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Abstract
In this article, we prove that there exists a unique local smooth solution for the Cauchy
problem of the Navier–Stokes–Schrödinger system. Our methods rely upon approx-
imating the system with a sequence of perturbed system and parallel transport and
are closer to the one in Ding and Wang (Sci China 44(11):1446–1464, 2001) and
McGahagan (Commun Partial Differ Equ 32(1–3):375–400, 2007).
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1 Introduction

In this paper, we consider the Navier–Stokes–Schödinger initial-value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u + u · ∇u + ∇ P = �u − div(∇φ � ∇φ),

divu = 0,

∂tφ + u · ∇φ = φ × �φ,

(u, φ)
∣
∣
t=0 = (u0, φ0).

(1.1)

Here, d = 2, 3, u : Rd ×[0, T ] → R
d represents the velocity field of the flow, P is the

pressure function, and φ : Rd × [0, T ] → S
2 ⊂ R

3 denotes the magnetization field.
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The notation × is the cross product for vectors in R3, and the term ∇φ � ∇φ denotes
the d ×d matrix whose (i, j)th entry is given by ∂iφ · ∂ jφ (1 ≤ i, j ≤ d). This model
is a coupled system of the incompressible Navier–Stokes equations and Schrödinger
map flow which can be used to describe the dispersive theory of magnetization of
ferromagnets with quantum effects.

The system (1.1) can be seen as a special case of Navier–Stokes–Landau–Lifshitz
(NSLL) equation. For incompressible NSLL system with positive Gilbert constant in
R
3, the global existence of a unique solution in Besov spaces without any small con-

ditions imposed on the third component of the initial velocity field was established by
Zhai et al. [26]. Later, under the assumption of small initial data in Sobolev spaces,Wei
et al. [25] proved the global solution by energy method and obtained the time decay
rates of the higher-order spatial derivatives of the solutions by applying the Fourier
splitting method introduced by Schonbek [20]. Fan et al. [9] studied the regularity
criteria for the smooth solution to the inhomogeneous compressible NSLL equation
in Besov spaces and the multiplier spaces. Wang and Guo [23] investigated the exis-
tence and uniqueness of the weak solution to the inhomogeneous compressible NSLL
equation in two dimensions. Recently, they further investigate the global existence
of the weak solutions to the compressible NSLL equations with density-dependent
viscosity in two dimensions in [24].

If u ≡ 0, themodel (1.1) is reduced to the Schrödinger flowofmaps fromR
d intoS2,

which is an interesting equation knownas the ferromagnetic chain system, andhas been
intensely studied in the last decades. The local well-posedness of Schrödinger flow
was established by Sulem, Sulem and Bardos [22] for S2 target, Ding and Wang [7,8]
and McGahagan [17] for general Kähler manifolds. The first global well-posedness
result for Schrödinger flow of maps into S2 with small data in the critical Besov spaces
in dimensions d ≥ 3 was proved by Ionescu and Kenig [13] and independently by
Bejenaru [1]. Thiswas further improved to global regularity for small data in the critical
Sobolev spaces in dimensions d ≥ 2 in [2] and [3]. Recently, Li [15,16] considered the
Schrödinger flow ofmaps into compact Kählermanifolds and proved that the flowwith
small initial data in critical Sobolev space is global. However, the Schrödinger map
equation with large data is a much more difficult problem. When the target is S2, there
exists a collection of familiesQm ([5]) of finite energy stationary solutions for integer
m ≥ 1. Hence, the global well-posedness and scattering for equivariant Schrödinger
flowwith energy below the ground state were proved by Bejenaru, Ionescu, Kenig and
Tataru in [4]. When the energy of maps is larger than that of ground state, the dynamic
behaviors are complicated. The asymptotic stability and blowup for Schrödinger flow
have been considered by many authors for instance [5,10–12,18,19]. We refer to [14]
for more open problems in this field.

In this paper, we establish the local existence and uniqueness of (1.1) for large data
by parabolic approximation, which has been shown to be successful in the study of
the Schrödinger flow [8].

We start with some notations. Let Z+ = {0, 1, 2, . . .} and [q] be the integer part
of a positive number q. For k ∈ Z+, p ∈ [1,∞], let Hk(Rd), W k,p(Rd) denote
the usual Sobolev spaces of functions on R

d . It will be convenient to consider S2 =
{x ∈ R

3 : |x | = 1} as a submanifold of R3; then, the map φ can be represented as
φ = (φ1, φ2, φ3) with φi being globally defined functions on R

d . Denote ∇ as the
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usual derivative for functions on R
d . Then for Q ∈ S

2, we define the metric space

W k,p
Q = { f : Rd → R

3 : | f (x)| ≡ 1 a.e. and f − Q ∈ W k,p}, (1.2)

with the induced distance dk,p
Q ( f , g) = ‖ f − g‖

W k,p
Q

. For simplicity of notation, let

‖ f ‖
W k,p

Q
= dk,p

Q ( f , Q), and further denote Hk
Q := W k,2

Q .

The main result is the following.

Theorem 1.1 The Cauchy problem (1.1) with (u0, φ0) ∈ Hk × Hk+1
Q , for any integer

k ≥ [ d
2 ] + 1, admits a unique local solution (u, φ) satisfying

‖u‖Hk +
(∫ t

0
‖∇u‖2Hkds

)1/2

+ ‖∇φ‖Hk
Q

≤ C
(

k, ‖u0‖Hk , ‖∇φ0‖Hk
Q

)
,

for any t ∈ [0, T ], where T = T (‖u0‖H2 , ‖∇φ0‖H2
Q
).

The proof of Theorem 1.1 follows closely that of [8,17,21]. We prove the local
existence for system (1.1) with finite data by approximation of perturbed parabolic
system. Precisely, we consider the perturbed system for ε > 0 small

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + u · ∇u + ∇ P = �u − ∑3
j=1 ∂ j (∇φ∂ jφ),

divu = 0,
∂tφ = εDk∂kφ + J (φ)Dk∂kφ − u · ∇φ,

(u, φ)(0) = (u0, φ0) ∈ C∞(M × M,Rd × S
2),

(1.3)

where J is complex structure on S2 and D is the covariant differential on φ�TS
2. The

perturbed system (1.3) is weakly parabolic and behaves similar as the Navier–Stokes–
Landau–Lifshitz system with positive Gilbert coefficients. By standard parabolic
argument, it is easy to find that the system (1.3) admits a local solution (uε, φε)

on some time interval [0, Tε) for every ε > 0. Then, we derive the uniform estimates
of (uε, φε) and a lower bound for the life span Tε , and obtain the solution of (1.1) on
M as ε → 0.

The rest of the paper is organized as follows: In Sect. 2, we recall the basic properties
of Sobolev spaces. In Sect. 3, we apply the approximating scheme and obtain the
uniform bound for energy and then give the proof of local existence. In Sect. 4, we use
parallel transport to prove the uniqueness and hence complete the proof of Theorem
1.1.

2 Preliminaries

In this section, we introduce the definition of intrinsic Sobolev spaces and state some
basic inequalities.

For geometric PDEs, it is convenient to work in both intrinsic Sobolev spaces and
extrinsic Sobolev spaces. The extrinsic Sobolev spaces were defined in (1.2), and we
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introduce the intrinsic Sobolev spaces as follows. For smooth maps φ from (M, g) to
S
2, the pullback bundle φ�TS

2 is the vector bundle over (M, g) whose fiber at x ∈ M
is the tangent space Tφ(x)S

2. Let D denote the induced covariant derivative in φ�TS
2.

Then, the intrinsic norm of vector bundle ∇φ is defined by

‖∇φ‖p
Wk,p(M)

=
k∑

i=0

∫

M
|Di∇φ|pdvolg,

where p ∈ [1,∞). For p = ∞, we also define

‖∇φ‖Wk,∞(M) = max{‖Di∇φ‖L∞ : 0 ≤ i ≤ k}.

For simplicity of notation, we denote Hk := Wk,2.
Then, we have the interpolation inequality for sections on vector bundles and equiv-

alent relation between ‖∇φ‖Hk−1
Q

and ‖∇φ‖Hk−1 .

Proposition 2.1 ([8], Theorem 2.1, Propostion 2.1) Suppose s ∈ C∞(E) is a section
where E is a vector bundle over a closed m-dimensional Riemannian manifold M.
Then, we have

‖D j s‖L p(M) ≤ C‖s‖a
Wk,q (M)

‖s‖1−a
Lr (M), (2.1)

where 1 ≤ p, q, r ≤ ∞, and j/k ≤ a ≤ 1 ( j/k ≤ a < 1 if q = m/(k − j) �= 1) are
numbers such that

1

p
= j

m
+ 1

r
+ a

(
1

q
− 1

r
− k

m

)

.

The constant C only depends on M and the numbers j, k, q, r , a. Moreover, if M =
T

d = R
d/(R · Z)d , then the constant C does not depend on the diameter R ≥ 1.

Proposition 2.2 ([8], Proposition 2.2) Assume that k > d/2; (M, g) is a closed Rie-
mannian manifold. Then, there exists a constant C = C(S2, k) such that for all maps
φ ∈ C∞(M,S2),

‖∇φ‖Hk−1
Q (M)

≤ C
k∑

l=1

‖Dφ‖l
Hk−1(M)

and

‖Dφ‖Hk−1(M) ≤ C
k∑

l=1

‖∇φ‖l
Hk−1

Q (M)
.

Finally, we state the density property of Sobolev spaces Hk
Q(Rd ,S2).
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Lemma 2.3 ([8], Lemma 3.4) Let k > d/2 and φ ∈ Hk
Q(Rd ,S2). Then, there exists

a sequence of maps φi − Q ∈ Hk(Rd ,S2) ∩ C∞
0 (Rd ,R3) such that φi → φ in

Hk
Q(Rd ,S2).

3 Local Existence of Navier–Stokes–Schrödinger System

In this section, we first prove the local existence of smooth solutions for the initial-
value problem of the Navier–Stokes–Schrödinger system

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + u · ∇u + ∇ P = �u − ∑3
j=1 ∂ j (∇φ∂ jφ),

divu = 0,
∂tφ + u · ∇φ = φ × �φ,

(u, φ)(0) = (u0, φ0) ∈ C∞(M × M,Rd × S
2),

(3.1)

where M is a flat closed d-dimensional Riemannianmanifold. Then,we use the smooth
solutions (ui , φi ) on T

2d
i = R

2d/(2Ri · Z)2d to give the smooth solution of system
(1.1) and finish the proof of Theorem 1.1.

Since (S2, J , h) is a compact Kähler manifold with complex structure J and Kähler
metric h, the term φ × �φ can be rewritten as

J (φ)Dk∂kφ,

where we implicitly sum over repeated indices. Then, we may employ an approximate
procedure and solve first the following perturbed problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + u · ∇u + ∇ P = �u − ∑3
j=1 ∂ j (∇φ∂ jφ),

divu = 0,
∂tφ = εDk∂kφ + J (φ)Dk∂kφ − u · ∇φ,

(u, φ)(0) = (u0, φ0) ∈ C∞(M × M,Rd × S
2),

(3.2)

where ε > 0 small.
For the initial-value problem (3.2), we have

Lemma 3.1 Let m0 = [d/2] + 1 = 2, and let u0 ∈ C∞(M,Rd), φ0 ∈ C∞(M,S2).
There exists a constant T = T (‖u0‖H2(M), ‖∇φ0‖H2(M)) > 0, independent of ε ∈
(0, 1], such that if (u, φ) ∈ C∞(M × [0, Tε]) is a solution of (3.2) with ε ∈ (0, 1],
then

Tε ≥ T (‖u0‖H2(M), ‖∇φ0‖H2(M))

and

‖u(t)‖Hk(M) + ‖∇u‖L2([0,t];Hk (M)) + ‖∇φ‖Hk (M)

≤ C(k, ‖u0‖Hk (M), ‖∇φ0‖Hk (M)), t ∈ [0, T ],
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for all k ≥ 2.

Proof By standard argument, the initial-value problem (3.2) has a unique smooth
solution (uε, φε) for some Tε > 0. For simplicity, denote (u, φ) := (uε, φε) be a
solution of (3.2), and denote Hl := Hl(M), Hl := Hl(M) for any integer l ≥ 0. It is
easy to obtain that the energy

E(u, φ) := 1

2
‖u‖2L2 +

∫ t

0
‖∇u‖2L2ds + 1

2
‖∇φ‖2L2

is uniformly bounded for t ∈ [0, Tε). Precisely, by (3.2) we have

d

dt
E =

∫

M
u(�u − ∇ P − u · ∇u −

3∑

j=1

∂ j (∇φ∂ jφ))dx + ‖∇u‖2L2

+
∫

M

3∑

i=1

〈∇iφ, Di (−u · ∇φ + εDk∂kφ + J Dk∂kφ)〉dx .

Then, integration by parts gives

d

dt
E =

∫

M

3∑

j=1

∂ j u · 〈∇φ, ∂ jφ〉dx − ε

∫

M
|Dk∂kφ|2dx

+
∫

M
〈Dk∂kφ, J Dk∂kφ〉dx

∫

M

−
3∑

j=1

∂ j u · 〈∇φ, ∂ jφ〉 − u · 〈D j∇φ, ∂ jφ〉dx

= −ε‖Dk∂kφ‖2L2 −
∫

M
u · 〈D∂ jφ, ∂ jφ〉dx

= −ε‖Dk∂kφ‖2L2 +
∫

M

1

2
∇ · u|∇φ|2dx

= −ε‖Dk∂kφ‖2L2 .

Fix an N ≥ m0, and let n be any integer with 1 ≤ n ≤ N . Suppose that a is
a multi-index of length n, i.e., a = (a1, . . . , an). For t ≤ Tε , we define the energy
functional by

En(u, φ) :=
∑

|a|=n

(
1

2
‖∇au‖2L2 +

∫ t

0
|∇a∇u|2L2ds + 1

2
‖Da∇φ‖2L2

)

.

Then by (3.2) and integration by parts, we have

d

dt
En =

∑

|a|=n

∫

M
−∇au · ∇a(u · ∇u + ∂ j (Dφ · ∂ jφ))dx

123



Local Existence and Uniqueness of Navier–Stokes... 107

+
∑

|a|=n

∫

M
〈Da∇φ, Dt Da∇φ〉dx =: I + I I . (3.3)

By incompressible condition ∇ · u = 0, Hölder and integration by parts, we get

I � ‖∇u‖Hn ‖u‖2Hn + ‖∇u‖Hn ‖∇φ‖2Hn . (3.4)

Next, we estimate the term I I . By φ-equation in (3.2), we obtain

Dt Da∂iφ = DaDi∂tφ + [Dt , DaDi ]φ
= DaDi∂tφ +

∑
DbR(φ)(Dcφ, Dd∂tφ)De∂iφ,

(3.5)

where the sum is over all multi-indices b, c,d, ewith possible zero lengths, except that
|c| > 0 always holds, such that (b, c,d, e) = σ(a) is a permutation of a. Replacing
∂tφ in the second term by the right-hand side of φ-equation in (3.2), the second term
can be rewritten as

∑
DbR(φ)(Dcφ, Dd∂tφ)De∂iφ

=
∑

DbR(φ)(Dcφ, Dd(εDk∂kφ + J (φ)Dk∂kφ))De∂iφ

−
∑

DbR(φ)(Dcφ, Dd(u · ∇φ))De∂iφ

=: Q1 + Q2.

(3.6)

Moreover, we have

|Q1| �
∑

( j1,..., js )∈J
|D j1φ| · · · |D js φ|, (3.7)

where

J := {
j1, . . . , js ∈ N : j1 ≥ j2 ≥ · · · ≥ js, n + 1

≥ ji ≥ 1, j1 + · · · + js = n + 3, s ≥ 3
}
. (3.8)

Similarly, we also have

|Q2| �
∑

( j̃0,..., j̃s )∈J̃
|∂ j̃0u||D j̃1φ| · · · |D j̃s φ|, (3.9)

where

J̃ := {
j̃0, . . . , j̃s ∈ N : j̃1 ≥ j̃2 ≥ · · · ≥ j̃s, j̃0 + · · · + j̃s = n + 2, s ≥ 3,

n − 1 ≥ j̃0 ≥ 0, n ≥ j̃i ≥ 1, for s ≥ i ≥ 1
}
.

(3.10)
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For the first term in the right-hand side of (3.5), it follows from (3.2) that

DaDi ∂tφ = DaDi (εDk∂kφ + J Dk∂kφ − u · ∇φ)

= εDk Dk Da∂i φ + J Dk Dk Da∂i φ + u · DDa∂i φ

+
∑

(b,c)=σ(a)

∇b∂i u · Dc∇φ +
∑

(b,c)=σ(a),|b|≥1

∇bu · DcDi ∇φ + Q3 + Q4,
(3.11)

where Q3, Q4 satisfy (3.7), (3.9), respectively.
Thus, we obtain from (3.5), (3.6) and (3.11):

Dt Da∂iφ = εDk Dk Da∂iφ + J Dk Dk Da∂iφ + u · DDa∂iφ

+
∑

(b,c)=σ(a)

∇b∂i u · Dc∇φ

+
∑

(b,c)=σ(a),|b|≥1

∇bu · DcDi∇φ + Q1 + Q2 + Q3 + Q4.

Substituting this into I I in (3.3) and integrating by parts, we have

I I =
∑

|a|=n

∫

M
−ε|Dk Da∂iφ|2 + 〈Dk Da∂iφ, J Dk Da∂iφ〉 + 〈Da∂iφ, u · DDa∂iφ〉dx

+
∑

|a|=n

∫

M
〈Da∂iφ,

∑

(b,c)=σ(a)

∇b∂i u · Dc∇φ +
∑

(b,c)=σ(a),|b|≥1

∇bu · DcDi∇φ〉dx

+
∑

|a|=n

∫

M
〈Da∂iφ, Q1 + Q3〉dx +

∑

|a|=n

∫

M
〈Da∂iφ, Q2 + Q4〉dx .

Note that in the first integrand, the first term is non-positive by ε > 0 and the second
term vanishes by complex structure J . Then by integration by parts, (3.7) and (3.9),
we get

I I ≤
∑

|a|=n

∫

M

1

2
u · ∇|Da∂iφ|2dx +

∑

n1+n2=n+1,n1≥1

∫

M
|Dn+1φ||∇n1u||Dn2∇φ|dx

+
∑

( j1,..., js )∈J

∫

M
|Dn+1φ||D j1φ| · · · |D js φ|dx

+
∑

( j̃0, j̃1,..., j̃s )∈J̃

∫

M
|Dn+1φ||∂ j̃0u||D j̃1φ| · · · |D j̃s φ|dx

= I I1 + I I2 + I I3 + I I4.

Since ∇ · u = 0, the first term I I1 vanishes. It suffices to estimate I I2, I I3 and I I4,
respectively.
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Step 1. We prove the bound

I I2 ≤
{

C‖∇φ‖2H2‖∇u‖H2 , if n ≤ 2,
C‖∇φ‖2Hn ‖∇u‖Hn , if n ≥ 3,

(3.12)

where the constant C depends on n.
By Hölder, it suffices to estimate

‖|∇n1u||Dn2∇φ|‖L2 , (3.13)

for n1 + n2 = n + 1, n1 ≥ 1. When n ≤ 2, by Hölder, Sobolev embedding and
Proposition 2.1, we have

(3.13) ≤ ‖∇2u‖L2‖∇φ‖L∞ + ‖∇u‖L∞‖D∇φ‖L2 + ‖∇3u‖L2‖∇φ‖L∞

+ ‖∇2u‖L4‖D∇φ‖L4 + ‖∇u‖L∞‖D2∇φ‖L2

≤ C‖∇u‖H2‖∇φ‖H2 ,

which is acceptable. When n ≥ 3, by Hölder, Sobolev embedding and Proposition
2.1, we have

(3.13) ≤
∑

1≤n1≤ n+1
2

‖∇n1u‖L∞‖Dn+1−n1∇φ‖L2

+
∑

n+1
2 <n1≤n+1

‖∇n1u‖L2‖Dn+1−n1∇φ‖L∞

≤ C‖∇u‖Hn ‖∇φ‖Hn ,

which is also acceptable.
Step 2. We prove the bound

I I3 ≤

⎧
⎪⎪⎨

⎪⎪⎩

C
n+3∑

s=3

‖∇φ‖s+1
H2 , if n ≤ 2,

C(1 + ‖∇φ‖2Hn )(1 + ‖∇φ‖Hn−1)n+2, if n ≥ 3.

(3.14)

The integral I I3 is the same as (3.10) in [8]. Hence, this bound (3.14) is obtained
immediately by the following lemma which was proved in [8].

Lemma 3.2 ([8], Lemmas 3.2 and 3.3) If 1 ≤ n ≤ 2, then there exists C(M, n) such
that

I I3 ≤ C‖∇φ‖A
H2‖∇φ‖B

L2‖Dn∂φ‖L2 ,

where A(m, n) = [n + 3 + (m/2 − 1)s − m/2]/m0 and B = s − A.
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If n ≥ 3, then there exists a constant C = C(M, n) such that

I I3 ≤
{

C‖Dn∂φ‖L2‖∇φ‖m/m0
Hm0 ‖∇φ‖2−m/m0

L2 , for j1 = n + 1,
C(1 + ‖∇φ‖2Hn )(1 + ‖∇φ‖A

Hn−1), for j1 ≤ n,

where A = A(m, n).

Step 3. We prove the bound

I I4 ≤
{

C
∑n+2

s=3‖∇φ‖s+1
H2 ‖∇u‖H2 , if n ≤ 2,

C‖∇φ‖2Hn (1 + ‖u‖Hn−1 + ‖∇φ‖Hn−1)n+2, if n ≥ 3.
(3.15)

Case 3.1. n ≤ 2. By (3.10) and n ≤ 2, we have

j̃1 ≤ 2, j̃2, . . . , j̃s ≤ 1.

Then by Hölder and Proposition 2.1, we may estimate I I4 by

I I4 ≤
∑

( j̃0, j̃1,..., j̃s )∈J̃
‖Dn+1φ‖L2‖∂ j̃0u‖L∞‖D j̃1φ‖L2 · · · ‖D j̃s φ‖L∞

≤ C‖∇φ‖H2‖∇u‖H2‖∇φ‖s
H2 .

Case 3.2. n > 2.
First, if j̃1 = n, (3.10) implies s = 3, j̃0 = 0, and j̃2 = j̃3 = 1. Then, we may use

Hölder and Proposition 2.1 to bound I I4 by

I I4 ≤
∑

( j̃0, j̃1,..., j̃s )∈J̃ , j1=n

‖Dn+1φ‖L2‖u‖L∞‖Dnφ‖L2‖Dφ‖2L∞

≤ C‖∇φ‖Hn ‖u‖H2‖∇φ‖3Hn−1 .

Second, if j̃1 ≤ n − 1, j̃0 ≤ [n/2], from (3.10), we obtain

j̃2 ≤ n − 1, j̃3, . . . , j̃s ≤ n − 2.

Then by Hölder and Proposition 2.1, I I4 can be bounded by

I I4 ≤
∑

( j̃0, j̃1,..., j̃s )∈J̃ , j̃1≤n−1, j̃0≤[n/2]
‖Dn+1φ‖L2‖∂ j̃0u‖L4‖D j̃1φ‖L4‖D j̃2φ‖L∞ · · · ‖D j̃s φ‖L∞

≤ C‖∇φ‖Hn ‖u‖H [n/2]+1‖∇φ‖Hn−1‖∇φ‖Hn ‖∇φ‖s−2
Hn−1

≤ C‖∇φ‖2Hn ‖u‖Hn−1‖∇φ‖s−1
Hn−1 .

Finally, we consider the remainder case j̃1 ≤ n − 1, j̃0 > [n/2]. By (3.10), we get

j̃1, . . . , j̃s ≤ n − 2.
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Then, it follows from Hölder and Proposition 2.1 that

I I4 ≤
∑

( j̃0, j̃1,..., j̃s )∈J̃ , j̃1≤n−1, j̃0>[n/2]
‖Dn+1φ‖L2‖∂ j̃0u‖L2‖D j̃1φ‖L∞ · · · ‖D j̃s φ‖L∞

≤ C‖∇φ‖Hn ‖u‖Hn−1‖∇φ‖s
Hn−1 ,

which concludes the bound (3.15).
Thus, from (3.12), (3.14), (3.15) and Hölder, we obtain the bound when 1 ≤ n ≤ 2,

I I ≤ C

(

‖∇φ‖2H2‖∇u‖H2 +
n+3∑

s=3

‖∇φ‖s+1
H2 +

n+2∑

s=3

‖∇φ‖s+1
H2 ‖∇u‖H2

)

≤ 1

4
‖∇u‖2H2 + C(1 + ‖∇φ‖2H2)

5,

(3.16)

and when n ≥ 3,

I I ≤ C[‖∇φ‖2Hn ‖∇u‖Hn + (1 + ‖∇φ‖Hn )2(1 + ‖u‖Hn−1 + ‖∇φ‖Hn−1)n+2]
≤ 1

4
‖∇u‖2Hn + C(1 + ‖u‖2Hn + ‖∇φ‖2Hn )

2(1 + ‖u‖Hn−1 + ‖∇φ‖Hn−1)n+2.
(3.17)

Next, we continue to bound the energy of u and φ. We first consider the case
1 ≤ n ≤ 2. Then, (3.3), together with (3.4) and (3.16), leads to

1

2

d

dt
(‖u‖2H2 + ‖∇φ‖2H2) + ‖∇u‖2H2

≤ C‖∇u‖H2(‖u‖2H2 + ‖∇φ‖2H2) + 1

4
‖∇u‖2H2 + C(1 + ‖∇φ‖2H2)

5

≤ 1

2
‖∇u‖2H2 + C(1 + ‖u‖2H2 + ‖∇φ‖2H2)

5.

(3.18)

If we set f (t) = 1 + ‖u‖2
H2 + ‖∇φ‖2H2 , then we have

f ′ ≤ C f 5, f (0) = 1 + ‖u0‖2H2 + ‖∇φ0‖2H2 , (3.19)

where constant C depends only on M and S
2. It follows from (3.19) that there exists

T = T (S2, ‖u0‖H2 , ‖∇φ0‖H2) > 0 and K̃2 > 0 such that

‖u‖H2 + ‖∇φ‖H2 ≤ K̃2, t ∈ [0, T ].

Hence, by this and (3.18) there exists K2 > 0 such that

‖u‖H2 + ‖∇φ‖H2 +
(∫ t

0
‖∇u‖2H2ds

)1/2

≤ K2, t ∈ [0, T ]. (3.20)
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For the higher-order energy of u and φ, (3.3), (3.4) and (3.17) imply

1

2

d

dt
(‖u‖2Hn + ‖∇φ‖2Hn ) + ‖∇u‖2Hn

≤ C‖∇u‖Hn (‖u‖2Hn + ‖∇φ‖2Hn ) + 1

4
‖∇u‖2Hn

+ C(1 + ‖u‖2Hn + ‖∇φ‖2Hn )
2(1 + ‖u‖Hn−1 + ‖∇φ‖Hn−1)n+2

≤ 1

2
‖∇u‖2Hn + C(1 + ‖u‖2Hn + ‖∇φ‖2Hn )

2(1 + ‖u‖Hn−1 + ‖∇φ‖Hn−1)n+2.

(3.21)

From (3.20), we may assume that for any 2 ≤ l ≤ n − 1, there exists Kl > 0 such
that

‖u‖2Hl + ‖∇φ‖2Hl +
∫ t

0
‖∇u‖2Hlds ≤ Kl , t ∈ [0, T ]. (3.22)

Let fn = 1 + ‖u‖2Hn + ‖∇φ‖2Hn , then by (3.21) and (3.22), we have

f ′
n ≤ C K n+2

n−1 f 2n ,

which further implies that there exists K̃n > 0 such that

‖u‖Hn + ‖∇φ‖Hn ≤ K̃n, t ∈ [0, T ].

Hence, this, together with (3.21), yields

‖u‖Hn + ‖∇φ‖Hn +
(∫ t

0
‖∇u‖2Hnds

)1/2

≤ Kn, t ∈ [0, T ],

which completes the proof of lemma. ��
Next, we use the above lemma to prove the local existence of (1.1).

Proof of local existence From u0 ∈ Hk, φ0 ∈ Hk+1
Q for k ≥ 2, by the density theorem

of Sobolev spaces and Lemma 2.3 wemay choose a sequence (ui0, φi0) in Hk × Hk+1
Q

satisfying ui0 ∈ C∞
0 (Rd ,Rd) and φi0 − Q ∈ C∞

0 (Rd ,R3) such that

(ui0, φi0) → (u0, φ0) in Hk(Rd) × Hk+1
Q (Rd), as i → ∞. (3.23)

For a section V of φ�TS
2, we have the relation between ∇αV and DαV :

∇αV = DαV + A(φ)(Dφ, V ),
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where A is the second fundamental form of S2 in R
3. Thus, there are multi-linear

vector valued functions Bi on R3 such that

Daφ = ∇aφ +
∑

σ

Bσ(a)(φ)(∇a1φ, . . . ,∇as φ), (3.24)

where |a| ≥ 2 and the sum is over all multi-indices a1, . . . , as such that |ai | ≥ 1 for all
i and (a1, . . . , as) = σ(a) is a permutation of a. By (3.23) and (3.24), we can obtain

‖Dφi0‖Hk → ‖Dφ0‖Hk , as i → ∞.

Let 	i be the support of (ui0, φi0 − Q); there exists Ri sufficiently large such that
	i ⊂⊂ [−Ri , Ri ]2d . Then, (ui0, φi0) can be regarded as a function defined on a flat
torus T2d

i = R
2d/(2Ri ·Z)2d , and hence, we consider the following Cauchy problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u + u · ∇u + ∇ P = �u − div(∇φ � ∇φ), on T
d
i × (0, T ],

divu = 0,

∂tφ + u · ∇φ = φ × �φ, on T
d
i × (0, T ],

(u, φ)(0) = (ui0, φi0) : Td
i × T

d
i → R

d × S
2.

(3.25)

By Proposition 2.1 and Lemma 3.1, we obtain that there exists T > 0, which does
not depend on i , such that (3.25) admits a smooth solution (ui , φi ) on T

2d
i × [0, T ].

Moreover, the following bound holds uniformly with respect to i :

sup
t∈[0,T ]

(

‖ui‖Hk (Td
i ) +

(∫ t

0
‖∇ui‖2Hk (Td

i )
ds

)1/2

+ ‖∇φi‖Hk (Td
i )

)

≤ C
(

T , ‖u0‖Hk (Td
i ), ‖∇φ0‖Hk (Td

i )

)
.

Combining this and Proposition 2.2, we may further obtain

sup
t∈[0,T ]

(

‖ui‖Hk (Td
i ) +

(∫ t

0
‖∇ui‖2Hk (Td

i )
ds

)1/2

+ ‖∇φi‖Hk
Q(Td

i )

)

≤ C̃
(

T , ‖u0‖Hk (Td
i ), ‖∇φ0‖Hk

Q(Td
i )

)
. (3.26)

If we regard each (ui , φi ) as a function from [−Ri , Ri ]d × [−Ri , Ri ]d into Rd × S
2,

then there exists a (u, φ) ∈ L∞([0, T ]; Hk(Rd) × Hk+1
Q (Rd)) and a subsequence

which is still denoted by (ui , φi ) such that for any compact domain X1,X2 ⊂ R
d

(ui , φi ) → (u, φ) weakly�

in L∞([0, T ]; Hk(X1)) ∩ L2([0, T ]; Hk+1(X1)) × L∞([0, T ]; Hk+1
Q (X2)),
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and hence, we easily obtain (u, φ) which is a strong solution to the Cauchy problem
(1.1). This completes the proof of local existence.

��

4 Uniqueness

In this section, we prove the uniqueness of (1.1) using the ideas of McGahagan [17]
and Song-Wang [21].

Assume that (u1, φ1), (u2, φ2) ∈ H2 × H3
Q are two solutions to the system (1.1)

with the same initial map (u0, φ0) ∈ H2 × H3
Q .

By S2 ⊂ R
3 and (1.1), we have for λ = 1, 2

‖φλ(t, x) − φ0(x)‖L2 ≤ ‖
∫ t

0
∂sφλ(s, x)ds‖L2

≤ Ct‖uλ · ∇φλ − φλ × �φλ‖L2 ≤ Ct .

This, together with Gagliardo–Nirenberg interpolation inequality, implies

‖φλ − φ0‖L∞ ≤ C‖φλ − φ0‖1−d/4
L2 ‖�(φλ − φ0)‖d/4

L2 ≤ Ct1−d/4.

From this, for any δ0 > 0 sufficiently small, there exists T ′ > 0 such that |φ1−φ2| < δ0
for any (t, x) ∈ [0, T ′] × R

d . And hence, there exists a unique minimizing geodesic
γ(t,x)(s) : [0, l] → S

2 such thatγ(t,x)(0) = φ1(t, x) andγ(t,x)(l) = φ2(t, x),where l is
the length of the geodesic γ . Let (t, x) vary; the family of geodesics gives rise to a map
U : [0, 1] × [0, T ′] × R

d → S
2 connecting φ1 and φ2, where U (s, t, x) = γ(t,x)(s).

Therefore, we can define a global bundle morphism P(s) : φ∗
1TS

2 = γ (0)∗TS
2 →

γ (s)∗TS
2 for any s ∈ [0, l] by the parallel transportation along each geodesic.

Using the similar argument to [17, Lemma 4.3], we have the following lemma.

Lemma 4.1 We have the following inequalities for derivatives of the geodesics γ and
their lengths l:

|∂kl| ≤ |P∇φ2 − ∇φ1|,
|∂kγ | � |∇φ1| + |∇φ2|,
|∂tγ | � |∇k∂kφ1| + |∇k∂kφ2| + |u1 · ∇φ1| + |u2 · ∇φ2|,
|D j∂kγ | � |∇ j∂kφ1| + |∇ j∂kφ2| + (|∂ jφ1| + |∂ jφ2|)(|∂kφ1| + |∂kφ2|).

Next, in order to obtain the uniqueness, it suffices to prove

d

dt
(‖u1 − u2‖2L2 + ‖φ1 − φ2‖2L2 + ‖P∇φ1 − ∇φ2‖2L2)

≤ C(‖u1 − u2‖2L2 + ‖φ1 − φ2‖2L2 + ‖P∇φ1 − ∇φ2‖2L2), (4.1)

where the constant C depends on ‖uλ‖H2 and ‖∇φλ‖H2 for λ = 1, 2.
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First, by the similar computations to [17, P393, (ii)] and (1.1), we have

d

dt
‖P∇φ1 − ∇φ2‖2L2

� C(‖P∇φ1 − ∇φ2‖L2 + ‖u1 − u2‖L2)

·
{
‖∇u1 − ∇u2‖L2 + ‖u1 − u2‖L4‖D∂φ2‖L4 + ‖P∇φ1 − ∇φ2‖L2

+ ‖l sup
s∈[0,l]

|∂tγ ||∇φ1|‖L2 + ‖l sup
s∈[0,l]

|∂γ ||∂tφ1|‖L2

+ ‖∇l‖L2‖∇φ1‖L∞‖∇φ2‖L∞ + ‖l sup
s∈[0,l]

|DR(∂γ, ∂sγ )P(s)∇φ1|‖L2

+ ‖l2 sup
s∈[0,l]

|∂γ ||∇φ1|2‖L2

}
.

(4.2)

For d = 3, we estimate each term with a factor of l by taking l in L
2d

d−2 and the rest of
the term in Ld . By Sobolev embedding and Lemma 4.1, (4.2) becomes

d

dt
‖P∇φ1 − ∇φ2‖2L2 ≤ C(‖P∇φ1 − ∇φ2‖L2 + ‖u1 − u2‖L2) · [‖∇u1 − ∇u2‖L2

+ ‖u1 − u2‖1−d/4
L2 ‖∇u1 − ∇u2‖d/4

L2 + ‖P∇φ1 − ∇φ2‖L2

+ ‖∇l‖L2C(uλ, φλ)
]

≤ 1

4
‖∇u1 − ∇u2‖2L2 + C(‖P∇φ1

− ∇φ2‖L2 + ‖u1 − u2‖L2)2

+ C‖P∇φ1 − ∇φ2‖2L2C(uλ, φλ),

where

C(uλ, φλ) = ‖(|∇k∂kφ1| + |∇k∂kφ2| + |u1 · ∇φ1| + |u2 · ∇φ2|)|∇φ1|‖Ld

+ ‖(|∇φ1| + |∇φ2|)(|u1 · ∇φ1| + |D∇φ1|)‖Ld + ‖∇φ1‖L∞‖∇φ2‖L∞

+ ‖(|D∇φ1| + |D∇φ2|)|∇φ1|(|∇φ1| + |∇φ2|)‖Ld

+ ‖(|∇φ1| + |∇φ2|)2|∇φ1|(1 + |∇φ1| + |∇φ2|)‖Ld

+ ‖l(|∇φ1| + |∇φ2|)|∇φ1|2‖Ld .

For d = 2, we bound l in L∞. Apply a theorem due to Brezis and Wainger [6]:

‖l‖L∞ � ‖φ1 − φ2‖L∞ � ‖φ1 − φ2‖H1
(
1 + log1/2(1 + ‖∂2(φ1 − φ2)‖L2)

)
� ‖φ1 − φ2‖H1 .

Then, (4.2) becomes

d

dt
‖P∇φ1 − ∇φ2‖2L2 ≤ 1

4
‖∇u1 − ∇u2‖2L2 + C(‖P∇φ1 − ∇φ2‖L2 + ‖u1 − u2‖L2 )2
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+ C‖P∇φ1 − ∇φ2‖L2‖φ1 − φ2‖H1C(uλ, φλ)

≤ 1

4
‖∇u1 − ∇u2‖2L2 + C(‖P∇φ1 − ∇φ2‖L2 + ‖u1 − u2‖L2 )2

+ C(‖P∇φ1 − ∇φ2‖2L2 + ‖φ1 − φ2‖2L2 )C(uλ, φλ).

By Sobolev embedding, we can bound C(uλ, φλ) by

C(uλ, φλ) � (1 + ‖∇φ1‖H2 + ‖∇φ2‖H2)4(1 + ‖u1‖H2 + ‖u2‖H2).

Then, we obtain

d

dt
‖P∇φ1 − ∇φ2‖2L2 ≤ 1

4
‖∇u1 − ∇u2‖2L2 + C

(
‖P∇φ1 − ∇φ2‖2L2

+‖φ1 − φ2‖2L2 + ‖u1 − u2‖2L2

)
.

(4.3)

Second, by φ-equation and Sobolev embedding, we easily obtain

1

2

d

dt
‖φ1 − φ2‖2L2

≤ ‖u1 − u2‖L2‖φ1 − φ2‖L2‖∇φ1‖H2

+ ‖φ1 − φ2‖L2‖∇φ1 − ∇φ2‖L2(‖u2‖H2 + ‖∇φ1‖H2 + ‖∇φ2‖H2)

+ ‖∇φ1 − ∇φ2‖2L2‖φ2‖L∞

≤ C(‖u1 − u2‖2L2 + ‖φ1 − φ2‖2L2 + ‖∇φ1 − ∇φ2‖2L2).

(4.4)

Using properties of the parallel transport, we have

‖∇φ1 − ∇φ2‖L2 � ‖P∇φ1 − ∇φ2‖L2 + ‖l‖L2

� ‖P∇φ1 − ∇φ2‖L2 + ‖φ1 − φ2‖L2 . (4.5)

Then, (4.4) becomes

d

dt
‖φ1 − φ2‖2L2 ≤ C(‖u1 − u2‖2L2 + ‖φ1 − φ2‖2L2 + ‖P∇φ1 − ∇φ2‖2L2). (4.6)

Finally, by u-equation, ∇ · uλ = 0, Sobolev embedding and (4.5), we have

1

2

d

dt
‖u1 − u2‖2L2 + ‖∇(u1 − u2)‖2L2

≤ C‖∇(u1 − u2)‖L2(‖u1 − u2‖L2 + ‖∇(φ1 − φ2)‖L2)

≤ 1

4
‖∇(u1 − u2)‖2L2 + C(‖u1 − u2‖2L2 + ‖∇(φ1 − φ2)‖2L2)

≤ 1

4
‖∇(u1 − u2)‖2L2 + C(‖u1 − u2‖2L2 + ‖P∇φ1 − ∇φ2‖2L2).

(4.7)
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Hence, from (4.3), (4.6) and (4.7), the bound (4.1) follows. Since ‖u1−u2‖L2 = ‖φ1−
φ2‖L2 = ‖P∇φ1 − ∇φ2‖L2 = 0 at initial time, we then obtain (u1, φ1) = (u2, φ2)

on [0, T ′] by (4.1) and Gronwall’s inequality. By repeating the above argument, we
can prove (u1, φ1) = (u2, φ2) on the whole interval [0, T ] and finish the proof of the
uniqueness.

Funding This work was supported by the National Natural Science Foundation of China (Grant No.
11771415).

References

1. Bejenaru, I.: Global results for Schrödinger maps in dimensions n ≥ 3. Commun. Partial Differ. Equ.
33, 451–477 (2008)

2. Bejenaru, I., Ionescu, A., Kenig, C.: Global existence and uniqueness of Schrödinger maps in dimen-
sions d ≥ 4. Adv. Math. 215, 263–291 (2007)

3. Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Global Schrödinger maps in dimensions d ≥ 2: small
data in the critical Sobolev spaces. Ann. Math. 173, 1443–1506 (2011)

4. Bejenaru, I., Ionescu,A.,Kenig,C., Tataru,D.:Equivariant Schrödingermaps in two spatial dimensions.
Duke Math. J. 162(11), 1967–2025 (2013)

5. Bejenaru, I., Tataru, D.: Near soliton evolution for equivariant Schrödinger maps in two spatial dimen-
sions. Mem. AMS 228, 1069 (2014)

6. Brezis, H., Wainger, S., A note on limiting cases of Sobolev embeddings and convolution inequalities.
Comm. Partial Diff. Eq. 5:773–789

7. Ding, W., Wang, Y.: Schrödinger flow of maps into symplectic manifolds. Sci. China 41(7), 746–755
(1998)

8. Ding, W., Wang, Y.: Local Schrödinger flow into Kähler manifolds. Sci. China 44(11), 1446–1464
(2001)

9. Fan, J.S., Gao, H.J., Guo, B.L.: Regularity critera for the Navier–Stokes–Landau–Lifshitz system. J.
Math. Anal. Appl. 363, 29–37 (2010)

10. Gustafson, S., Kang, K., Tsai, T.: Schrödinger flow near harmonic maps. Commun Pure Appl. Math.
60(4), 463–499 (2007)

11. Gustafson, S., Kang, K., Tsai, T.: Asymptotic stability of harmonic maps under the Schrödinger flow.
Duke Math. J. 145(3), 537–583 (2008)

12. Gustafson, S., Nakanishi, K., Tsai, T.: Asymtotic stability, concentration, and oscillation in harmonic
map heat-flow, Landau–Lifshitz, and Schrödingermaps onR2. Commun.Math. Phys. 300(1), 205–242
(2010)

13. Ionescu, A.D., Kenig, C.E.: Low-regularity Schrödinger maps, II: global well-posedness in dimensions
d ≥ 3. Commun. Math. Phys. 271(2), 53–559 (2007)

14. Koch, H., Tataru, D., Visan, M.: Dispersive Equations and Nonlinear Waves. Oberwolfach Seminars,
vol. 45. Birkhauser, Basel (2014)

15. Li, Z.: Global 2D Schrödinger map flows to Kähler manifolds with small energy, preprint.
arXiv:1811.10924 (2018)

16. Li Z, Global Schrödinger map flows to Kähler manifolds with small data in critical Sobolev spaces:
high dimensions, preprint. arXiv:1903.05551 (2019)

17. McGahagan, H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32(1–
3), 375–400 (2007)

18. Merle, F., Raphaël, P., Rodnianski, I.: Blowup dynamics for smooth data equivariant solutions to the
critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013)

19. Perelman, G.: Blow up dynamics for equivariant critical Schrödinger maps. Commun. Math. Phys.
330(1), 69–105 (2014)

20. Schonbek, M.E.: L2 decay for weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal
88, 209–222 (1985)

21. Song, C., Wang, Y.: Uniqueness of Schrödinger flow on manifolds. Commun. Anal. Geom. 26(1),
217–235 (2018)

123

http://arxiv.org/abs/1811.10924
http://arxiv.org/abs/1903.05551


118 J. Huang

22. Sulem, P.L., Sulem, C., Bardos, C.: On the continuous limit for a system of classical spins. Commun.
Math. Phys. 107(3), 431–454 (1986)

23. Wang, G.W., Guo, B.L.: Existence and uniqueness of the weak solution to the incompressible Navier–
Stokes–Landau–Lifshitz model in 2-dimension. Acta Math. Sci. 37, 1361–1372 (2017)

24. Wang, G.W., Guo, B.L.: Global weak solution to the quantum Navier–Stokes–Landau–Lifshitz equa-
tions with density-dependent viscosity. Discrete Contin. Dyn. Syst. B 24, 6141–6166 (2019)

25. Wei, R.Y., Li, Y., Yao, Z.A.: Decay rates of higher-order norms of solutions to the Navier–Stokes–
Landau–Lifshitz system. Appl. Math. Mech. Engl. Ed. 39(10), 1499–1528 (2018)

26. Zhai, X.P., Li, Y.S., Yan, W.: Global solutions to the Navier–Stokes–Landau–Lifshitz system. Math.
Nachr. 289, 377–388 (2016)

123


	Local Existence and Uniqueness of Navier–Stokes–Schrödinger System
	Abstract
	1 Introduction
	2 Preliminaries
	3 Local Existence of Navier–Stokes–Schrödinger System
	4 Uniqueness
	References




