)

Hence, the sequence {Wn(·); n ≥ 1} is tight, and so, for (2.6) it is sufficient to show
(2.5) (c.f. [1, 16]). Note that (2.5) is equivalent to

(
Sn,τn(t1) − Sn,τn(t0), . . . , Sn,τn(td ) − Sn,τn(td−1)

)

d→
(
W(ρ(t1)) − W(ρ(t0)), . . . ,W(ρ(td)) − W(ρ(td−1))

)
.

By Lemma 4.4 and the induction, it is sufficient to show that for any 0 ≤ s < t ≤ 1
and a bounded Lipschitz function ϕ(u, x),

Ê
[∣
∣Ê
[
ϕ
(
u, Sn,τn(t) − Sn,τn(s)

)∣
∣Hn,τn(s)

]− Ẽ
[
ϕ
(
u,W(ρ(t)) − W(ρ(s))

)]∣
∣
] → 0.
(4.12)

For showing (4.12), without loss of generality we assume s = 0 and t = 1, |ϕ(u, x)−
ϕ(u, y)| ≤ |x − y|, |ϕ(u, x)| ≤ 1. Let V (t, x) = V u(t, x) be the unique viscosity
solution of the following equation,

∂t V
u + 1

2
G(D2V u) = 0, (t, x) ∈ [0, � + h] × R, V u|t=�+h = ϕ(u, x),

where � = ρ(1)−ρ(0). Without loss of generality, we assume that there is a constant
ε > 0 such that

G(A) − G(A) ≥ tr(A − A)ε for all A, A ∈ S(d) with A ≥ A, (4.13)

for otherwise we can add a random vector ε · Ê[|Zn,k |2
∣
∣Hn,k−1]ξn,k to Zn,k , where

ξn,k has a d-dimensional standard normal N (0, Id×d) distribution and is independent
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to Zn,1, . . . , Zn,k , ξn,1, . . . , ξn,k−1. Under (4.13) by the interior regularity of V
u (c.f.

Theorem C.4.5 of Peng[10]),

‖V u‖C1+α/2,2+α([0,ρ+h/2]×Rd ) < ∞, for some α ∈ (0, 1). (4.14)

According to the definition of G-normal distribution, we have V (t, x) = V u(t, x) =
Ẽ
[
ϕ(u, x + √

� + h − tξ)
]
, where ξ ∼ N (0,G) under Ẽ. In particular,

V (h, 0) = Ẽ
[
ϕ(u,

√
�ξ)

]
, V (� + h, x) = ϕ(u, x).

|V (t, x) − V (t, y)| ≤ |x − y|, |V (t, x) − V (s, x)| ≤ |s − t |Ê[|ξ |]√
� + h − t + √

� + h − s
.

(4.15)

By (4.15), |V (�+h, x)−V (�, x)| ≤ √
hÊ[|ξ |] and |V (h, 0)−V (0, 0)| ≤ √

hÊ[|ξ |].
So, for (4.12) it is sufficient to show that

Ê

[∣
∣
∣Ê[V (�, Skn )|Hn,0] − V (0, 0)

∣
∣
∣
]

→ 0. (4.16)

By (4.15) again and (4.14), for all (t, x) ∈ [0, � + h/2] × R
d ,

|DV (t, x)| ≤ C, |∂t V (t, x)| ≤ C, |D2V (t, x)| ≤ |D2V (0, 0)| + C |x|α ≤ C + C |x|α.

For an integer m large enough, we define ti = i/m, Yn,i = Sn,τn(ti ) − Sn,τn(ti−1),
δ̃i = ρ(ti ), T i = ∑i

j=1 Yn, j , i = 1, . . . ,m. Applying the Taylor’s expansion yields

V (�, Skn ) − V (0, 0)

=
m−1∑

i=0

{[V (̃δi+1, T i+1) − V (̃δi , T i+1)] + [V (̃δi , T i+1) − V (̃δi , T i )]
}

=:
m−1∑

i=0

{
I in + J in

}
, with

J in = ∂t V (̃δi , T i )
(
δ̃i+1 − δ̃i

)+ 〈
DV (̃δi , T i ),Yn,i+1

〉+ 1

2

〈
Yn,i+1D

2V (̃δi , T i ),Yn,i+1
〉

=
{

∂t V (̃δi , T i ) + 1

2
G
(
D2V (̃δi , T i )

)} (
δ̃i+1 − δ̃i

)

+ 1

2

{〈
Yn,i+1D

2V (̃δi , T i ),Yn,i+1
〉− Ê

[〈
Yn,i+1D

2V (̃δi , T i ),Yn,i+1
〉∣∣
∣Hn,τn(ti )

] }

+
{〈
DV (̃δi , T i ),Yn,i+1

〉}

+ 1

2

{
Ê

[〈
Yn,i+1D

2V (̃δi , T i ),Yn,i+1
〉∣∣
∣Hn,τn(ti )

]
− G

(
D2V (̃δi , T i )

)(
δ̃i+1 − δ̃i

)}

=: 0 + J in,1 + J in,2 + J in,3
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and

I in = (
δ̃i+1 − δ̃i

) [(
∂t V (̃δi + γ

(
δ̃i+1 − δ̃i

)
, T i+1) − ∂t V (̃δi , T i+1)

)

+(∂t V (̃δi , T i+1) − ∂t V (̃δi , T i )
)]

+ 1

2

〈
Yn,i+1

[
D2V (̃δi , T i + βYn,i+1) − D2V (̃δi , T i )

]
,Yn,i+1

〉
,

where γ and β are between 0 and 1.
By (4.14), it is easily seen that

|I in| ≤ C
∣
∣̃δi+1 − δ̃i

∣
∣1+α/2 + C (̃δi+1 − δ̃i )|Yn,i+1|α + C |Yn,i+1|2+α

≤ C (ρ(ti+1) − ρ(ti ))
1+α/2 + o(1) in L1,

by (4.4), where C is a positive constant which does not depend on ti s.
For J in,1, note

Ê

[
J in,1

∣
∣Hn,τn(ti )

]
= 0 in L1.

It follows that

Ê

[
m−1∑

i=0

J in,1

∣
∣
∣Hn,0

]

= Ê

[
m−2∑

i=0

J in,1 + Ê

[
Jm−1
n,1

∣
∣Hn,τn(tm−1)

] ∣
∣
∣Hn,0

]

Ê

[
m−2∑

i=0

J in,1

∣
∣
∣Hn,0

]

= . . . = 0 in L1.

For J in,2, we have

Ê[J in,2|Hn,0] = Ê

[
Ê[J in,2|Hn,τn(ti )]

∣
∣Hn,0

]

≤ Ê

[
|DV (̃δi , Ti ))|

{|Ê[Yn,i+1|Hn,τn(ti )]| + |Ê[Yn,i+1|Hn,τn(ti )]|
} ∣∣
∣Hn,0

]

≤ CÊ

[∣
∣Ê[Yn,i+1|Hn,τn(ti )]

∣
∣+ ∣

∣Ê[Yn,i+1|Hn,τn(ti )]
∣
∣
∣
∣
∣Hn,0

]
→ 0 in L1,

by (4.5) and (4.6). Similarly, Ê[−J in,2|Hn,0] ≤ o(1) in L1.

For J in,3, we have

|J in,3| ≤ 1

2
|D2V (̃δi , T i )| sup

|A|≤1

∣
∣
∣Ê
[〈
Yn,i+1A,Yn,i+1

〉∣∣
∣Hn,τn(ti )

]
− G(A)

(
δ̃i+1 − δ̃i

)∣∣
∣

≤ (C + C |T i |α) sup
|A|≤1

∣
∣
∣Ê
[〈
Yn,i+1A,Yn,i+1

〉∣∣
∣Hn,τn(ti )

]
− G(A)

(
δ̃i+1 − δ̃i

)∣∣
∣

≤ C sup
|A|≤1

∣
∣
∣Ê
[〈
Yn,i+1A,Yn,i+1

〉∣∣
∣Hn,τn(ti )

]
− G(A)

(
δ̃i+1 − δ̃i

)∣∣
∣ = o(1) in L1
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by (4.3) and (4.7), where C is a positive constant which does not depend on ti s.
Combining the above arguments yields

∣
∣
∣Ê[V (�, Skn )|Hn,0] − V (0, 0)

∣
∣
∣

≤
m−1∑

i=0

{
Ê[J in,2|Hn,0] + Ê[−J in,2|Hn,0] + Ê[|J in,3|

∣
∣Hn,0] + Ê[|I in|

∣
∣Hn,0]

}

≤ C
m−1∑

i=0

(ρ(ti+1) − ρ(ti ))
1+α/2 + o(1)

≤ C max
i

(
ρ((i + 1)/m) − ρ(i/m)

)α/2
� + o(1) in L1.

The proof of (4.16) is completed by letting m → ∞.
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