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Abstract
The Gruenberg–Kegel graph (or the prime graph) Γ (G) of a finite group G is a
graph, in which the vertex set is the set of all prime divisors of the order of G and
two different vertices p and q are adjacent if and only if there exists an element of
order pq in G. The paw is a graph on four vertices whose degrees are 1, 2, 2, 3. We
consider the problem of describing finite groups whose Gruenberg–Kegel graphs are
isomorphic as abstract graphs to the paw. For example, the Gruenberg–Kegel graph of
the alternating group A10 of degree 10 is isomorphic as abstract graph to the paw. In
this paper, we describe finite non-solvable groups G whose Gruenberg–Kegel graphs
are isomorphic as abstract graphs to the paw in the case when G has no elements of
order 6 or the vertex of degree 1 of Γ (G) divides the order of the solvable radical of
G.
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1 Introduction

Let G be a finite group. Denote by π(G) the set of all prime divisors of the order of G.
If |π(G)| = n, then G is called n-primary. The Gruenberg–Kegel graph (or the prime
graph) Γ (G) of G is a graph with the vertex set π(G), in which two different vertices
p and q are adjacent if and only if there exists an element of order pq in G. The
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graph Γ (G) is one of significant arithmetical invariants of a group G. Studying finite
groups by the properties of their Gruenberg–Kegel graphs is an important direction
in finite group theory. In some papers, characterizations of finite groups in terms of
graph-theoretical properties of their Gruenberg–Kegel graphs were obtained (see, for
example, [1,2,9,10,19–21,26,33–35]). This paper is of such type.

The first author described finite groups with the same Gruenberg–Kegel graph as
groups Aut(J2) [17] and A10 [18], respectively. The Gruenberg–Kegel graphs of all
these groups are isomorphic as abstract graphs to the paw, i. e., a graph on four vertices
whose degrees are 1, 2, 2, 3. Thus, the paw has the following form:
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�

�

�
� � �

.

We establish a more general problem: to describe finite groups whose Gruenberg–
Kegel graphs are isomorphic as abstract graphs to the paw.

As a part of the solution of this problem, we have proved in [23] that if G is a finite
non-solvable group and graph Γ (G) as an abstract graph is isomorphic to the paw,
then the quotient group G/S(G) (where S(G) is the solvable radical of G) is almost
simple, and we have classified all finite almost simple groups whose the Gruenberg–
Kegel graphs as abstract graphs are isomorphic to subgraphs of the paw. In this paper,
we continue the study of the problem.

Let G be a finite non-solvable group, and the graph Γ (G) as an abstract graph is
isomorphic to the paw. Then, the graph Γ (G) has the following form:

��
�

�

�
� � �

r

s
p q

,

where p, q, r , and s are some pairwise distinct primes.
Let S = S(G) �= 1, and G = G/S. By [23, Theorem 1], G is almost simple. In

this paper, we consider the case when G has no elements of order 6 or q divides |S|.
We prove the following three theorems.

Theorem 1.1 If 3 does not divide |G|, then up to permutation of the numbers r and s
one of the following statements holds:

(1) G ∼= Aut(Sz(32)), {r , s} = {2, 5}, {p, q} = {31, 41}, p ∈ π(S) ⊆ {2, p},
O2′,2(S)/O(S) is an elementary abelian 2-group, F∗(G/O2′,2(S)) = P × E ,
where P is a p-group and E ∼= Sz(32), and either S = O(G) or the group E
induces on O2′,2(S)/O2′(S) a direct sum of modules, each of which is isomorphic
to the natural 4-dimensional G F(32)Sz(32)-module;

(2) G ∼= Sz(8), r = 2, {p, s} = {5, 7}, q = 13, π(S) = {2, p}, every 2-chief factor of
G as a G-module is isomorphic to the 4-dimensional or the 16-dimensional irre-
ducible G F(8)Sz(8)-module; moreover, the second possibility always appears;
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(3) G ∼= Sz(32) or Aut(Sz(32)), r = 2, {p, s} ⊆ {5, 31, 41}, q ∈ {31, 41},
π(S) = {2, p}, every 2-chief factor of G ′ as a G

′
-module is isomorphic to the 4-

dimensional, one of two 16-dimensional, or one of two 64-dimensional irreducible
G F(32)Sz(32)-modules;

(4) G ∼= Sz(8), {r , s} = {5, 7}, p = 2, q = 13, 5 ∈ π(S) ⊆ {5, p}, G/O2(S) =
P ◦ E , where P is a 2-group and E ∼= 2.Sz(8) or (2× 2).Sz(8), and the group E
induces on every 5-chief factor of O2(G) the faithful irreducible 8-dimensional
G F(5)2.Sz(8)-module.

Remark 1.2 We can prove that all cases from the conclusion of Theorem 1.1 are
realizable. Statement (1) holds for a group Zp × (220 � Aut(Sz(32))), where p ∈
{31, 41}. Statement (2) holds for groups Zp × (212 � Sz(8)) and Zp × (248 � Sz(8)),
where p ∈ {5, 7}. Statement (3) holds for groupsZp × (2m

� Sz(32)) andZp × (2m
�

Aut(Sz(32))), where p ∈ {5, 31, 41} and m ∈ {20, 80, 320}. Statement (4) holds for
a group 58 � 2.Sz(8).

Theorem 1.3 If 3 divides |G| and G has no elements of order 6, then one of the
following statements holds:

(1) q = 2, G ∼= L2(2n), S = O2′,2(G), O(G) = Op(G), S/O(G) is an elementary
abelian 2-group which is either trivial or isomorphic as a G-module to a direct
sum of the natural G F(2n)G-modules, and one of the following statements holds:

(1a) n = 4, p = 17 and {r , s} = {3, 5};
(1b) n is a prime, n ≥ 5, p = 2n − 1, {r , s} = {3, (2n + 1)/3};
(2) q = 2, S = Op(G), G ∼= L2(p), p ≥ 31, p ≡ ε5(mod 12), ε ∈ {+,−}, p − ε1

is a power of 2, and 3 ∈ {r , s} = π((p + ε1)/2);
(3) q = 3, S = Op(G), and one of the following statements holds:

(3a) G ∼= PGL2(9), p > 5, and {r , s} = {2, 5};
(3b) G is isomorphic to L2(81), PGL2(81) or L2(81).23, p = 41, and {r , s} = {2, 5};
(3c) G ∼= L2(3n) or PGL2(3n), n is an odd prime, p = (3n − 1)/2, and {r , s} =

π(3n + 1).

Remark 1.4 We can prove that all cases from the conclusion of Theorem 1.3 are
realizable. Statement (1a) holds for the group Z17 × L2(16). Statement (1b) holds for
groupsZ2n−1× L2(2n), where n ≥ 5, 2n −1 and (2n +1)/3 are primes. Statement (2)
holds for the group Z31 × L2(31). Statement (3a) holds for groups Zp × PGL2(9),
where p > 5 is a prime. Statement (3b) holds for groups Z41 × L2(81), Z41 ×
PGL2(81) and Z41 × L2(81).23. Statement (3c) holds for groups Zp × L2(3n) and
Zp × PGL2(3n), where n and (3n − 1)/2 are odd primes, and |π(3n + 1)| = 2.

In the proof of Theorem 1.3, we use the classification of the finite non-solvable
groups without elements of order 6 obtained by the authors in [22, Theorem 2].

Theorem 1.5 If G contains an element of order 6 and q divides |S|, then one of the
following statements holds:

(1) q does not divide |G|, G/Op(G) = A � B, where A is a non-cyclic abelian
q-group, B = Op(B)� B1, F∗(B) = Op(B)× F∗(B1), and one of the following
statements holds:
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(1a) F∗(B1) ∼= SL2(5), p = 3, and {r , s} = {2, 5};
(1b) F∗(B1) ∼= SL2(7), p = 3, and {r , s} = {2, 7};
(1c) F∗(B1) ∼= SL2(9), p = 3, and {r , s} = {2, 5};
(1d) F∗(B1) ∼= SL2(17), p = 3, and {r , s} = {2, 17};
(1e) F∗(B1) ∼= SL2(5), p = 5, {r , s} = {2, 3}, and AB1 is a Frobenius group with

kernel A and complement B1;
(2) q is a Mersenne or Fermat prime, q ≥ 31, p = 2, π(q2 − 1) = {2, r , s}, S =

O2,2′,2(S), O2,2′(S)/O2(S) is a non-cyclic abelian q-group,G/O2,2′(S) = P◦E ,
where P is a 2-group, E ∼= SL2(q), and the group E induces on every q-chief
factor of O2(G) the 2-dimensional natural G F(q)SLn(q)-module.

Remark 1.6 We can prove that all cases from the conclusion of Theorem 1.5 are
realizable. Statement (1a) holds for a group Z3 × (q2

� SL2(5)), where q > 5 is a
prime and q ≡ ±1 (mod 10), and for a group Z3 × (q4

� SL2(5)), where q > 5 is
a prime. Statement (1b) holds for a group Z3 × (q6

� SL2(7)), where 3 < q �= 7
is a prime and q ≡ ±7 (mod 16), and for a group Z3 × (q12

� SL2(7)), where
3 < q �= 7 is a prime and q ≡ ±3,±5 (mod 16). Statement (1c) holds for a group
Z3 × (q4

� SL2(9)), where q > 5 is a prime. Statement (1d) holds for a group
Z3 × (q8

� SL2(17)), where 3 < q �= 17 is a prime and q ≡ ±1,±2 ± 4,±8
(mod 16), and for a group Z3 × (q16

� SL2(17)), where 3 < q �= 17 is a prime.
Statement (1e) holds for a group Z5 × (q2

� SL2(5)), where q > 5 is a prime and
q ≡ ±1 (mod 10), and for a group Z5 × (q4

� SL2(5)), where q > 5 is a prime and
q ≡ ±3 (mod 10). Statement (2) holds for a group 312 � SL2(31).

In view of the obtained results, in the further study of our problem for a finite non-
solvable group G, we can assume that G has an element of order 6 and q does not
divide |S|.

2 Preliminaries

Our notation and terminology are mostly standard and can be found in [3,5,8,16].
For a finite group G, G(∞), Soc(G) and E(G) denote the last member of the derived
series, the socle and the layer (the subgroup generated by all subnormal quasi-simple
subgroups) of G, respectively. If A and B are groups, then A.B, A : B (or A � B), and
A ·B denote an extension, a split extension (or a semidirect product), and a non-split
extension of the group A by the group B, respectively. By A ◦ B denote the central
product of groups A and B over their largest common central subgroup. If n is a positive
integer and p is a prime, then pn denote also the elementary abelian p-group of order
pn . A finite group G is called a Frobenius group with kernel A and complement B if
G = A � B, where groups A and B are non-trivial and CA(b) = 1 for any non-trivial
element b of B. A finite group G is called a 2-Frobenius group if there exist subgroups
A, B, and C in G such that G = ABC , A and AB are normal subgroups in G, and
AB and BC are Frobenius groups with kernels A and B and complements B and C ,
respectively.
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If K and L are two neighboring terms in a chief series of a finite group G such that
K < L ≤ S(G), then the (chief) factor V = L/K is an elementary abelian p-group
for some prime p; it is called a p-chief factor of G.

Consider some results, which are used in the proofs of the theorems.

Lemma 2.1 (Gruenberg–Kegel Theorem [31, Theorem A]). If G is a finite group with
disconnected Gruenberg–Kegel graph, then one of the following statements holds:

(1) G is a Frobenius group:
(2) G is a 2-Frobenius group:
(3) G is an extension of a nilpotent group by a group A, where I nn(P) ≤ A ≤

Aut(P) for a simple non-abelian group P.

Lemma 2.2 ([8, Remark on p. 377]). Suppose that G is a finite group whose Sylow
2-subgroup is isomorphic to a (generalized) quaternion group and G = G/O(G).
Then, one of the following statements holds:

(a) G is isomorphic to a Sylow 2-subgroup of G;
(b) G is isomorphic to the group 2 . A7;
(c) G is an extension of the group SL2(q), where q is odd, by a cyclic group whose

order is not divisible by 4.

Lemma 2.3 ([29, Proposition 3.2]). Suppose that G is a finite group, H � G, G/H ∼=
L2(q), where q > 5 is odd, and CH (t) = 1 for an element t of order 3 from G. Then,
H = 1.

Lemma 2.4 ([13, Theorem 8.2], [29, Proposition 4.2]). Suppose that G is a finite
group, 1 �= H � G, and G/H ∼= L2(2n) for n ≥ 2. Assume that CH (t) = 1 for
some element t of order 3 of G. Then, H = O2(G) and H is the direct product of
minimal normal subgroups of order 22n in G such that each of them as a G/H-module
is isomorphic to the natural G F(2n)SL2(2n)-module.

Lemma 2.5 ([25, Theorem, Remark 1]). Suppose that G is a finite group, 1 �= H � G,
G/H ∼= Sz(q) for q ≥ 8, and CH (t) = 1 for some element t of order 5 from G. Then,
H = O2(G) and H is the direct product of minimal normal subgroups of order q4 of G
such that each of them as a G/H-module is isomorphic to the natural 4-dimensional
G F(q)Sz(q)-module.

Lemma 2.6 ([12]). If G is a finite simple 3-primary group, then G is isomorphic to
L2(q) for q ∈ {5, 7, 8, 9, 17}, L3(3), U3(3), U4(2).

Suppose that G is a finite group and V is a kG-module for a finite field k of
characteristic t . The action of G on V and the pair (G, V ) are called p′-semiregular
for a fixed prime p if any non-trivial p′-element of G acts fixed point free on V \ {0}.
This action and the pair (G, V ) are called separable if t does not divide |G| and
inseparable otherwise (when t = p).

LetR be the set of all primes r such that r − 1 = 2a · 3b for a ≥ 2 and b ≥ 0 and
(r + 1)/2 is a prime. It is known that 5, 13, 37, 73, 193, 1153 ∈ R, but it is unknown
whether R is infinite or not.
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Lemma 2.7 ([7, Theorem 5.6]). Suppose that G is a non-trivial finite group and G ′ =
G. If (G, V ) is a separable p′-semiregular pair, then one of the following statements
holds:

(a) p = 2 and there exists a family K1, . . . , Km of normal 2-subgroups of G with
the following properties:

(a1)
⋂m

i=1 Ki = 1;
(a2) any quotient group G/Ki either is isomorphic to SL2(5) or has the form 21+4− .A5;
(a3) if G/Ki ∼= G/K j ∼= SL2(5), then Ki = K j ;
(b) p = 3 and G ∼= SL2(r), where r ∈ R ∪ {7, 9, 17};
(c) p ≥ 5 and G ∼= SL2(5).

Conversely, if (G, p) satisfies any of conditions (a)–(c), then there exists a faithful
irreducible G-module V over a field of characteristic not dividing |G| such that the
pair (G, V ) is p′-semiregular.

Lemma 2.8 ([24, Theorem 1], [15, Theorem VII.1.16]). Suppose that q is a power of
a prime p, G is a finite group, H := Op(G) �= 1, and G/H ∼= SLn(q) for n ≥ 2.
Assume that CH (t) = 1 for some element t of order 3 from G. Then, any p-chief factor
of G as a H-module is isomorphic to the n-dimensional natural G F(q)SLn(q)-module
or to the contragredient to it.

Lemma 2.9 (Thompson Theorem [8, Theorem 5.3.11]). Let p be a prime and P be
a finite p-group. Then, P possesses a characteristic subgroup C , named a critical
subgroup of P , with the following properties:

(a) C/Z(C) is elementary abelian;
(b) [P, C] ≤ Z(C);
(c) CP (C) = Z(C);
(d) every non-trivial p′-automorphism of P induces a non-trivial automorphism of

C.

Lemma 2.10 ([15, TheoremVII.1.16]).Suppose that G is a finite group, F = G F(pm)

is the field of definition of characteristic p > 0 for an absolutely irreducible FG-
module V , 〈σ 〉 = Aut(F),V0 denotes the module V considered as a G F(p)G-module,
and W = V0 ⊗G F(p) F. Then,

(1) W = ⊕m
i=1 V σ i

,where V σ i
is the module algebraically conjugate to V by means

of σ i ;
(2) V0 is an irreducible G F(p)G-module and, in particular, W is realized as the

irreducible G F(p)G-module V0;
(3) Up to isomorphism of modules, irreducible G F(p)G-modules are in one-to-one

correspondence with algebraically conjugacy classes of irreducible G F(p)G-
modules, where G F(p) is an algebraic closure of the field G F(p).

Lemma 2.11 Let p, q, r be pairwise distinct primes and G be a finite group of the
form G = P � (T � 〈x〉), where P is a non-trivial p-group, T is a q-group, |x | = r
and CG(P) = Z(P). Let C be a critical subgroup of T and [T , 〈x〉] �= 1. Then, either
CP (x) �= 1, or Z(T ) ≤ Z(C) ≤ CT (x), q = 2, r = 1 + 2n is a Fermat prime, and
[C, 〈x〉] is an extraspecial group of order 22n+1.
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Proof Suppose thatCP (x) = 1. Showfirst that Z(T ) ≤ Z(C) ≤ CT (x). The inclusion
Z(T ) ≤ Z(C) follows from Lemma 9(c). Suppose that [Z(C), 〈x〉] �= 1. By [8,
Theorem 5.2.3], we have Z(C) = [Z(C), 〈x〉] × CZ(C)(x), hence [Z(C), 〈x〉]〈x〉 is a
Frobenius group. Now by [27, Lemma 1], we obtain that CP (x) �= 1, a contradiction.
Therefore, Z(T ) ≤ Z(C) ≤ CT (x).

Let C1 := [C, 〈x〉]. By Lemma 2.9 and [8, Theorem 5.3.6], we have C1 =
[C1, 〈x〉] �= 1, and C1/Z(C1) ∼= C1Z(C)/Z(C) has exponent q. By [8, Theorems
5.1.4, 5.3.2], we can assume that P is elementary abelian and P is a faithful irre-
ducible G F(p)C1〈x〉-module. Let K be an algebraic closure of the field G F(p). By
Lemma 2.10, there exists an algebraically conjugacy class {W1, . . . , Wm} of (abso-
lutely) irreducible K C1〈x〉-modules such that P⊗G F(p) K = ⊕m

i=1 Wi (hereG F(pm)

is the field of definition for the K C1〈x〉-modules W1, . . . , Ws). It is clear that W1 is
a faithful K C1〈x〉-module and CW1(x) = 1. Now, arguing as in the proof of lemma
from [11], we obtain all remaining statements of lemma.

Lemma is proved. ��
Lemma 2.12 ([6, Lemma 4]). Suppose that G is a finite quasi-simple group, F is a
field of characteristic p > 0, V is a faithful absolutely irreducible FG-module, and β

is a Brauer character of the module V . If g is an element of G of prime order coprime
to p|Z(G)|, then

dim CV (g) = (β|〈g〉, 1|〈g〉) = 1

|g|
∑

x∈〈g〉
β(x).

Lemma 2.13 ([32, Lemma 6.(iii)]). Let a, s, t be positive integers. Then,

(a) (as − 1, at − 1) = a(s,t) − 1,
(b)

(
as + 1, at + 1

) =
{

a(s,t) + 1, if s/(s, t)and t/(s, t)are odd,

(2, a + 1), otherwise,

(c)

(
as − 1, at + 1

) =
{

a(s,t) + 1, if s/(s, t)is even and t/(s, t)is odd,

(2, a + 1), otherwise.

Lemma 2.14 (Zsigmondy’s Theorem [36]). Let q and n be integers both greater than 1.
Then, there exists a prime r dividing qn −1 and not dividing qi −1 for each 1 ≤ i < n
such that r ≡ 1 (mod n), except for the following cases: q = 2 and n = 6; q = 2k −1
for some prime k and n = 2.

3 Proof of Theorem 1.1

Let G be a group satisfying the conditions of Theorem 1.1 and T be a Sylow 2-
subgroup of G. By [23, Theorem 1], G = G/S ∼= Sz(8), Sz(32) or Aut(Sz(32)). By
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[5], Γ (G) is a completely disconnected graph (coclique) if G = Soc(G) and has the
form

� � � �

2 5 31 41

if G ∼= Aut(Sz(32)).
Suppose that r and s both do not divide |S|. Then, r and s are adjacent vertices of

the graph Γ (G). Hence, G ∼= Aut(Suz(32)), {r , s} = {2, 5} and π(S) ⊆ {p, q} =
{31, 41}, therefore S = O(G).

Suppose that q ∈ π(S) and Q ∈ Sylq(S). By the Frattini argument, G = SNG(Q),
and we can assume that T < NG(Q). Then, T contains a subgroup isomorphic to
Z2 × Z2; therefore, some involution from T centralizes some elements from Q, and
hence, 2 and q are adjacent in Γ (G), a contradiction.

Thus, q /∈ π(S), hence S = Op(G) and statement (1) of Theorem 1.1 holds.
Suppose that r or s divides |S|. Without loss of generality, let r ∈ π(S). Let

Q ∈ Sylq(G). The solvable group SQ contains a {r , q}-Hall subgroup U . Since
the graph Γ (U ) is disconnected, by Lemma 2.1, U is either a Frobenius group or a
2-Frobenius group, and the subgroup F(U ) is either Or (U ) or Oq(U ).

Suppose that F(U ) = Oq(U ). Then, a Sylow r -subgroup R of S is either a cyclic
group or a (generalized) quaternion group. Then, CG(Ω1(R)) ≥ Soc(G), hence r =
p, a contradiction.

Thus, F(U ) = Or (U ); hence, Q is either a cyclic group or a (generalized) quater-
nion group. Arguing as in a previous paragraph, we obtain that q does not divide |S|,
hence q �= 2. Furthermore, U is a Frobenius group with kernel U ∩ S and cyclic
complement Q.

Suppose that p /∈ π(S). If s /∈ π(S), then S = Or (G) and therefore p and s are
adjacent vertices of the graph Γ (G), where G ∼= Aut(Suz(32)), {p, s} = {2, 5} and
{r , q} = {31, 41}. From the table of the r -modular Brauer characters of Sz(32) (see
[16]) and Lemma 2.12, we obtain that CS(x) �= 1 for an element x of order q of G, a
contradiction. Thus, π(S) = {r , s}. An element of order q of G acts on S \ {1} fixed
point free, hence, by Lemma 2.1, S = F(G). By Lemma 2.5, q �= 5, and hence q > 5.
Therefore, p and q are adjacent in Γ (G), hence {p, q} = {2, 5}, a contradiction.

Thus, p ∈ π(S). Arguing as above, we obtain that a {r , s, q}-Hall subgroup V
of the solvable group SQ is a Frobenius group with kernel W := F(V ) = V ∩ S
and complement Q. We have G = SNG(W ), therefore, NG(W )/NS(W ) ∼= G. Let
N = NG(W ). Then, S(N ) = NS(W ) = W � P , where P ∈ Sylp(S(N )). It is clear
that F(N ) = W ×CP (W ) = WCN (W ) and CP (W ) = Op(N ). Put Ñ = N/Op(N ).

Suppose that S(Ñ ) = W̃ . Then, Ñ/W̃ ∼= G and W̃ = F(Ñ ).
Suppose that the graph Γ (Ñ ) is connected. Then, p and q are adjacent vertices of

the graphΓ (G). Therefore, G ∼= Aut(Sz(32)), {p, q} = {2, 5}, and {r , s} = {31, 41}.
Then, W̃ = O{2,5}′(Ñ ) and a Sylow 2-subgroup and a Sylow 5-subgroup of G contain
subgroups isomorphic to Z2 × Z2 and Z5 × Z5, respectively. Therefore, q and r are
adjacent in Γ (Ñ ), a contradiction.

Therefore, the graph Γ (Ñ ) is disconnected and by [21, Theorems 3 and 4], one of
statements (1) − (3) of Theorem 1.1 holds.

Let S(Ñ ) �= W̃ . Then, S(Ñ ) = W̃ � P̃ , where P̃ is a non-trivial p-group and
CÑ (W̃ ) ≤ W̃ . We can assume that S(Ñ )Q̃ = W̃ � (P̃ � Q̃). Set 〈x〉 = Ω1(Q̃).
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Show that [P̃, 〈x〉] = 1. Suppose to the contrary that [P̃, 〈x〉] �= 1.LetC be a critical
subgroup of P̃ . Apply Lemmas 2.9 and 2.11 to the group W̃ � (P̃ � 〈x〉). Then, we
obtain the following: G ∼= Sz(8) or Sz(32), p = 2, q = 5, 〈[P̃, C], Z(P̃),Φ(C)〉 ≤
Z(C) ≤ CP̃ (x), [C, 〈x〉] is an extraspecial group of order 32. The subgroups W̃C
and W̃ Z(C) are normal in Ñ . Set H = Ñ/W̃ Z(C) and V = W̃C/Z(C). Then, V
is a normal elementary abelian 2-subgroup of H , CH (V ) = O2(H), H/O2(H) ∼=
G and |[V , 〈t〉]| = 16 for some element t of order 5 of H . In particular, V is a
faithful G F(2)G-module. It is clear that the module V has a composition factor V0 of
dimension at least 2. Let K be an algebraic closure of the fieldG F(2). ByLemma 2.10,
for the faithful irreducibleG F(2)G-moduleV0, there exists an algebraically conjugacy
class {W1, . . . , Wm} of faithful (absolutely) irreducible K G-modules with the field of
definition G F(2m) such that V0 ⊗G F(2) K = ⊕m

i=1 Wi . Denote by W0 the module W1
considered as a G F(2m)-module. Then, the module V0 can be identified with the
module W0 considered as a G F(2)G-module. Therefore, for an element g of order 5
of G, we have dim V0 = m dim W0 and dim CV0(g) = m dim CW0(g), hence

dim[V0, 〈g〉] = dim V0 − dim CV0(g) = m(dim W0 − dim CW0(g)) = 4.

By the tables of 2-modular Brauer characters of Sz(8) and Sz(32) (see [16]) and
Lemma 2.12, we obtain the following: if dim W0 = 4, then dim CW0(g) = 0 and
m equals 3 or 5 for Sz(8) or Sz(32), respectively; if dim W0 �= 4, then dim W0 −
dim CW0(g) > 4. In any case, dim[V0, 〈g〉] > 4, a contradiction.

So, [P̃, 〈x〉] = 1, hence Soc(Ñ/S(Ñ )) ≤ CÑ (P̃)S(Ñ )/S(Ñ ). Denote by L the
last member of the derived series ofCÑ (P̃)W̃/W̃ . By [5], L ∼= Sz(8), Sz(32), 2.Sz(8)
or 22.Sz(8). Let K be the complete pre-image of L in Ñ .

If Z(L) = 1, then K/W̃ is a simple group. Arguing as above, we get that W̃ =
O2(Ñ ), p > 2 and one of statements (1)–(3) of Theorem 1.1 holds.

Let Z(L) �= 1. Then, p = 2 and G ∼= Sz(8). We can assume that L acts irreducibly
on Or (W̃ )/Φ(Or (W̃ )). Therefore, L ∼= 2.Sz(8). By the Brauer character tables of the
group 2.Sz(8) (see [16]) and Lemma 2.12, we obtain that W̃ = O5(S(Ñ )), {r , s} =
{5, 7}, q = 13 and 5-chief factors of G are isomorphic to the faithful irreducible
8-dimensional G F(5)2.Sz(8)-module, since 2.Sz(8) < Ω+

8 (5) by [4, Table 8.50].
Therefore, statement (4) of Theorem 1.1 holds.

Theorem 1.1 is proved.

4 Proof of Theorem 1.3

Let G be a group satisfying the conditions of Theorem 1.3. Then, p > 3 and we
can assume that {r , q} = {2, 3}. By [22, Theorem 2] and [23, Theorems 2 and 3],
G = G/S is an almost simple group whose the graph Γ (G) is disconnected, ∅ �=
π(O(S)) ⊆ {p, s}, and S = O2′,2(G).

Suppose that q = 2. Then, r = 3. If 2 ∈ π(S), then [22, Theorem 2], [17] and [18]
imply that O(S) = Op(G) and statement (1) of Theorem 1.3 holds. Let 2 /∈ π(S).
Then, by [22, Theorem 2], S = O(G) and π(S) ⊆ {p, s}. Since a Sylow 2-subgroup
of the almost simple group G contains a subgroup isomorphic to Z2 × Z2, the vertex
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2 in the graph Γ (G) is adjacent to each vertex from π(S). Therefore, S = Op(P),
hence

� � �

3 s 2

is an induced subgraph of the disconnected graph Γ (G). Thus, by [20] and [21],
statement (2) of Theorem 1.3 holds.

Suppose that q = 3. Then, r = 2 and, by [22, Theorem 2], 3 does not divide |S|.
Therefore, 3 ∈ π(G).

Suppose that s ∈ π(S). Let U be a {2, s}-Hall subgroup of S. Then, G = SNG(U ),
hence NG(U )/NS(U ) ∼= G. Thus, NG(U ) contains an element x of order 3. Since
CU (x) = 1, the subgroup U is nilpotent.

Suppose that Os(O(S)) < O(S). Since the group S/Os(O(S)) is nilpotent, we
have Os(S) < S. We can assume that S is a non-trivial elementary abelian s-group.
Every element of order 3 ofG acts on S\{1}fixed point free, hence a Sylow3-subgroup
of G is cyclic. By [22, Theorem 2], the socle of G is isomorphic to L2(2n), L3(2n),
U3(2n) or L2(q), where q ≡ ±5(mod 12). By Lemma 2.3, the last case is impossible.
By [4], the groups L3(2n) andU3(2n) contain subgroups isomorphic to L2(2n); hence,
we can assume that G ∼= L2(2n). By Lemma 2.4, S = O2(G), a contradiction with
S = Os(G) for s > 2.

Thus, Os(O(S)) = O(S), whence p ∈ π(S), O p(O(S)) < O(S) and
O p,p′

(O(S)) < O p(O(S)). We can assume that O p(O(S)) = Os(O(S)) =
F(O(S)). Let G̃ = G/O p(O(S)). Then, by Lemma 2.11, every element of order
3 from G̃ acts trivially on Op(G̃), therefore Soc(G) acts trivially on Op(G̃). By [22,
Theorem 2] and [5], the order of the Schur multiplier of the simple group Soc(G)

divides 6. Therefore, G̃(∞) ∼= Soc(G). Let K be the complete pre-image of G̃(∞)

in G. Then, S(K ) = Os(K �= 1. Arguing as in the previous paragraph, we obtain a
contradiction.

Thus, s /∈ π(S), and hence S = Op(G). Therefore,
� � �

r = 2 s q = 3

is an induced subgraph of the disconnected graph Γ (G). By [20] and [21], statement
(3) of Theorem 1.3 holds.

Theorem 1.3 is proved.

5 Proof of Theorem 1.5

LetG be a group satisfying the conditions ofTheorem1.5. Letq ∈ π(S), Q ∈ Sylq(S),
and N = NG(Q). By the Frattini argument, G = SN . Therefore, G = G/S ∼=
N/N ∩ S is an almost simple group, and hence S(N ) = S ∩ N .

The subgroup Q contains a subgroup isomorphic toZq ×Zq . Otherwise, Soc(N ) ≤
CN (Ω1(Q)), and hence the degree of the vertex q in Γ (G) is at least 2, that is not
so. Therefore, Oq ′(S) = Op(S), and Q0 := Q ∩ Oq ′,q(S) is a non-trivial Sylow
q-subgroup of Oq ′,q(S), which is a normal subgroup of N . By [8, Theorem 6.3.3],
CS(Q0) ≤ Oq ′,q(S). If CG(Q0) � S, then Soc(N ) ≤ CN (Q0), which is impossible.
Therefore, CG(Q0) = CS(Q0) = Q0 × COp(G)(Q0).
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Let Gr ∈ Sylr (G) and Gs ∈ Syls(G). Since G = Op(G)NG(Q0), we can assume
thatGr andGs are contained in NG(Q0). Since Q0Gr and Q0Gs are Frobenius groups
with the kernel Q0 and complements Gr and Gs , respectively, each of the groups Gr

and Gs is a cyclic group or a (generalized) quaternion group.
Suppose that 2 ∈ {r , s}. Without loss of generality we can assume that r = 2. By

[8, Theorem 10.3.1], Gr is a (generalized) quaternion group, and Gs is a cyclic group.
By Lemma 2.2, S = Z∗(G), and the group Soc(G/O(G)) is isomorphic to either
2. A7 or SL2(t), where t is odd and t ≥ 5. Since the degree of the vertex r in Γ (G)

is 2, we have |π(Soc(G))| = 3, and hence by Lemma 2.6, Soc(G/O(G)) ∼= SL2(t),
where t ∈ {5, 7, 9, 17}. From here, {2, 3} ⊂ π(G) = π(Soc(G)) = {r , s, p}.

The group SG2 is solvable, hence by [8, Theorem 6.4.1], we can assume that QG2
is a {2, q}-Hall subgroup of SG2. By Lemma 2.1, QG2 is a Frobenius group with
kernel Q and complement G2. Since the (unique) involution of G2 acts on Q \ {1}
fixed point free, this involution inverts Q, and hence the group Q is abelian. Thus,
Q = Q0, and G = Op(G)N .

Show that statement (1) of Theorem 1.5 holds for G. We can assume that Op(G) =
1, and hence G = NG(Q),CG(Q) = Q, and Q ∈ Sylq(G). By the Schur–Zassenhaus
theorem (see [8, Theorem 6.2.1]), G = Q � G0 for a group G0, and hence S =
QS(G0), where S(G0) = Z∗(G0) and π(O(G1)) ⊆ {p, s}.

Suppose that s ∈ π(O(G0)),U ∈ Syls(O(G0)), and K = CG0(U ). Then, O(K ) =
Os(K )× Op(K ), and F∗(K/O(K )) ∼= SL2(t), where t ∈ {5, 7, 9, 17}. If t = 9, then
a Sylow 3-subgroup of G is a non-cyclic, and hence s �= 3. Since the order of the Schur
multiplier of L2(t) divides 6 (see [5]), we have F∗(K/Op(K )) ∼= Os(K ) × SL2(t),
it implies that Sylow s-subgroups of K are non-cyclic, this contradicts the cyclicity
of Gs .

Thus, O(G0) = Op(G0). Let x be an element of order s from G0. Applying
Lemma 2.11 to the group Q � (Op(G1) � 〈x〉), we obtain that F∗(G0) ∼= Op(G0) ×
SL2(t). Let E = E(G0). Then, E = (G0)

(∞), and (E,Ω1(Q)) is a separable p′-
regular pair; therefore, by Lemma 2.7, either p = 3 and {r , s} = {2, 5} or p = t = 5,
{r , s} = {2, 3} and E ∼= SL2(5). If p = 5, then the ordinary character table of SL2(5)
(see [5]), and Lemma 2.12 imply that QE is a Frobenius group with kernel Q and
complement E . Thus, by Lemma 2.2, statement (1) of Theorem 1.5 holds.

Further, we will assume that r and s are odd; hence, subgroups Gr and Gs are cyclic
and 2 ∈ {p, q}.

Show that r and s both do not divide |S|. Suppose the contrary. Without loss of
generality, we can assume that r divides |S|. Then, the vertex r is adjacent to each
vertex from π(Soc(G))\{r} in Γ (G). Since the vertices r and q are no-adjacent in the
graph Γ (G), π(Soc(G)) = {r , s, p}, and hence p = 2. Since subgroups Gr and Gs

are cyclic, Lemma 2.6 implies that Soc(G) ∼= L2(t), where t ∈ {5, 7, 8, 17}. Thus,
{r , s} is equal to {3, 5}, {3, 7} or {3, 17}, and hence q > 3.

Let W be a {r , s, q}-Hall subgroup of S. Since all such subgroups are conjugate
in S, we can assume that Q ∈ Sylq(W ), G = SNG(W ), and hence G = G/S ∼=
NG(W )/NS(W ). It follows that S(NG(W )) = NS(W ). The graph Γ (W ) is discon-
nected; hence, by Lemma 2.1, W is either a Frobenius group or a 2-Frobenius group.

Since Oq ′(W ) = 1, q > 3, and the automorphism groups of Sylow r -subgroups and
Sylow s-subgroups of W are a {2, 3}-groups, the latter case is impossible. Therefore,
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W is a Frobenius group with kernel Q and some complement D. By [14, Theorem
V.8.18], D is a metacyclic {r , s}-group with the non-trivial center. By the Schur–
Zassenhaus Theorem (see [8, Theorem 6.2.1]), NG(W ) = Q � X for some subgroup
X containing D. Since S(NG(W )) = Q � D and NG(W )/S(NG(W )) ∼= G, we
have S(X) = D and X/D ∼= G. We have CX (D)/Z(D) ∼= Soc(X/D), since D is
a metacyclic group, and hence CX (D)D/D contains Soc(X/D). Since Z(D) �= 1,
and the order of the Schur multiplier of L2(t) divides 2 (see [5]), the group CX (D)

contains a subgroup isomorphic to Z(D)× L2(t). This implies that at least one of Gr

or Gs is non-cyclic, a contradiction.
Thus, r and s do not divide |S|.
If the group G does not contain elements of order 6, then by Theorems 1.1 and 1.3,

statement (2) of Theorem 1.5 holds. Therefore, in the sequel we will assume that G
contains an element of order 6.

Assume that q = 2. Then,
� � �

r s q = 2

is an induced subgraph of Γ (G). If 3 /∈ π(G), then 3 ∈ π(S), and hence p = 3 and
π(G) = {2, r , s}, this contradicts to Lemma 2.6. Therefore, 3 ∈ π(G). If p �= 3,
then G does not contain elements of order 6, which contradicts to our assumption.
Therefore, π(G) = π(G).

Suppose that G does not contain elements of order 6. Then, 2 is an isolated vertex
in Γ (G), and hence, by [30], G is isomorphic to one of the following groups: L2(2n),
where n ≥ 2; L2(t), where t is a Mersenne or Fermat prime; L3(4). By [21], r and s
are non-adjacent vertices in Γ (G), a contradiction.

Thus, G contains an element of order 6, and hence
� � � �

q = 2 p = 3 r s

is a subgraph of Γ (G). By [21], the graph Γ (G) is connected.
Suppose that Γ (G) �= Γ (G). Then, without loss of generality, we can assume that

Γ (G) has the form
� � � �

2 3 r s ,

hence, by [1], Γ (Soc(G)) has the form:
� � � �

2 3 r s ,

which is impossible by [21].
Thus, Γ (G) = Γ (G), and therefore by [22], q > 2; a contradiction.
So, q �= 2, and therefore p = 2.
Suppose that q /∈ π(G). Then, π(G) = {r , s, 2}. By [21], 3 ∈ {r , s}, and hence,

a Sylow 3-subgroup of G is cyclic. Since r and s are adjacent vertices of Γ (G), this
contradicts to [20].

Thus, q ∈ π(G), and hence π(G) = π(G). In particular,
� � �

r s q
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is an induced subgraph of the graph Γ (G). It is clear that 3 ∈ {r , s, q}.
Suppose that q = 3. If 2 and 3 are non-adjacent in Γ (G), then the graph Γ (G) has

a form, which contradicts to [21]. Therefore,
� � � �

r s 2 3

is a subgraph of Γ (G). By [21], the graph Γ (G) is connected. Therefore, either
Γ (G) = Γ (G) or Γ (G) has one of the following forms:

� � � �

r s 2 3

or
� � � �

s r 2 3 .

This contradicts to [28].
Thus, q > 3, and hence 3 ∈ {r , s}.
Suppose that 2 and 3 are non-adjacent in Γ (G). Then, by [28], Γ (G) is discon-

nected. By [21], and taking into account that Gr and Gs are cyclic, we obtain that
G ∼= L2(t), where either t = 2m , where m=4 or m ≥ 5 is prime, or t ≥ 31 is a
Mersenne or Fermat prime, and the graph Γ (G) has the form:

� � � �

r s q 2 .

By Lemmas 2.3 and 2.4, Oq(S) = S, and therefore 2 ∈ π(S), O2(S) < S, and
O2,q(S) < O2(S). Since Q ∈ Sylq(O2(S)), by the Frattini argument, we have
G = O2(S)NG(Q). We can assume that Q = O2(S) � G. Put G̃ = G/Q.

Suppose that CG̃(S̃) � S̃. Then, G̃ = S̃ ◦ CG̃(S̃), S̃ = O2(G̃) = F(G̃) �= 1, and
E(G̃) = CG̃(S̃)(∞) ∼= L2(t) or SL2(t). Let K be the complete pre-image of E(G̃) in
G. Then, O(K ) = Oq(K ) = Q, and K/Q ∼= E(G̃). It is clear, that CK (Q) ≤ S(K ).
If CK (Q) � Q, then Oq(S) < S, that is not so. Therefore, CK (Q) ≤ Q. An element
of order 3 from K acts on Q \ {1} fixed point free, hence, by Lemmas 2.3 and 2.4,
K/Q ∼= SL2(t), where t = q ≥ 31 is a Mersenne or a Fermat prime. Let τ be an
involution from Z∗(K ). Then, K = QCK (τ ).

Suppose that CQ(τ ) �= 1, and put L = CK (τ )/〈τ 〉. Then, O(L) ∼= CQ(τ ) �= 1,
L/O(L) ∼= L2(t), and an element of order 3 from L acts on O(L) \ {1} fixed point
free, a contradiction to Lemma 2.3.

Thus, CQ(τ ) = 1, and hence Q is an abelian group and (K/Q,Ω1(Q)) is a insep-
arable q ′-semiregular pair. Therefore, by Lemma 2.8, statement (3) of Theorem 1.5
holds.

Suppose thatCG̃(S̃) ≤ S̃.We have thatCG(Q) = O2(G)×Z(Q). If S = O2(G)Q,
then Oq(S) < S, that is not so. Therefore, we can assume that O2(G) = 1, and hence
CG(Q) = Z(G). Let x and y be some elements of orders r and s from G, respectively.
Applying Lemma 2.11 to the groups S〈x〉 and S〈y〉, we obtain that r and s are Fermat
primes. Since 3 ∈ {r , s}, we can assume that r = 3 = 1 + 2 and s = 1 + 2k for
k = 2l > 1.

Let t = 2m for some prime m ≥ 5. Then, by [20], s = (2m +1)/3 and q = 2m −1.
The number s = 1 + 2k divides 2m + 1, moreover, 1 < k = 2l < m. But (k, m) = 1,
therefore, by Lemma 2.13, we obtain that (2m + 1, 2k + 1) = 1; a contradiction.
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Thus, t is aMersenne or Fermat prime, i.e., t −ε1 = 2m , where ε ∈ {+,−}, m ≥ 5,
and {r , s} = π((t + ε1)/2).

Suppose that ε = +. Then t = 2m + 1, where m = 2n ≥ 8, and {r , s} =
π((t + 1)/2). We have (t + 1)/2 = 2m + 1. Therefore, by Lemma 2.11, s divides
(2m−1 + 1, 2k + 1) = 2(m−1,k) + 1 = 3; a contradiction.

Thus, ε = −, and hence t = 2m − 1, where m is a prime, m ≥ 5, and {r , s} =
π((t −1)/2). We have (t −1)/2 = 2m−1−1. The number s divides (2m−1−1, 2k +1),
hence by Lemma 2.13, k/(m − 1, k) is odd, and (m − 1)/(m − 1, k) is even. This
implies that 2k divides m − 1, and therefore 22k − 1 divides 2m−1 − 1. But 22k − 1 =
(2k − 1)(2k + 1), and (2k − 1, 2k + 1) = 1, hence 2k − 1 = 3v for some v ∈ N. Then,
by the Lemma 2.14, v = 1, and hence k = 2 and s = 2. If m > 5, then m − 1 > 4,
and hence, by Lemma 2.14, 2m−1 − 1 has a prime divisor, which is not equal to 3 of
5; a contradiction.

Therefore, m = 5 and t = 31. Arguing as in the proof of Theorem 1.1 and using
Lemmas 2.9-2.12 for Fermat primes 3 or 5 and the table of 2-modularBrauer characters
of L2(31) (see [16]), we obtain a contradiction.

Theorem 1.5 is proved.
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