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Abstract
Forman has developed a version of discrete Morse theory that can be understood
in terms of arrow patterns on a (simplicial, polyhedral or cellular) complex without
closed orbits, where each cell may either have no arrows, receive a single arrow from
one of its facets, or conversely, send a single arrow into a cell of which it is a facet.
By following arrows, one can then construct a natural Floer-type boundary operator.
Here, we develop such a construction for arrow patterns where each cell may support
several outgoing or incoming arrows (but not both), again in the absence of closed
orbits. Our main technical achievement is the construction of a boundary operator that
squares to 0 and therefore recovers the homology of the underlying complex.

Keywords CW complex · Boundary operator · Floer theory · Poincaré polynomial ·
Betti number · Discrete Morse theory · Discrete Morse–Floer theory · Conley theory

Mathematics Subject Classification 05E99 · 57R19 · 57R58

1 Introduction

Morse theory, introduced byMorse in 1925 [23], is an important tool for the study of the
topology of differentiable manifolds. It recovers the homology groups of the manifold
from the critical points of aMorse function and the relations between them. TheMorse
inequalities are inequalities between the Betti numbers (these are the dimensions of
the homology groups) of the manifold and the numbers of critical points of fixed
indices of the function. To get the homology groups, one attaches a k-dimensional
cell for each critical point of index k, and gluing relations between those cells then
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yield the homological boundary operator. Floer [9] discovered a more direct way to
achieve this. He directly constructed the boundary operator from the critical points by
counting the gradient lines between critical points with index difference one. Floer’s
direct construction of the boundary operator in terms of critical points and gradient
lines, without having to invoke the local geometry of the manifold in question, made
spectacular applications to symplectic geometry possible. In fact, Floer’s theory needs
only index differences, but no absolute indices, and it therefore also applies in certain
infinite- dimensional situations, with functionals like the Dirac functional where each
critical point would have an infinite index. Floer homology was fully developed in
[25]. For a presentation in the context of Riemannian geometry, see also [17].

In a rather different direction, Forman [10] developed a discrete version of Morse
theory for CWcomplexes. This is also the setting of the present paper, andwe therefore
recall the setting. The topological boundary elements of a cell are called its faces. If a
cellσ (k) of dimension k is a face of another cell τ ,wewriteσ < τ if dim σ = dim τ−1,
in which case σ is called a facet of τ . Further concepts, in particular those of a regular
facet, will be defined in Sect. 2.

A discrete Morse function, according to Forman, is a real-valued function defined
on the set of cells such that it locally increases in dimension, except possibly in one
direction. More formally, we have:

Definition 1.1 (Discrete Morse function) For all cells σ (k),

{
for all τ s.t. σ is an irregular face of τ, f (σ ) < f (τ );
Un(σ ) := �{τ (k+1) | σ is a regular facet of τ and f (τ ) ≤ f (σ )} ≤ 1;

and {
for all ν s.t. ν is an irregular face of σ, f (ν) < f (σ );
Dn(σ ) := �{ν(k−1) | ν is a regular facet of σ and f (ν) ≥ f (σ )} ≤ 1.

(�A is the cardinality of A). The cell σ is called critical if it is not a regular facet of
some other cell, or in the regular case, if both Dn(σ ) and Un(σ ) are 0.

Although the definition works in full generality, here we assume that the underlying
CW complex is regular (the definition will be recalled below). In fact, on a regular
CW complex, one easily sees that at most one of Dn(σ ) andUn(σ ) can be 1; the other
then has to be 0.

A pair {σ, τ } with σ < τ and f (σ ) ≥ f (τ ) is called a noncritical pair. If we draw
an arrow from σ to τ whenever σ < τ but f (σ ) ≥ f (τ ), then we get a vector field
associated with this function, and each noncritical cell has precisely one arrow which
is either incoming or outgoing. Therefore, for the Euler number, we only need to
count the critical cells with appropriate signs according to their dimensions, since the
noncritical cells cancel in pairs. This is illustrated in Fig. 1, where the 0-cells are the
nodes, the 1-cells are the edges and the 2-cells are the interiors of triangles. Moreover
the noncritical pairs are the pairs of cells between which there is an arrow, while the
critical cells are those without arrows.
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Fig. 1 Vector field of a Morse
function

In [12], a combinatorial vector field on a CW complex K is defined as follows.

Definition 1.2 A combinatorial vector field on a CW complex K is a map V : K →
K ∪ {0} satisfying:
(i) if V (σ ) �= 0, then dim V (σ ) = dim(σ ) + 1 and σ < V (σ );
(ii) if V (σ ) = τ �= 0, then V (τ ) = 0;
(iii) for any τ , there is at most one σ s.t. V (σ ) = τ ;
(iv) for each σ , either V (σ ) = 0 or σ is a regular face of V (σ ).

Thus, if we draw an arrow from σ to τ whenever τ = V (σ ), one sees that a cell
cannot be at the same time the head and the tail of an arrow, and each cell has a unique
incoming or outgoing arrow but never both.

We write σ → τ to indicate that there is an arrow from σ to τ .
In contrast to a general combinatorial vector field, the vector field extracted from

a discrete Morse function admits no closed orbits, where by a closed orbit we mean a
path of the form

σ0 → τ0 > σ1 → τ1 > · · · σm → τm > σ0.

Conversely, one can always construct a discrete Morse function from a combinatorial
vector field that admits no closed orbits.

In [11], Forman defined a boundary operator using the vector field generated
from this discrete Morse function. See Definition 2.1 for the reformulation for CW
complexes. In [12], he developed some discrete analogue of Conley theory for CW
complexes. For a combinatorial vector field, as isolated invariant sets, he considers
the rest points (which are the critical cells) and the closed orbits. The isolating neigh-
borhoods here are the unions of all the cells in the isolated invariant sets together with
those in their boundaries; the exit set is just the collections of cells in the isolating
neighborhood that are not in the isolated invariant sets.

Thus, a general picture emerges. Given a combinatorial vector field, satisfying
suitable restrictions, one can flow along the arrows to retract the underlying complex
onto something simpler or smaller, while preserving the topological information. From
that perspective, the restrictions in Forman’s work on the combinatorial vector field
are rather strong. Each cell can support at most one arrow, incoming or outgoing.
We want to generalize this. What we shall achieve in the present paper is a version
of discrete Morse–Floer–Conley theory for vector fields on complexes where each
cell may support more than one incoming or outgoing arrow, but still not both types
simultaneously. Also, we still exclude closed orbits.
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In any case, the construction of the combinatorial flow, that is, of the boundary
operator, will be much more difficult, because from a cell, we may have to flow into
several directions simultaneously, or conversely, a cell may receive flows from several
of its facets.

The motivation behind this is that Conley theory for dynamical systems on mani-
folds can work with arbitrary flows, more general than the gradient flows derived from
a Morse function, to extract the topological invariants of the manifold under consid-
eration. Also, in the smooth setting, Morse–Bott theory is a generalization of Morse
theory. In a different direction, there is the Morse theory for not necessarily smooth
continuous functions by Corvellec [7].

As already indicated, we shall define a boundary operator fromwhichwe can derive
the Betti numbers of the CW complex under consideration. We shall also derive some
Morse-related inequalities.

More specifically, on a finite CW complex K, in which each cell is given an orien-
tation, we consider arrow configurations of the following type.

Definition 1.3 (Arrow configuration) An arrow configuration assigns to each k-cell
σ a collection of (k + 1)-cells that have σ as a facet. We draw an arrow from σ to
each cell in that collection. The cardinality of that collection is denoted by nou(σ ).
Conversely, for each k-cell σ , we let nin(σ ) be the number of arrows that it receives
from its facets. Thus, nou(σ ) is the number of outgoing arrows of σ while nin(σ ) is
the number of incoming arrows of σ .

We require that at most one of nou(σ ) and nin(σ ) be different from zero and that
there should not be any closed orbit.

When nin(σ ) ≥ 2 (resp. nou(σ ) ≥ 2),we say the corresponding cellσ is abnormally
downward (resp. abnormally upward) noncritical.

We recall that if K is a CW complex (in which every cell is endowed with an
orientation called initial orientation), and R is any principal ideal domain, Ck(K; R)

is the free R-module generated by the (oriented) k-cells of K. The cellular boundary
operator ∂c : Ck+1(K; R) → Ck(K; R) is given by

∂c(τ (k+1)) =
∑
σ<τ

[τ (k+1) : σ (k)]σ (k),

where [τ : σ ] is the incidence number of τ and σ . That is, the number of times that τ
(along its boundary) is wrapped around σ . (Taking the induced orientation from τ onto
σ into account: for σ a regular facet of τ , if the induced orientation on σ coincides
with the initial orientation of σ , [τ : σ ] = +1; if not, then it is −1.)

In order to develop a version of Floer’s theory in this setup, we start with a finite
CW complex, in which each cell is given an orientation and whose Betti numbers can
be computed using cellular homology. We define a boundary operator, using all the
arrows, which is based on some probabilistic and averaging technique. This boundary
operator is the composition of some systematically well-defined “flow map” with the
cellular boundary operator. We then need to take care of various types of cells that
we call defective. These comprise the critical cells, that is, those with no incoming
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A Generalized Discrete Morse–Floer Theory 229

and outgoing arrow; the abnormally downward noncritical cells; the cells having an
outgoing arrow pointing to an abnormally downward noncritical cell; the abnormally
upward noncritical cells; and the cells having an incoming arrow from an abnormally
upward noncritical cell. By carefully handling those defective cells, we shall construct
a boundary operator from which we can read off the topological Betti numbers.

In Sect. 2, we state our assumptions and make precise what type of cells we
encounter in our framework that were not present in Forman’s framework. We recall
Forman’s boundary operator and show that the arrow configuration that we consider is
generated by some discrete function. We also observe that we can compute the Euler
number of a CW complex using the arrow configuration, but without invoking any
boundary operator. The story is different for the Betti numbers, however.

In Sect. 3, we construct our boundary operator and state and prove the main theo-
rems; in particular, that the square of this boundary operator is zero and that we can
recover the Betti numbers of the CW complex from it. We obtain some Morse-type
inequalities as well.

In Sect. 4, we develop some Conley-type analysis from an arrow configuration as
considered in Sect. 3.

2 Notations

Let K be a finite CW complex in which each cell is endowed with an orientation
(called initial orientation). We recall that the topological boundary elements of a cell
are called its faces and the co-dimension one faces are called facets. A reference for
CW complexes is [26], for instance.

A CW complex consists of cells τ ; for each such τ of dimension p, there is a
continuous map h : B p → K (considered as a topological space) from the closed
unit ball B p of dimension p that maps the interior of B p homeomorphically onto τ .
A facet σ of τ is called regular if h : h−1(σ ) → σ is also a homeomorphism and
h−1(σ ) is a closed ball of dimension p − 1. For a regular CW complex, all faces are
regular. The incidence property of regular CW complexes states that if ν < σ < τ in
a regular CW complex, then there exists σ̃ �= σ s.t. ν < σ̃ < τ . The same holds for
CW complexes provided ν is a regular facet of σ and σ is a regular facet of τ .

We let f be a discrete Morse function on a finite CW complex K. Then, for a
noncritical cell σ , either

�{ τ > σ | f (τ ) ≤ f (σ ) } = 1, in which case we say that σ isupward noncritical

or

�{ν < σ | f (ν) ≥ f (σ ) } = 1, in which case σ is said to be downward noncritical.

Indeed, if σ is such that ν < σ < τ and f (ν) ≥ f (σ ) ≥ f (τ ), then in particular,
by Definition 1.1 ν must be a regular facet of σ and σ is a regular facet of τ . Then,
there exists a cell σ̃ �= σ , σ̃ < τ s.t. f (̃σ ) < f (τ ). Choose σ̃ s.t. ν < σ̃ . This is
always possible from the incidence of ν and τ , as just noted. Then, f (ν) < f (̃σ ), as
otherwise the discrete Morse conditions are violated. Hence,
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f (ν) ≥ f (σ ) ≥ f (τ ) > f (̃σ ) > f (ν),

which is a contradiction. Thus, a cell cannot be downward and upward noncritical at
the same time.

We recall that whenever we have a discrete Morse function f , we draw an arrow
from σ to τ if σ < τ but f (σ ) ≥ f (τ ). In this way, we get a vector field. A
boundary operator can also be computed using a combinatorial vector field extracted
from a discrete Morse function; see [11].

Since not every CWcomplex is orientable, we look at local orientations:We assume
that every cell in K is endowed with an orientation called its initial orientation. The
orientations on the higher dimensional cells will induce orientations on the lower
dimensional ones; see [14]. If the induced orientation on a cell coincides with its
initial one, the cell will be counted with a + sign; if not, then a − sign. We recall that
the incidence number between two critical cells τ (k+1) and σ (k), denoted [τ : σ ], is the
number of times that τ is wrapped (along its boundary) around σ . When orientations
are taken into account and σ is a regular facet of τ , [τ : σ ] is equal to+1 if the induced
orientation from τ to σ coincides with the initial orientation of σ , and is−1 otherwise.
See [14] for the precise formulation.

Remark 2.1 For a regular CW complex, if a cell σ (k) is a face of another cell ω(k+2),
then there exist τ

(k+1)
1 and τ

(k+1)
2 s.t. σ < τi < ω. Looking at the orientations, see

[14], ω will induce some orientations on τ1 and τ2. The orientation on τ1 (induced
from ω) will induce an orientation on σ that will be different from the one induced
from τ2. However, when the CW complex is not regular, and σ is an irregular facet of
τ < ω), then we cannot induce a consistent orientation on σ from τ .
More generally, even if σ is not a face of ω, in the regular case, the orientation on ω

will induce an orientation on σ along each path from ω to σ .

Let Ck(K;Z) (Ck(K;Z2)) be the free Z-module (Z2-module) generated by the
critical oriented k-cells ofK. We now define Forman’s boundary operator ∂F [10,11].
The idea is to construct a discrete flow by iterating the cellular boundary operator ∂c

until hitting a critical cell. We define vF : K ∪ {0} → K ∪ {0} by:

vF (σ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ if σ is critical,∑
σ̃<τ, σ̃ �=σ

vF (̃σ ) if σ is upward noncritical, with an arrow σ → τ,

0 else.

(2.1)

The crucial point for us is that those simplices that receive an arrow are put to 0, and
they will therefore drop out of the boundary operator. To compensate for that and
to preserve the fundamental relation that the square of the boundary be 0, we then
need to flow in the direction of outgoing arrows. Working in Z, we use the following
orientation convention: The initial orientation of a facet σ̃ < τ is taken in such a way
that it is induced from the orientation of τ inducing an orientation of σ < τ opposite
to the initial orientation of σ .
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Fig. 2 Definition of Forman’s boundary operator

The preceding definition is recursive so we have to argue that it terminates. Indeed,
for a discrete Morse function f , the cells σ and σ̃ in (2.1) satisfy: f (σ ) > f (̃σ ). The
finiteness of the CW complex then ensures that we shall stop at some point.

Definition 2.1 (Definition of the boundary operator ∂F ) The boundary operator ∂F :
Ck → Ck−1 is given by:

∂F (τ ) := vF ◦ ∂cτ =
∑
σ<τ

[τ : σ ]vF (σ ).

Example 2.1 In Fig. 2, the arrows are drawn between the critical cells of index dif-
ference one (going downward), and the sign of each arrow between two critical cells
represents the incidence number. The left subfigure specifies the initial orientations of
the cells. That is,

σ0 = [ν1, ν0], σ1 = [ν0, ν2], σ2 = [ν1, ν2], σ3 = [ν2, ν3], σ4 = [ν3, ν1],
τ1 = [ν0, ν2, ν1], τ2 = [ν1, ν2, ν3].

Now, using the initial orientations of each cell, we have:
∂F
2 (τ2) = σ2 + σ3; the edge σ4 is downward noncritical so we ignore it.

∂F
2 (τ1) = −σ2 + σ1; the edge σ0 is downward noncritical so we ignore it.

∂F
1 (σ3) = ν1 − ν2, since the other vertex ν3 is upward noncritical with the edge σ4
which in turn has the vertex ν1 as critical.
∂F
1 (σ1) = ν2 − ν1, since the other vertex ν0 is upward noncritical with the edge σ0
which in turn has the vertex ν1 as critical.

∂F
1 (σ2) = ν2 − ν1.

∂F
0 (νi ) = 0 for i = 1, 2.

Then, one can easily check that ∂F
k−1 ◦ ∂F

k = 0 for all k = 1, 2, and for bk :=
ker ∂F

k / im ∂F
k+1, we get the desired Betti numbers, that is b0 = 1, b1 = 0, b2 = 0.

Remark 2.2 Topologically, Definition 2.1 means that we apply a collapse to each cell
with an outgoing arrow with the cell that receives that arrow, and then take the cellular
boundary operator of the newcomplex obtained after all the collapses have been carried
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Fig. 3 A collapse/deformation retraction

Fig. 4 A vector field not
originating from a discrete
function

out. Each such collapse is a strong deformation retraction and therefore homotopy
preserving. See Fig. 3 for an illustration.

Our aim is to extend such a definition to arrow configurations onK. For such arrow
configurations, each cell may have finitely many outgoing or incoming arrows. We
shall need to require, however, that we do not have both incoming and outgoing arrows
together at any cell and also that the arrow configuration does not have closed orbits.

Definition 2.2 (Closed orbit) A closed orbit (of dimension k) is a closed path of arrows,
that is,

σ
(k)
1 → τ

(k+1)
1 > σ

(k)
2 → τ

(k+1)
2 · · · τ (k+1)

l−1 > σ
(k)
l → τ

(k+1)
l > σ

(k)
1 (P).

Figure 4 shows an example of a closed orbit.

Definition 2.3 (Arrow configuration) An arrow configuration assigns to each k-cell σ
a collection of cardinality denoted by nou(σ ) of (k + 1)-cells that have σ as a facet.
We draw an arrow from σ to each cell in that collection. Conversely, we let nin(σ )

be the number of arrows that σ receives from its facets. Thus, nou(σ ) is the number
of outgoing arrows while nin(σ ) is the number of incoming arrows of σ . We denote
these collections by

ADn(σ ) := {ν ∈ K | ν < σ, ∃ ν → σ }, AUn(σ ) := {τ ∈ K | τ > σ, ∃ σ → τ }.

We require that at most one of nou(σ ) and nin(σ ) be different from zero and that
there should not be any closed orbit.

An arrow configuration with a closed orbit and where each cell carries at most one
arrow cannot be generated by a discrete function. Also, if in the arrow configuration
a cell σ has both an incoming arrow ν → σ and an outgoing σ → τ and if there
exists ρ �= σ, ν < ρ < τ , for which there is no arrow from ρ to τ , then again there
can be no generating function f , as we would have the contradiction f (ν) ≥ f (σ ) ≥
f (τ ) > f (ρ) > f (ν) for some ρ �= σ, ν < ρ < τ . However,
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Fig. 5 A discrete function
whose vector field is not our
arrow configuration

Fig. 6 A function with a closed
orbit

Lemma 2.1 An arrow configuration as in Definition 2.3 is generated by some discrete
function.

Proof Under our assumptions, we can construct a function f : K → R that satisfies
for every σ ∈ K

f (σ ) ≤ min{ f (ν) | ν ∈ ADn(σ )} if nin(σ ) ≥ 1,

f (σ ) ≥ max{ f (τ ) | τ ∈ AUn(σ )} if nou(σ ) ≥ 1,

f (σ ) > max{ f (ν) | ν < σ, ν /∈ ADn(σ )},
f (σ ) < min{ f (τ ) | τ > σ, τ /∈ AUn(σ )}.


�
The converse of Lemma 2.1 is not true. Indeed, Fig. 5 shows an example of a

function whose extracted vector field allows for a cell to have at the same time an
incoming and an outgoing arrow. Also, in Fig. 6 we have a discrete function whose
extracted vector field has a closed orbit. In this case, the edge with value 6 has more
than one outgoing arrow, one of which points to the 2-cell with value 2 which has
more than one incoming arrow.

In Forman’s framework, the downward noncritical cells have only one incoming
arrow, the upward noncritical cells have only one outgoing arrow and the critical
cells have no arrows. We call the first two types: Forman type or normally noncritical
cells.
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(a) (b)
Fig. 7 Different types of defective cells

Definition 2.4 (Abnormally noncritical cell) A cell τ is abnormally downward non-
critical if nin(τ ) > 1, that is, the number of incoming arrows of τ is greater than
1. A cell τ is abnormally upward noncritical if nou(τ ) > 1, that is, the number of
outgoing arrows of τ is greater than 1.

For our examples, in which we mostly use simplicial complexes, we write
[ν1, ν2, . . . , νk] to denote the oriented cell with vertices ν1, . . . , νk .

Example 2.2 (a) In Fig. 7a, the vertex ν2 is abnormally upward noncritical.
(b) In Fig. 7b, the 2-cell τ = [ν1, ν2, ν3] is abnormally downward noncritical.

Definition 2.5 (Defective cell) A cell σ with its arrow pattern is said to be defective
if it satisfies any one of the following:

(a) nin(σ ) = 0 and nou(σ ) = 0 (σ is critical in the standard sense);
(b) nin(σ ) > 1 (σ is abnormally downward noncritical);
(c) σ ∈ ADn(τ ) for some τ satisfying nin(τ ) > 1 (σ has an arrow into an abnormally

downward noncritical cell);
(d) nou(σ ) > 1 (σ is abnormally upward noncritical);
(e) σ ∈ AUn(ν) for some ν satisfying nou(ν) > 1 (σ receives an arrow from an

abnormally upward noncritical cell).

We now observe that the Euler number can be computed by using the contribution
only from those cells that are either critical or support or receive more than one arrow.

Definition 2.6 (Contribution function) The contribution C : K → Z, of a cell σ (k) ∈
K, is

C(σ (k)) = (−1)k + (−1)k−1nin(σ
(k)) + (−1)k+1nou(σ

(k)).

In particular, C(σ ) = 0 if σ has only a single (incoming or outgoing) arrow.

Proposition 2.2 The Euler number of the cell complex K is given by:

χ(K) =
∑
σ∈K

C(σ ). (2.2)
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Proof Anoutgoing (resp. incoming) arrow of a k-cell is an incoming arrow of a (k+1)-
cell (resp. outgoing arrow of a (k − 1)-cell). Therefore, the contributions cancel in
(2.2). 
�

We want to refine this simple observation and construct a boundary operator from
our arrow configuration that also passes over those cells that have only a single arrow
and recovers not only the Euler number, but also the Betti numbers of our complex.
In order to yield homology, the square of such a boundary operator has to be 0.

We shall assume that each cell is oriented.

3 A Generalized Boundary Operator

We are now in a position to generalize Forman’s discrete Morse–Floer theory. The
data for our construction consist of a finite CW complex K (with cellular boundary
operator ∂c), where each cell is given an orientation and an arrow configuration as in
Definition 2.3, that is, a cell can have more than one outgoing or incoming arrow, but
not both, and there are no closed orbits.

Let σ ∈ K be a cell, and recall that nin(σ ) (resp. nou(σ )) denotes the number of
incoming arrows (resp. outgoing arrows) of σ .

We first define suitable collections of cells.

Au := {σ ∈ K | nou(σ ) ≥ 1}
C̄ (k)
o := {σ (k) ∈ K | nin(σ ) = 0 & nou(σ ) = 0}

C̄ (k)
in := {σ (k) ∈ K | nou(σ ) = 0 & nin(σ ) > 1}

C̄ (k)
ou := {σ (k) ∈ K | nou(σ ) > 1 & nin(σ ) = 0}

C̄ (k)
sin := {σ (k) ∈ K | σ ∈ ADn(τ ) with nin(τ ) > 1, for some τ }

C̄ (k)
sou := {σ (k) ∈ K | σ ∈ AUn(ν) with nou(ν) > 1, for some ν}

C̄ (k) := C̄ (k)
o ∪ C̄ (k)

ou ∪ C̄ (k)
in ∪ C̄ (k)

sin ∪ C̄ (k)
sou,

and let C̄k be the free R-module generated by the (oriented) cells in C̄ (k).
Let β(l) = 0 for l = 1 and choose some value 0 < β(l) < 1 for l > 1, for instance

β(l) = 1/2.

3.1 Definition of the Boundary Operator

Here, we develop our definition of the boundary operator, using the above arrow
configuration.

The idea is the following. In the topological boundary of a cell τ , we want to ignore
those cells σ that receive a single arrow from a noncritical facet ρ, that is, ρ has only
a single outgoing arrow, and that arrow points into σ . In order to compensate for that
when we compute the square of the boundary operator, we need to let ρ flow along σ

into its other boundary components. When we compute the square of the topological
boundary operator of τ , ρ cancels, because it occurs in the boundary of σ and also,
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but with opposite orientation, in the boundary of another facet σ ′ of τ (that is, σ and
σ ′ meet at ρ). Now, when σ is no longer accounted for in the boundary of τ , we
need to compensate for that by letting ρ flow along σ into the latter’s other boundary
components, to achieve the cancelation. For instance, when σ is an edge, it has another
boundary vertex ρ′ that is also a boundary vertex, again with opposite orientation, of
another edge σ ′′ of τ . Letting ρ thus flow into ρ′ achieves the cancelation with that
boundary vertex of σ ′′.

Since simplices may carry several arrows, either incoming or outgoing, we only
need to account for those in our flow, but since simplices withmore than one arrowwill
not put to 0 in our boundary operator, we have some flexibility here. We might simply
keep them and not let them flow. That would mean that we only take those simplices
with precisely one arrow, received from a facet with only one outgoing arrow, into
account. That would essentially be the situation considered by Forman. We could
also let them flow and divide the contributions among the different arrows. As some
examples show, that might change the Betti numbers (but not the Euler number). Or
we can let them partially flow and keep a fraction fixed. That is what we shall do,
because we want to put all arrows to work in some kind of diffusion process on our
complex.

We now formally define the generalized “flow” map v that will be composed with
the topological boundary operator to construct our flow boundary operator. We put

v(σ ) :=

⎧⎪⎨
⎪⎩

σ if σ ∈ C̄o ∪ C̄in ∪ C̄sou,

to be defined if σ ∈ Au,

0 else.

(3.1)

Thus, we have handled the cases when σ has no outgoing arrows. It does not move,
unless it is noncritical and does not receive an arrow from a noncritical cell, in which
casewe simply put v(σ ) = 0.When a cellσ has some outgoing arrows, that is,σ ∈ Au ,
v(σ ) will be a linear combination of the cells of the same dimension that are in the
cellular boundary operator of the cells to which the arrows of σ point. However, some
of those cells in the boundary of some τ ∈ AUn(σ )might have arrows themselves, and
some of them may even point back into τ . Therefore, the definition needs to proceed
recursively. Here are the details.

To define v for a cell σ ∈ Au , we consider the set AUn(σ ) = {τσ
1 , . . . , τ σ

m } of the
target cells of arrows coming from σ . The first step of the definition then is

v(σ ) := β(m) σ + 1 − β(m)

m

m∑
r=1

v(σ → τσ
r ). (3.2)

Thus, whenm > 1, since then β(m) > 0, some part of σ is retained and does not flow.
The rest, or all of σ when m = 1, flows into the boundaries of the cells into which
the arrows from σ point. We now define v(σ → τ) for an arrow σ → τ . We write
ADn(τ ) = {σ1, σ2, . . . , σl}, with σ = σ1. When l = 1, τ receives no other arrows.
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When l ≥ 1, for each i = 1, . . . , l, AUn(σi ) = {τσi
1 , . . . , τ

σi
mi } with τ

σi
1 = τ . We put

Aσ1 = Aσ := {τ } × AUn(σ2) × · · · × AUn(σl).

Note that possible other outgoing cells of σ itself are not included in this product.
For an element E ∈ Aσ , define

Pτ (E) = {σi ∈ ADn(τ ) | Proji (E) = τ for some i} and set ηE := |Pτ (E)|.

As an example for the definition of Pτ , take E = (τ, τ, τ, E4, . . . , El), with
E4, . . . , El �= τ , then Pτ (E) = {σ, σ2, σ3}.

We write E ∩ AUn(σ j ) to denote the projection of E , as an element of the product
set {τ } × AUn(σ2) × · · · × AUn(σl), onto the component AUn(σ j ).

We can now define

v(σ → τ) := 1

|Aσ |
∑
E∈Aσ

v(σ, E)

⎛
⎝|Aσ | =

∏
j≥2

m j

⎞
⎠

with, for E ∈ Aσ ,

v(σ, E) := β(ηE ) σ + 1 − β(ηE )

ηE

(
(ηE − 1)σ +

∑
h≥2

σh∈Pτ (E)

σh

+
∑
σ ′<τ

σ ′ /∈ADn(τ )

v(σ ′) +
∑

τ
σ j �=τ

τ
σ j ∈E∩AUn(σ j )

v(σ j → τσ j )

)
. (3.3)

Thus, we keep a fraction of σ itself (first term) and some fraction of those other
boundary facets of τ that have an arrow pointing back into τ (second term), flow from
those boundary facets that do not have an arrow into τ into other simplices into which
they point (third term) and finally flow into other simplices from boundary facets of
τ that have arrows pointing into τ and arrows pointing into other simplices (fourth
term). We assume for simplicity that the initial orientation of a facet σ̃ < τ is taken
in such a way that it is induced from the orientation of τ inducing an orientation of
σ < τ opposite to the initial orientation of σ . Note that v(−σ → τ) = −v(σ → τ)

where −σ is the cell σ with the opposite orientation.
This recursive definition above terminates after finitely many steps. In fact, by

Lemma 2.1 there is a discrete function f that generates the given arrow configuration.
From the proof of Lemma 2.1, f (σ ) ≥ f (τ ) > f (σ ′). That is, the arguments of v(σ ′)
in (3.3) have strictly smaller value for the function f than the value f (σ ). However,
f (σ ) need not be greater than f (σ j ). But the absence of closed orbits in our arrow
configuration ensures that the flow map v cannot return to σ after leaving τ . So, the
absence of closed orbits and the finiteness of K together imply that we stop at some
point.
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Fig. 8 A forking case

Definition 3.1 (Boundary operator) We define C̄k
∂̄k−→ C̄k−1 by

∂̄τ = v ◦ ∂cτ =
∑
σ<τ

v(σ ). (3.4)

We now want to see how Definition 3.1 simplifies when the arrow configuration is
restricted to the specific cases of merging and forking.

3.1.1 The Forking Case

In this part, we restrict the boundary operator given by Definition 3.1 in the case where
a cell can have many outgoing arrows or at most one incoming arrow, and there are
no closed orbits.

Suppose that on K we have the arrow configuration given by Definition 2.3 with
the assumption that for each cell σ ,

nin(σ ) ≤ 1.

Let the set of all defective k-cells be given by

C̄ (k) := C̄ (k)
o ∪ C̄ (k)

ou ∪ C̄ (k)
sou,

and C̄k be the free R-module generated by the oriented cells in C̄ (k).
Let us denote in this case the “flow” map by vup.
The map vup : K ∪ {0} → K ∪ {0} is given by:

vup(σ ) =

⎧⎪⎨
⎪⎩

σ if σ ∈ C̄o ∪ C̄sou,

V up(σ ) if σ ∈ Au,

0 else,

where, if AUn(σ ) = {τ1, τ2, . . . , τm},

V up(σ ) = β(m) σ + (1 − β(m))
1

m

m∑
i=1

vup(σ → τi ),
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Fig. 9 Example in the forking case

with

vup(σ → τi ) =
∑

ρ<τi ,ρ �=σ

vup(ρ). (3.5)

In this situation however, the arrow configuration cannot have closed orbits. Indeed,
Lemma 2.1 ensures there is a discrete function f that generates the given arrow
configuration. Also, the argument of vup(ρ) in (3.5) has strictly smaller value for the
function f than the value f (σ ). Indeed, from the proof of Lemma 2.1, f (σ ) ≥ f (τi )
for each i . We are in the forking case so each τi has only one arrow coming from σ .
Thus, f (τi ) > f (ρ), since there is no arrow from ρ to τi . Hence, f (σ ) > f (ρ). This
tells us that the flow map vup cannot return to σ . Since K is finite, it implies we stop
at some point.

Remark 3.1 The crucial fact about the definition of vup above is that the coefficient
β(m) is not zero whenever m > 1. Consider for example Fig. 8 with the orientations:

σ1 = [ν2, ν1], σ2 = [ν2, ν3], σ3 = [ν4, ν2].

If we suppose that β(m) = 0 for all m, we obtain

∂̄σ1 = ν1 − 1

2
(ν3 + ν4), ∂̄σ2 = ν3 − 1

2
(ν3 + ν4) = 1

2
(ν3 − ν4), and

∂̄σ3 = ν4 − 1

2
(ν4 + ν3) = 1

2
(ν4 − ν3).

Then, one immediately sees that

ker ∂̄0 = 〈ν1, ν2, ν3, ν4〉, im ∂̄1 = 〈∂̄σ1, ∂̄σ3〉, ker ∂̄1 = 〈σ3 − σ2〉, im ∂̄2 = 0.

This does not give the right Betti numbers since we obtain

b̄0=dim
(
ker ∂̄0/ im ∂̄1

)=2 �=1=b0, and b̄1=dim
(
ker ∂̄1/ im ∂̄2

)=1 �=0=b1.

Example 3.1 In Fig. 9, the initial orientation of each cell is given in the right subfigure,
that is:
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Fig. 10 A merging case

τ1 = [ν1, ν2, ν3]; τ2 = [ν1, ν3, ν0]; τ3 = [ν0, ν3, ν4]; σ0 = [ν4, ν0];
σ1 = [ν0, ν1];
σ2 = [ν1, ν2]; σ3 = [ν2, ν3]; σ4 = [ν3, ν4]; σ5 = [ν1, ν3]; σ6 = [ν3, ν0].

The cell ν3 is abnormally upward noncritical with the cells σ4, σ5 and σ6. We have
the following:

C̄ (0)
o = {ν0 , ν1}, C̄ (1)

o = {σ2}, C̄ (2)
o = {τ1, τ3};

C̄ (0)
ou = {ν3}, C̄ (1)

sou = AUn(ν3) = {σ4 , σ5 , σ6};
vup(ν3) = β(3)ν3 + (1 − β(3))

1

3

(
vup(ν3 → σ5) + vup(ν3 → σ6) + vup(ν3 → σ4)

)
= β(3)ν3 + (1 − β(3))

1

3
(ν1 + 2ν0);

∂̄τ1 = −σ5 + σ2, ∂̄τ3 = (−σ6 + σ4),

since the induced orientation from τ1 (resp. τ3) onto σ5 (resp. σ6) does not coincide
with the initial orientation of σ5 (resp. σ6);

∂̄σ2 = −ν1 + vup(ν3),

since the induced orientation from σ2 (also σ5) onto ν3 coincides with the initial
orientation of ν3, whereas the one induced by σ4 (or σ6) does not coincide with the
initial orientation. Also, the initial orientation of ν1 does not coincide with its induced
orientation from σ2. We therefore have:

∂̄σ2 = −ν1 + vup(ν3), ∂̄σ5 = −ν1 + vup(ν3), ∂̄σ4 = ν0 − vup(ν3),

∂̄σ6 = ν0 − vup(ν3).

One easily checks that ∂̄ ◦ ∂̄ = 0.

3.1.2 The Merging Case

In this case, we restrict the Definition 3.1 to situation where a cell can have at most
one outgoing arrow but as much incoming arrows as possible. Let K be a finite CW
complex in which each cell is endowed with an orientation, together with the arrow
configuration given by Definition 2.3.
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Suppose that for each cell σ ,

nou(σ ) ≤ 1.

Set

C̄ (k) = C̄ (k)
o ∪ C̄ (k)

in ∪ C̄ (k)
sin,

and C̄k the free R-module generated by the oriented cells in C̄ (k).
We denote the “flow” map by vdo : K ∪ {0} → K ∪ {0}, and it is given by:

vdo(σ ) =

⎧⎪⎨
⎪⎩

σ if σ ∈ C̄o ∪ C̄in,

V do(σ ) if σ ∈ Au,

0 else,

where, for σ ∈ Au, there exists a τ s.t. ADn(τ ) = {σ1, . . . , σl} with σ = σ1, and
V do(σ ) is given by

V do(σ ) := β(l) σ + 1 − β(l)

l

⎛
⎝(l − 1)σ +

∑
j �=1

σ j +
∑

σ̃<τ,̃σ /∈ADn(τ )

vdo(̃σ )

⎞
⎠ .

(3.6)

In this case, to argue that the recursive definition above terminates after finitelymany
steps only follows from Lemma 2.1. Indeed, assuming there is a discrete function f
that generates the given arrow configuration, for such a function f , because there is
an arrow from σ to τ , we have f (σ ) ≥ f (τ ). In turn, f (τ ) > f (̃σ ) since there is no
arrow from σ̃ to τ . Hence, f (σ ) > f (̃σ ). That is, the argument of vdo(̃σ ) in (3.6) has
strictly smaller value, for the function f , than the value f (σ ). Hence, the flow map
vdo cannot return to σ . Since K is finite, it implies we stop at some point.

Remark 3.2 What is crucial about the definition above is the fact that β(l) �= 0 for
l > 1. Consider for example Fig. 10, with the initial orientations given by:

τ = [ν1, ν2, ν3], σ1 = [ν1, ν3], σ2 = [ν3, ν2], σ3 = [ν1, ν2].

Assuming β(l) = 0 for all l, we get:

∂̄σ1 = ν3 − 1

2
(ν1 + ν2), ∂̄σ2 = −ν3 + 1

2
(ν1 + ν2), ∂̄σ3 = 0,

and ∂̄τ = −σ1 − σ2 + σ3.

Then, one immediately sees that σ3 adds an additional element in ker ∂̄1. Indeed,

ker ∂̄0 = 〈ν1, ν2, ν3〉, im ∂̄1 = 〈∂̄σ1〉,
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Fig. 11 Another example of a merging case

ker ∂̄1 = 〈σ1 + σ2, σ3〉, im ∂̄2 = 〈−σ1 − σ2 + σ3〉.

This then does not give the right Betti numbers since we get

b̄0=dim
(
ker ∂̄0/ im ∂̄1

)=2 �=b0=1, and b̄1 = dim
(
ker ∂̄1/ im ∂̄2

) = 1 �=0 = b1.

Example 3.2 Using Fig. 11, the initial orientations given by the right subfigure are
such that:

τ1 = [ν1, ν2, ν3]; τ2 = [ν0, ν1, ν3]; τ3 = [ν1, ν0, ν2]; τ4 = [ν2, ν0, ν3];
σ0 = [ν0, ν2]; σ1 = [ν3, ν0]; σ2 = [ν3, ν1]; σ3 = [ν1, ν2]; σ4 = [ν0, ν1];
σ5 = [ν2, ν3].

The cell σ4 is upward noncritical with the cell τ3, and the cell τ1 is abnormally down-
ward noncritical with the cells σ2, σ3 and σ5. We then have:

vdo(σ3) = β(3)σ3 + 1 − β(3)

3
(2σ3 − σ2 − σ5);

vdo(σ2) = β(3)σ2 + 1 − β(3)

3
(2σ2 − σ3 − σ5);

vdo(σ5) = β(3)σ5 + 1 − β(3)

3
(2σ5 − σ2 − σ3).

∂̄τ4 = −σ0 − σ1 − vdo(σ5)

= −β(3)(σ0 + σ1 + σ5)

− (1 − β(3))

3

(
2(σ0 + σ1 + σ5) + (σ0 + σ1 − σ2 − σ3)

)
.

Also,

∂̄τ2 = σ1 − vdo(σ2) + σ0 − vdo(σ3)

= σ1 + σ0 + 2
(1 − β(3))

3
σ5 − 1 + 2β(3)

3
(σ2 + σ3).

= 2
(1 − β(3))

3
(σ1 + σ0 + σ5) + 1 + 2β(3)

3
(σ1 + σ0 − σ2 − σ3).
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Similarly, one gets

∂̄τ1 = vdo(σ3) + vdo(σ2) + vdo(σ5)

= β(3)σ3 + 1 − β(3)

3
(2σ3 − σ2 − σ5) + β(3)σ2 + 1 − β(3)

3
(2σ2 − σ3 − σ5)

+β(3)σ5 + 1 − β(3)

3
(2σ5 − σ2 − σ3) = β(3)(σ5 + σ3 + σ2).

Each term in brackets is the cellular boundary of some linear combination of cells.
One then checks by direct computation that ∂̄ ◦ ∂̄ = 0.

3.2 GeneralizedMorse Inequalities

We now come to the main theorems of this paper, the first of which establishes the
fact that the square of the boundary operator ∂̄ is zero.

Theorem 3.1
∂̄ ◦ ∂̄ = 0. (3.7)

Proof This follows from the argument given at the beginning of Sect. 3.1. Those
boundary components that are put to 0 in the boundary of τ compensate by letting
their own boundary components flow into others. Topologically, this simply means
that we contract them to points. Such a contraction does not affect the square of the
boundary operator. This argument shows (3.7). For an algebraic computation, we refer
to [28]. 
�

With Theorem 3.1, we can use the boundary operator ∂̄ to define homology groups.
Let b̄i := dim

(
ker ∂̄i/ im ∂̄i+1

)
be the corresponding Betti numbers.

Lemma 3.2 b̄i = bi , where the bi are the ordinary Betti numbers of our complex.

Proof We assume for simplicity that the CW complex K has no noncritical cells
that belong to Forman’s framework, since the Forman-type noncritical cells can be
collapsed, preserving the homotopy type of the CW complex in the process. Indeed,
when we put β(s) = 0 that is s = 1 in (3.2) and (3.3), we have the setting of Forman’s
theory, and it follows from that theory that the Betti numbers are equal.
Suppose that 0 < β(s) ≤ 1. Under this assumption, Ck = C̄k , and by definition, see
(3.4),

ker ∂c ⊂ ker ∂̄ . (3.8)

When we put β(s) = 1, nothing flows out and we have the setting of the cellular
boundary operator, and it follows that the kernels are equal. When we perturb β,
the dimension of the kernel can at most decrease, but that cannot happen by (3.8).
Therefore, for β(s), s > 1 close to 1, the kernels still agree. For fractional β, no
further cancelations are possible that could increase the dimension of the kernel. That
could happen at most for β(s) = 0, but we do not allow that for s > 1. 
�

Again, a more detailed algebraic computation can be found in [28].
Let mk := dim C̄k . We then have the following Morse-type inequalities.
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Theorem 3.3 (Generalized Morse inequalities) There exists R(t), a polynomial in t
with nonnegative integer coefficients such that

dimK∑
i=0

mi t
i =

dimK∑
i=0

bi t
i + (1 + t)R(t).

Proof Since bi = b̄i by Lemma 3.2, we can use the following standard argument:

n∑
k=0

m̄k t
k −

n∑
k=0

b̄k t
k =

n∑
k=0

(dim ker ∂̄k + dim im ∂̄k)t
k

−
n∑

k=0

(dim ker ∂̄k − dim im ∂̄k+1)t
k

=
n∑

k=0

(dim im ∂̄k + dim im ∂̄k+1)t
k

=
n∑

k=0

(m̄k − dim ker ∂̄k)t
k +

n∑
k=0

(m̄k+1 − dim ker ∂̄k+1)t
k

= (t + 1)
n∑

k=1

(m̄k − dim ker ∂̄k)t
k−1,

since m̄0 = dim ker ∂̄0 and m̄n+1 = 0 = dim ker ∂̄n+1.
The proof ends by using the fact that dim ker ∂̄k ≤ m̄k for all k = 1, 2, . . . , n. 
�

Example 3.3 Using Figs. 12 and 13, we have the following:

ω
(3)
1 = [ν1, ν2, ν3, ν4]; ω

(3)
2 = [ν0, ν1, ν3, ν2];

τ0 = [ν0, ν1, ν2]; τ1 = [ν0, ν2, ν3]; τ2 = [ν0, ν3, ν1]; τ4 = [ν1, ν3, ν2];
τ3 = [ν1, ν2, ν4]; τ5 = [ν1, ν4, ν3]; τ6 = [ν2, ν3, ν4];
σ0 = [ν0, ν2]; σ1 = [ν1, ν0]; σ2 = [ν3, ν0]; σ3 = [ν1, ν2]; σ4 = [ν4, ν2];
σ5 = [ν2, ν3]; σ6 = [ν3, ν1]; σ7 = [ν3, ν4]; σ8 = [ν4, ν1];

The cell w(3)
2 is abnormally downward noncritical with the cells τ0 and τ4.

The cell τ5 is abnormally downward noncritical with the cells σ8 and σ6.
The edge σ6 is abnormally upward noncritical with the cells τ5 and τ2.
The vertex ν4 is abnormally upward noncritical with the edges σ7 and σ4.
We then get the following sets:

C̄ (0)
o = {ν2, ν3}, C̄ (1)

o = {σ5, σ2, σ3}, C̄ (2)
o = {τ6, τ3, τ1}, C̄ (3)

o = {ω(3)
1 };

C̄ (2)
in = {τ5}, C̄ (3)

in = {ω(3)
2 }, C̄ (0)

ou = {ν4}, C̄ (1)
ou = {σ6};
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Fig. 12 Initial orientations

Fig. 13 A general example

C̄ (1)
sin = {σ8, σ6}, C̄ (2)

sin = {τ4, τ0}, C̄ (1)
sou = {σ4, σ7}, C̄ (2)

sou = {τ5, τ2};

We obtain

∂̄ω
(3)
1 = τ6 + τ3 + τ5 + v(τ4),
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since we take all the cells in C̄o ∪ C̄in ∪ C̄sou and τ4 ∈ C̄sin . We also take induced
orientations into account. Following the outgoing arrow from τ4, the cell ω

(3)
2 has

τ0 s.t . AUn(τ0) = {ω(3)
2 }; thus,

A = {(ω(3)
2 , ω

(3)
2 )} and P

ω
(3)
2

((ω
(3)
2 , ω

(3)
2 )) = {τ4, τ0}.

We then have

v(τ4 → ω
(3)
2 ) = v(τ4, (ω

(3)
2 , ω

(3)
2 )) = β(2)τ4 + 1 − β(2)

2
(τ4 − τ0 − τ1 − τ2),

since the arrow from τ4 meets the incoming one from τ0. Hence,

∂̄ω
(3)
1 = τ6 + τ3 + τ5 + β(2)τ4 + 1 − β(2)

2
(τ4 − τ0 − τ1 − τ2)

= (
β(2) + 1 − β(2)

2

)
(τ6 + τ3 + τ5 + τ4)

+ 1 − β(2)

2
(τ6 + τ3 + τ5 − τ0 − τ1 − τ2);

∂̄ω
(3)
2 = τ1 + τ2 + β(2)τ4 + 1 − β(2)

2
(τ4 − τ0 − τ1 − τ2)

+β(2)τ0 + 1 − β(2)

2
(τ0 − τ4 − τ1 − τ2)

= β(2)(τ1 + τ2 + τ0 + τ4);
∂̄τ3 = σ3 − σ4 + v(σ8),

and following the arrow σ8 → τ5, the cell τ5 has σ6 s.t . AUn(σ6) = {τ5, τ2}. Thus,
Aσ8 = {(τ5, τ5), (τ5, τ2)}, and we need to take the average over the possibilities that
we have at the edge σ6. We have

v(σ8 → τ5) = 1

2
(v(σ8, (τ5, τ5)) + v(σ8, (τ5, τ2))).

Also,

Pτ5((τ5, τ5)) = {σ8, σ6} ⇒ v(σ8, (τ5, τ5)) = β(2)σ8 + 1 − β(2)

2
(σ8 + σ6 − σ7),

Pτ5((τ5, τ2)) = {σ8} ⇒ v(σ8, (τ5, τ2)) = −σ7 + v(σ6 → τ2) = −σ7 + σ2,

where τ2 ∈ AUn(σ6) ∩ E , and τ2 �= τ5. This yields

∂̄τ3 = σ3 − σ4 + 1

2

(
β(2)σ8 + 1 − β(2)

2

(
σ8 − σ7 + σ6

) + (−σ7 + σ2)
)

=
(

β(2)

2
+ 1 − β(2)

4

)
(σ3 − σ4 + σ8) + 1 − β(2)

4
(σ3 − σ4 − σ7 + σ6)
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+ 1

2
(σ3 − σ4 − σ7 + σ2);

Similarly, one gets

∂̄τ4 = −σ5 − σ3 − v(σ6)

= −σ5 − σ3 − β(2)σ6 − 1 − β(2)

2

(
v(σ6 → τ5) + v(σ6 → τ2)

)
= −σ5 − σ3 − β(2)σ6 − 1 − β(2)

2

(
β(2)σ6 + 1 − β(2)

2
(σ6 + σ8 + σ7) + σ2

)

= −(
β(2)(1 + 1 − β(2)

2
) + (1 − β(2))2

4

)
(σ5 + σ3 + σ6)

− (1 − β(2))2

4
(σ5 + σ3 + σ8 + σ7) − 1 − β(2)

2
(σ5 + σ3 + σ2);

∂̄τ2 = −σ2 + v(σ6)

= −σ2 + β(2)σ6 + 1 − β(2)

2

(
β(2)σ6 + 1 − β(2)

2
(σ6 + σ8 + σ7) + σ2

)

= −
(
β(2)

(
1 + 1 − β(2)

2

) + (1 − β(2))2

4

)(
σ2 − σ6

)
− (1 − β(2))2

4
(σ2 − σ8 − σ7);

∂̄τ5 = −σ7 + v(σ6) − v(σ8)

= −σ7 + β(2)σ6 + 1 − β(2)

2

(
β(2)σ6 + 1 − β(2)

2
(σ6 + σ8 + σ7) + σ2

)
− 1

2

(
β(2)σ8 + 1 − β(2)

2

(
σ8 − σ7 + σ6

) + (−σ7 + σ2)
)

= (
β(2)(1 + 1 − β(2)

4
)
)
(σ6 − σ8 − σ7) − β(2)

2
(σ2 − σ8 − σ7);

∂̄τ0 = σ3; ∂̄τ6 = (σ7 + σ4) + σ5; ∂̄τ1 = σ2 + σ5;
∂̄σ2 = ν2 − ν3 = ∂̄σ6; ∂̄σ5 = ν3 − ν2; ∂̄σ3 = 0;
∂̄σ8 = ν2 − β(2)ν4− 1−β(2)

2
(ν3+ν2); ∂̄σ4 = ν2 − β(2)ν4 − 1−β(2)

2
(ν3+ν2);

∂̄σ7 = −ν3 + β(2)ν4 + 1 − β(2)

2
(ν3 + ν2).

One checks by direct computation that ∂̄ ◦ ∂̄ = 0.

ker ∂̄0 = 〈ν2 , ν3 , ν4〉, im ∂̄1 =
〈
ν2 − ν3 , ν2 − β(2)ν4 + 1 − β(2)

2
(ν3 + ν2))

〉
;

ker ∂̄1 = 〈σ3 , σ2 + σ5 , σ5 + σ6 , σ4 − σ8 , σ7 + σ4 + σ5〉 = im ∂̄2;
ker ∂̄2 = 〈τ0 + τ1 + τ4 + τ2 , τ3 + τ4 + τ5 + τ6〉,
im ∂̄3 = 〈β(2)(τ1 + τ2 + τ0 + τ4) , ∂̄ω

(3)
1 〉;

ker ∂̄3 = 0 = im ∂̄4.
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This yields

b̄0 = 1 = b0, b̄1 = 0 = b1, b̄2 = 0 = b2, b̄3 = 0 = b2.

Also, we have

m0 = 3, m1 = 7, m2 = 7, m3 = 2,

and we obtain∑
k

mkt
k = 3 + 7t + 7t2 + 2t3 = 1 + (1 + t)(2 + 5t + 2t2), that is

R(t) = 2 + 5t + 2t2.

We now move to the last section of this paper which shows how we can retrieve the
Poincaré polynomial of our CW complex using some systematically defined isolated
invariant sets.

4 Conley Theory

In this section, we shall show how to retrieve the Poincaré polynomial of our CW
complex from isolated invariant sets in the sense of Conley.

From the arrow configuration, we have

• The singletons consisting of the cells without arrows,
• The collections {τ } ∪ ADn(τ ), for nin(τ ) > 1 and
• The collections {σ } ∪ AUn(σ ), for nou(σ ) > 1.

By iterativelymerging {σ }∪AUn(σ ) for nou(σ ) > 1 and {τ }∪ADn(τ ) for nin(τ ) > 1,
whenever σ ∈ ADn(τ ) (equivalently τ ∈ AUn(σ )), we obtain disjoint collections
Ci of subcells such that any critical cell, any abnormally downward noncritical cell
togetherwith all those cells fromwhich arrows point into it and any abnormally upward
noncritical cell together with all cells into which its arrows point are contained in one
of the Ci . An important observation is that because no cell is allowed to possess both
incoming and outgoing arrows, each Ci consists either of a single critical cell, or its
members are of two adjacent dimensions.

By construction, there is no path (following the arrows) that moves from a cell in
Ci to another cell outside of Ci . Therefore, each Ci is invariant. Since they constitute
the building blocks for computing the Poincaré polynomial of the CW complex, we
may formulate

Definition 4.1 (i) The isolated invariant sets are the collections Ii = Ci ;
(ii) The isolating neighborhood N (I ) of I is N (I ) = ∪σ∈I σ̄ ;
(iii) The exit set E(I ) for each such I is E(I ) = N (I ) \ I .

To proceed, we show that we can find a discrete Morse–Bott function f such that
the extracted vector field of f is exactly our arrow configuration.
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Proposition 4.1 Suppose we have a CW complex K together with the arrow configu-
ration given by Definition 2.3. Then, there exists a discrete Morse–Bott function whose
extracted vector field coincides with this arrow configuration.

Proof We already know that it is always possible, from Lemma 2.1, to find a discrete
function f such that the vector field extracted from f yields the given arrow configu-
ration. We get a discrete Morse–Bott function f , see [30, Definition 2.2], by requiring
that for every isolated invariant set I :

• for every σ, τ ∈ I , f (σ ) = f (τ ),
• for every cell σ ∈ I ,

(i) f (σ ) > max{ f (ν), ν < σ, ν /∈ I },
(ii) f (σ ) < min{ f (τ ), τ > σ, τ /∈ I }.

• The remaining cells in the CW complex are those that belong to noncritical pairs,
and we require

(iii) f (σ ) < f (ν), for ν < σ s.t. nin(σ ) = 1, nou(ν) = 1 and ν → σ,

(iv) f (σ ) > f (τ ), for τ > σ s.t. nou(σ ) = 1, nin(τ ) = 1 and σ → τ .

Such a function f is discrete Morse–Bott, and each isolated invariant set is exactly a
reduced collection (that is not a noncritical pair); see [30, Definition 2.5]. 
�

Before stating the main result, we shall prove some auxiliary results.

Lemma 4.2 The set N (I ) \ I is a subcomplex.

Proof Although this follows from [30, Theorem 3.2], we provide a proof that does not
use the discrete Morse–Bott function, but only the arrow pattern.

If σ ∈ N (I ) \ I , then σ is the face of an element in I but it is not in I . Since N (I )
is a subcomplex, we only need to show that any ν < σ is not in I .

ν ∈ I is not possible, however, because, as observed above, the cells in I are at
most of two adjacent dimensions k, k + 1. And then σ has to be of dimension k or
k − 1, and ν consequently of dimension k − 1 or k − 2, and thus cannot be in I . 
�
Definition 4.2 For an isolated invariant set I , the boundary operator ∂ I

k : Ck(I ,Z) →
Ck−1(I ,Z) is given by:

∂ I
k τ (k) =

∑
σ∈I ,σ<τ

[τ : σ ]σ (k−1).

Lemma 4.2 implies that the boundary operator ∂ I , see also [30, Definition 2.7], is
a well-defined relative boundary operator of the pair (N (I ), E(I )).

Recall that m̄k := dim C̄k , and let

nIk := �{σ (k) ∈ I };

then, we have the following.
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Lemma 4.3
∑

k mktk = ∑
i
∑

k n
Ii
k t

k .

Proof It follows easily from the definitions ofmk and the Ii ’s, since the Ii ’s are disjoint
and ∪i I

(k)
i = C̄k , where I (k) denotes the set of k-cells of I . 
�

Let us recall that for an isolated invariant set I ,

Pt (I ) :=
dimK∑
k=0

dim
(
ker ∂ I

k / im ∂ I
k+1

)
tk .

Lemma 4.4 For each i , there exist ri (t), a polynomial in t with nonnegative integer
coefficients, such that

∑
k

nIik t
k = Pt (Ii ) + (1 + t)ri (t).

Proof From [30, Proposition 2.6], each ri (t) = ∑
k=1(n

Ii
k − dim ker ∂ Ii

k )tk−1, where

∂
Ii
k is also the relative boundary operator of (N (Ii ), E(Ii )) since both N (Ii ) and E(Ii )
are subcomplexes. 
�

The main result in this section now states that we can retrieve the Poincaré poly-
nomial of the CW complex from those of the isolated invariant sets, or from those of
the index pairs of the isolated invariant sets.

Theorem 4.5 Let Ii be the isolated invariant sets of Definition 4.1 obtained from an
arrow configuration as in Definition 2.3. Then, there exists R̄(t), a polynomial in t
with nonnegative integer coefficients, such that

∑
i

Pt (N (Ii ), E(Ii )) =
∑
i

Pt (Ii ) = Pt (K) + (1 + t)R̄(t).

Proof Thefirst equality follows from the fact that ∂ I
k is the relative boundary operator of

the pair (N (I ), E(I )). Now, using Proposition 4.1, the fact that
∑

i Pt (Ii ) = Pt (K)+
(1 + t)R̄(t) follows from [30, Theorem 2.7] and the fact that

∑
i Pt (N (Ii ), E(Ii )) =

Pt (K) + (1 + t)R̄(t) follows from [30, Theorem 3.2]. 
�
Example 4.1 In Fig. 14,

τ1 = (ν1, ν2, ν4), τ2 = (ν2, ν3, ν4),

τ3 = (ν1, ν3, ν4), τ4 = (ν1, ν2, ν3).

σ1 = (ν1, ν4), σ2 = (ν1, ν2), σ3 = (ν2, ν4),

σ4 = (ν2, ν3), σ5 = (ν3, ν4), σ6 = (ν1, ν3).

We get Ii = {νi }, for i = 1, . . . , 4,

I5 = {τ1, σ1, σ2}, I6 = {τ4, σ4, σ6},
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Fig. 14 A vector field as in
Definition 2.3

Fig. 15 Isolating neighborhood and exit set for I5 in Example 4.1

I7 = {τ3}, I8 = {σ5}.

For i = 1, . . . , 4, Pt (Ii ) = 1, Pt (I5) = t , Pt (I6) = t , Pt (I7) = t2, Pt (I8) = t .

∑
i
Pt (Ii ) = 4 + 3t + t2 = 1 + t2 + 3(1 + t),

so R̄(t) = 3, since Pt (K) = 1 + t2.

Remark 4.1 In Example 4.1, one also looks at the exit set and isolating neighborhoods
for each Ii . For example, Fig. 15 shows what is the exit set denoted by E and the
isolating neighborhood denoted by N , for the isolated invariant set I5. Geometrically,
one looks at N/E by identifying the exit set E and using Pt (N , E) = Pt (N/E)−1 =
t . One gets a similar result for I6.
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